Skip to main content

2018 | OriginalPaper | Buchkapitel

2. Modelling Strategies and Two-Phase Flow Models

verfasst von : Geoffrey F. Hewitt, George Yadigaroglu

Erschienen in: Introduction to Multiphase Flow

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The general methods of solution of thermal-hydraulic problems are recalled first and then we show how these are complicated by the presence of multiphase flows, before entering into the descriptions of the various approaches commonly used. The special features of multiphase or two-phase flows are pointed out, in particular the existence of a number of flow regimes. The various two-phase flow and boiling heat transfer variables of interest, such as the pressure gradient, the void fraction, the heat transfer coefficient, etc., will depend on the particular flow regime. In principle, one should model each flow regime separately; when flow-regime-specific models are used, one can “mechanistically” take into consideration the particularities of each regime. The alternative approach often used is to largely ignore the flow regimes and derive methods (most often empirical correlations) covering all flow regimes continuously. The complete formulation of the two-phase-flow problem, which would have required the description of the evolution in time of the fields (pressure, velocity, temperature, etc.) for each phase, together with a prediction of the geometry of the interfaces, is generally impractical. The often chaotic flow fields must be treated in terms of statistical, average properties. There are two general approaches, the two-fluid, or more generally the multi-fluid approach and the mixture formulation. A simple presentation of the two-fluid approach is given. The basis of the method is to write conservation equations for each phase and to include in these equations terms which represent the interaction between the phases. The closure laws required to complete this formulation are listed and examples of implementation difficulties are given. The phase conservation equations may be summed up to yield mixture conservation equations, a particular case is the homogeneous flow model. The relatively new developments that rely on computational fluid mechanics methods to analyse and simulate multi- and two-phase flows are introduced to the reader.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The following discussion is mainly directed to the accuracy of the pressure gradient; similar considerations apply, however, in all other areas.
 
2
We recall here what was discussed in Chap. 1 regarding the term mixture that is most of the time used to denote the two (or more) phases flowing together and does not necessarily imply that these are intimately mixed.
 
3
The term “separated flow” is often used loosely to denote two-phase flows where the two phases have different average velocities. This distinguishes such flows from the homogeneous ones, where the phases have the same average velocity; such flows may strictly speaking not be homogeneous at all.
 
4
A bubble accelerating in a liquid entrains the fluid surrounding it and appears to have much larger inertia than that of the mass of gas it contains; the virtual mass effect.
 
5
Post-dryout heat transfer refers to the heat transfer regimes that are present after the critical heat flux condition or dryout is reached.
 
6
Contrary to other authors, we do not use the term DNS to characterize all “fully resolved” computations, but apply it only to computations where all the scales of turbulence are resolved. In this sense, an exact analytical solution for laminar flow is not a DNS (Yadigaroglu 2005).
 
Literatur
Zurück zum Zitat Alder BJ, Wainwright TE (1957) Phase transition of a hard sphere system. J Chem Phys 27(5):1208CrossRef Alder BJ, Wainwright TE (1957) Phase transition of a hard sphere system. J Chem Phys 27(5):1208CrossRef
Zurück zum Zitat Andritsos N, Hanratty TJ (1987) Influence of interfacial waves in stratified gas-liquid flows. AIChE J 33(3):444–454CrossRef Andritsos N, Hanratty TJ (1987) Influence of interfacial waves in stratified gas-liquid flows. AIChE J 33(3):444–454CrossRef
Zurück zum Zitat Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York
Zurück zum Zitat Bunner B, Tryggvason G (2002) Dynamics of homogeneous bubbly flows. Part 1. J Fluid Mech 446:17–52 Bunner B, Tryggvason G (2002) Dynamics of homogeneous bubbly flows. Part 1. J Fluid Mech 446:17–52
Zurück zum Zitat Chauliac C, Aragonés JM, Bestion D, Cacuci DG, Crouzet N, Weiss FP, Zimmermann MA (2011) NURESIM–A European simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis. Nucl Eng Des 241(9):3416–3426CrossRef Chauliac C, Aragonés JM, Bestion D, Cacuci DG, Crouzet N, Weiss FP, Zimmermann MA (2011) NURESIM–A European simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis. Nucl Eng Des 241(9):3416–3426CrossRef
Zurück zum Zitat Delhaye JM (1981) Local instantaneous equations, local time-averaged equations, and composite-averaged equations. In: Delhaye JM, Giot M, Riethmueller ML (eds) Thermohydraulics of two-phase systems for industrial design and nuclear engineering. Hemisphere, Washington Delhaye JM (1981) Local instantaneous equations, local time-averaged equations, and composite-averaged equations. In: Delhaye JM, Giot M, Riethmueller ML (eds) Thermohydraulics of two-phase systems for industrial design and nuclear engineering. Hemisphere, Washington
Zurück zum Zitat Druzhinin OA, Elghobashi S (2001) Direct numerical simulation of a three-dimensional spatially developing bubble-laden mixing layer with two-way coupling. J Fluid Mech 429:23–61CrossRefMATH Druzhinin OA, Elghobashi S (2001) Direct numerical simulation of a three-dimensional spatially developing bubble-laden mixing layer with two-way coupling. J Fluid Mech 429:23–61CrossRefMATH
Zurück zum Zitat ESDU (2002) Frictional pressure gradient in adiabatic flows of gas-liquid mixtures in horizontal pipes: prediction using empirical correlations and data base. Engineering Sciences Data Unit, Data Item 01014 (ISBN 1 86246 171 6). ESDU International Ltd, London ESDU (2002) Frictional pressure gradient in adiabatic flows of gas-liquid mixtures in horizontal pipes: prediction using empirical correlations and data base. Engineering Sciences Data Unit, Data Item 01014 (ISBN 1 86246 171 6). ESDU International Ltd, London
Zurück zum Zitat Fulgosi M, Lakehal D, Banerjee S, De Angelis V (2003) Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J Fluid Mech 482:319–3457CrossRefMATH Fulgosi M, Lakehal D, Banerjee S, De Angelis V (2003) Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J Fluid Mech 482:319–3457CrossRefMATH
Zurück zum Zitat Gauss F, Lucas D, Krepper E (2016) Grid studies for the simulation of resolved structures in an Eulerian two-fluid framework. Nucl Eng Des 305:371–377CrossRef Gauss F, Lucas D, Krepper E (2016) Grid studies for the simulation of resolved structures in an Eulerian two-fluid framework. Nucl Eng Des 305:371–377CrossRef
Zurück zum Zitat Hirt CW, Nichols BD (1981) Volume of Fluid method (VOF) for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefMATH Hirt CW, Nichols BD (1981) Volume of Fluid method (VOF) for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRefMATH
Zurück zum Zitat Ishii M, Hibiki T (2011) Thermo-fluid dynamics of two-phase flow, 2nd edn. Springer, New YorkCrossRefMATH Ishii M, Hibiki T (2011) Thermo-fluid dynamics of two-phase flow, 2nd edn. Springer, New YorkCrossRefMATH
Zurück zum Zitat Ishii M, Mishima K (1984) Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des 82:107–126CrossRef Ishii M, Mishima K (1984) Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des 82:107–126CrossRef
Zurück zum Zitat Jamet D, Lebaigue O, Coutris N, Delhaye JM (2001) The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J Comput Phys 169:624–651MathSciNetCrossRefMATH Jamet D, Lebaigue O, Coutris N, Delhaye JM (2001) The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J Comput Phys 169:624–651MathSciNetCrossRefMATH
Zurück zum Zitat Jayanti S, Hewitt GF (1997) Hydrodynamics and heat transfer in wavy annular gas-liquid flow: a computational fluid dynamics study. Int J Heat Mass Transf 40:2445–2660CrossRefMATH Jayanti S, Hewitt GF (1997) Hydrodynamics and heat transfer in wavy annular gas-liquid flow: a computational fluid dynamics study. Int J Heat Mass Transf 40:2445–2660CrossRefMATH
Zurück zum Zitat Kataoka T (1986) Local instant formulation of two-phase flow. Int J Multiphase Flow 12:745 Kataoka T (1986) Local instant formulation of two-phase flow. Int J Multiphase Flow 12:745
Zurück zum Zitat Lahey Jr RT, Drew DA (1988) The three-dimensional time and volume averaged conservation equations of two-phase flow. In: Advances in nuclear science and technology. Springer, US, pp 1–69 Lahey Jr RT, Drew DA (1988) The three-dimensional time and volume averaged conservation equations of two-phase flow. In: Advances in nuclear science and technology. Springer, US, pp 1–69
Zurück zum Zitat Lahey RT Jr, Drew DA (2001) The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid Model. Nucl Eng Des 204(1):29–44CrossRef Lahey RT Jr, Drew DA (2001) The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid Model. Nucl Eng Des 204(1):29–44CrossRef
Zurück zum Zitat Lakehal D, Meier M, Fulgosi M (2002) Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows. Int J Heat Fluid Flow 23(3):242–257CrossRef Lakehal D, Meier M, Fulgosi M (2002) Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows. Int J Heat Fluid Flow 23(3):242–257CrossRef
Zurück zum Zitat Lakehal D, Fulgosi M, Yadigaroglu G, Banerjee S (2003) Direct numerical simulation of heat transfer at different Prandtl numbers in counter-current gas-liquid flows. ASME J Heat Transf 125(6):1129–1140CrossRef Lakehal D, Fulgosi M, Yadigaroglu G, Banerjee S (2003) Direct numerical simulation of heat transfer at different Prandtl numbers in counter-current gas-liquid flows. ASME J Heat Transf 125(6):1129–1140CrossRef
Zurück zum Zitat Ling Y, Zaleski S, Scardovelli R (2015) Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model. Int J Multiphase Flow 76:122–143 Ling Y, Zaleski S, Scardovelli R (2015) Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model. Int J Multiphase Flow 76:122–143
Zurück zum Zitat Long LN, Micci MM, Wong BC (1996) Molecular dynamics simulations of droplet evaporation. Comp Phys Commun 96(2):167–172CrossRef Long LN, Micci MM, Wong BC (1996) Molecular dynamics simulations of droplet evaporation. Comp Phys Commun 96(2):167–172CrossRef
Zurück zum Zitat Ng TS (2002) Interfacial structure in stratified pipe flow. Ph.D. thesis, University of London, June 2002 Ng TS (2002) Interfacial structure in stratified pipe flow. Ph.D. thesis, University of London, June 2002
Zurück zum Zitat Nigmatulin RI (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int J Multiph Flow 5(5):353–385CrossRefMATH Nigmatulin RI (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int J Multiph Flow 5(5):353–385CrossRefMATH
Zurück zum Zitat Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49MathSciNetCrossRefMATH Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49MathSciNetCrossRefMATH
Zurück zum Zitat Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31(1):567–603MathSciNetCrossRef Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31(1):567–603MathSciNetCrossRef
Zurück zum Zitat Shaha J (1999) Phase interactions in transient stratified flow. Ph.D. thesis, University of London, August 1999 Shaha J (1999) Phase interactions in transient stratified flow. Ph.D. thesis, University of London, August 1999
Zurück zum Zitat Spedding PL, Hand NP (1997) Prediction in stratified gas-liquid co-current flow in horizontal pipelines. Int J Heat Mass Transf 40(8):1923–1935CrossRef Spedding PL, Hand NP (1997) Prediction in stratified gas-liquid co-current flow in horizontal pipelines. Int J Heat Mass Transf 40(8):1923–1935CrossRef
Zurück zum Zitat Štrubelj L, Tiselj I, Mavko B (2009) Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model. Int J Heat Fluid Flow 30(4):741–750CrossRef Štrubelj L, Tiselj I, Mavko B (2009) Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model. Int J Heat Fluid Flow 30(4):741–750CrossRef
Zurück zum Zitat Srichai S (1994) High pressure separated two-phase flow. Doctoral dissertation, Imperial College, London Srichai S (1994) High pressure separated two-phase flow. Doctoral dissertation, Imperial College, London
Zurück zum Zitat Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159CrossRefMATH Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159CrossRefMATH
Zurück zum Zitat Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J 22(1):47–55CrossRef Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J 22(1):47–55CrossRef
Zurück zum Zitat Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ (2001) A front tracking method for the computations of multiphase flow. J Comput Phys 169:708–759MathSciNetCrossRefMATH Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ (2001) A front tracking method for the computations of multiphase flow. J Comput Phys 169:708–759MathSciNetCrossRefMATH
Zurück zum Zitat Unverdi SO, Tryggvason G (1992) A front tracking method for viscous incompressible flows. J Comput Phys 100:25–37CrossRefMATH Unverdi SO, Tryggvason G (1992) A front tracking method for viscous incompressible flows. J Comput Phys 100:25–37CrossRefMATH
Zurück zum Zitat Whalley PB, Hutchinson P, Hewitt, GF (1974). The calculation of critical heat flux in forced convective boiling. Heat transfer. In: Proceedings of the 1974 International Heat Transfer Conference, vol 4, pp 290–294 Whalley PB, Hutchinson P, Hewitt, GF (1974). The calculation of critical heat flux in forced convective boiling. Heat transfer. In: Proceedings of the 1974 International Heat Transfer Conference, vol 4, pp 290–294
Zurück zum Zitat Whalley PB, Hutchinson P, James PW (1978). The calculation of critical heat flux in complex situations using an annular flow model. In: Proceedings of 6th International Heat Transfer Conference, Toronto, vol 5, pp 65–70 Whalley PB, Hutchinson P, James PW (1978). The calculation of critical heat flux in complex situations using an annular flow model. In: Proceedings of 6th International Heat Transfer Conference, Toronto, vol 5, pp 65–70
Zurück zum Zitat Yadigaroglu G (2003) Letter to the Editor, CMFD (a brand name) and other acronyms. Int J Multiphase Flow 29:719–720 Yadigaroglu G (2003) Letter to the Editor, CMFD (a brand name) and other acronyms. Int J Multiphase Flow 29:719–720
Zurück zum Zitat Yadigaroglu G (2005) Computational fluid dynamics for nuclear applications: from CFD to multi-scale CMFD. Nucl Eng Des 235(2):153–164CrossRef Yadigaroglu G (2005) Computational fluid dynamics for nuclear applications: from CFD to multi-scale CMFD. Nucl Eng Des 235(2):153–164CrossRef
Zurück zum Zitat Yadigaroglu G, Lakehal D (2003) New challenges in computational thermal hydraulics, invited plenary lecture. In: The 10th international topical meeting on nuclear reactor thermal hydraulics (NURETH-10), Seoul, Korea, 5–9 October 2003 Yadigaroglu G, Lakehal D (2003) New challenges in computational thermal hydraulics, invited plenary lecture. In: The 10th international topical meeting on nuclear reactor thermal hydraulics (NURETH-10), Seoul, Korea, 5–9 October 2003
Zurück zum Zitat Yadigaroglu G, Lahey RTL Jr (1976) On the various forms of the conservation equations in two-phase flow. Int J Multiphase Flow 2:477–494 Yadigaroglu G, Lahey RTL Jr (1976) On the various forms of the conservation equations in two-phase flow. Int J Multiphase Flow 2:477–494
Zurück zum Zitat Yi P, Poulikakos D, Walther J, Yadigaroglu G (2002) Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int J Heat Mass Transf 45:2087–2100CrossRefMATH Yi P, Poulikakos D, Walther J, Yadigaroglu G (2002) Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int J Heat Mass Transf 45:2087–2100CrossRefMATH
Zurück zum Zitat Zuber N (1967) Conservation laws for two-phase flow with a change of phase. Int J Heat Mass Transf 10:1637–1642CrossRef Zuber N (1967) Conservation laws for two-phase flow with a change of phase. Int J Heat Mass Transf 10:1637–1642CrossRef
Zurück zum Zitat Zuber N, Findlay (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87:453–468CrossRef Zuber N, Findlay (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87:453–468CrossRef
Metadaten
Titel
Modelling Strategies and Two-Phase Flow Models
verfasst von
Geoffrey F. Hewitt
George Yadigaroglu
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-58718-9_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.