Skip to main content
Erschienen in: Polymer Science, Series D 3/2023

01.09.2023

Modern Phenolic Adhesives for Aviation and Engineering. Part 1. The Effect of Modifying Additives

verfasst von: D. A. Aronovich, A. P. Petrova

Erschienen in: Polymer Science, Series D | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phenolic adhesives used in modern engineering industries, including aircraft and rocket manufacturing, are reviewed. Ways to modify adhesives to achieve high performance characteristics are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Global Phenolic Resins Market Size Report, 2022–2030. http://www.polarismarketresearch.com/industry-analysis/phenolic-resin-market. Global Phenolic Resins Market Size Report, 2022–2030. http://​www.​polarismarketres​earch.​com/​industry-analysis/​phenolic-resin-market.​
2.
Zurück zum Zitat L. Pilato, Phenolic Resins: A Century of Progress (Springer, Berlin, 2010).CrossRef L. Pilato, Phenolic Resins: A Century of Progress (Springer, Berlin, 2010).CrossRef
3.
Zurück zum Zitat A. Gardziella, L. Pilato, and A. Knop, Phenolic resins: Chemistry, Applications, Standardization, Safety and Ecology (Springer, Berlin, 2000).CrossRef A. Gardziella, L. Pilato, and A. Knop, Phenolic resins: Chemistry, Applications, Standardization, Safety and Ecology (Springer, Berlin, 2000).CrossRef
4.
Zurück zum Zitat A. P. Petrova and G. V. Malysheva, Adhesive, Adhesive Binder, and Adhesive Prepregs: Tutorial (VIAM, Moscow, 2017) [in Russian]. A. P. Petrova and G. V. Malysheva, Adhesive, Adhesive Binder, and Adhesive Prepregs: Tutorial (VIAM, Moscow, 2017) [in Russian].
5.
Zurück zum Zitat A. Pizzi and K. L. Mittal, (Eds.). “Phenolic Resin Adhesives,” Chap. 8, in Handbook of Adhesive Technology, 3rd ed. (Taylor and Francis, New York, 2018), pp. 223–261. A. Pizzi and K. L. Mittal, (Eds.). “Phenolic Resin Adhesives,” Chap. 8, in Handbook of Adhesive Technology, 3rd ed. (Taylor and Francis, New York, 2018), pp. 223–261.
6.
Zurück zum Zitat K. Hirano and M. Asami, “Phenolic resins–100 years of progress and their future,” React. Funct. Polym. 73, 256—269 (2013).CrossRef K. Hirano and M. Asami, “Phenolic resins–100 years of progress and their future,” React. Funct. Polym. 73, 256—269 (2013).CrossRef
7.
Zurück zum Zitat M. N. Amiraslanova, “Paint and adhesive compositions based on phenolic oligomers,” Plast. Massy, Nos. 11—12, 51—54 (2014). M. N. Amiraslanova, “Paint and adhesive compositions based on phenolic oligomers,” Plast. Massy, Nos. 11—12, 51—54 (2014).
9.
Zurück zum Zitat L. A. Pilato, J. H. Koo, G. A. Wissler, and S. Lao, “A review–phenolic and related resins and their nanomodification into phenolic resin FRP systems,” J. Adv. Mater 40, 5–16 (2008). L. A. Pilato, J. H. Koo, G. A. Wissler, and S. Lao, “A review–phenolic and related resins and their nanomodification into phenolic resin FRP systems,” J. Adv. Mater 40, 5–16 (2008).
10.
Zurück zum Zitat M. Asima, N. Saba, M. Jawaid, et al., “A review on phenolic resin and its composites,” Curr. Anal. Chem. 14, 185–197 (2018).CrossRef M. Asima, N. Saba, M. Jawaid, et al., “A review on phenolic resin and its composites,” Curr. Anal. Chem. 14, 185–197 (2018).CrossRef
11.
Zurück zum Zitat A. P. Alieva, “Composite materials based on phenol-formaldehyde resins,” Prom. Proizvod. Ispol’z. Elastomerov, No. 1, 34—43 (2021). A. P. Alieva, “Composite materials based on phenol-formaldehyde resins,” Prom. Proizvod. Ispol’z. Elastomerov, No. 1, 34—43 (2021).
12.
Zurück zum Zitat A. P. Alieva, “Prospects for obtaining phenol-formaldehyde resins,” Plast. Massy Nos. 9—10, 22—26 (2021).CrossRef A. P. Alieva, “Prospects for obtaining phenol-formaldehyde resins,” Plast. Massy Nos. 9—10, 22—26 (2021).CrossRef
13.
Zurück zum Zitat Three Bond News No. 36 (1991). https://threebond-europe.com/wp-content/uploads/technical-news-pdf/tech36.pdf. Three Bond News No. 36 (1991). https://​threebond-europe.​com/​wp-content/​uploads/​technical-news-pdf/​tech36.​pdf.​
14.
Zurück zum Zitat P. Sasidharan Achary and R. Ramaswamy, “Modification of a nitrile-phenolic bonding agent by addition of an interfacial agent: Effect on the practical adhesion between nitrile rubber and metal,” J. Adhes. Sci. Technol. 3, 587–594 (1989).CrossRef P. Sasidharan Achary and R. Ramaswamy, “Modification of a nitrile-phenolic bonding agent by addition of an interfacial agent: Effect on the practical adhesion between nitrile rubber and metal,” J. Adhes. Sci. Technol. 3, 587–594 (1989).CrossRef
15.
Zurück zum Zitat P. Sasidharan Achary, C. Gouri, and R. Ramaswamy, “Reactive bonding of natural rubber to metal by a nitrile-phenolic adhesive,” J. Appl. Polym. Sci. 81, 2597–2608 (2001).CrossRef P. Sasidharan Achary, C. Gouri, and R. Ramaswamy, “Reactive bonding of natural rubber to metal by a nitrile-phenolic adhesive,” J. Appl. Polym. Sci. 81, 2597–2608 (2001).CrossRef
16.
Zurück zum Zitat 3M™ Scotch-Weld™ Structural Adhesive Film AF30. https://multimedia.3m.com/mws/media/241232O/3mtm-scotch-weldtm-structural-adhesive-film-af30. pdf. 3M™ Scotch-Weld™ Structural Adhesive Film AF30. https://​multimedia.​3m.​com/​mws/​media/​241232O/​3mtm-scotch-weldtm-structural-adhesive-film-af30.​ pdf.
17.
Zurück zum Zitat P. Santhana Gopala Krishnan, N. Venkatesan, and K. Adhinarayana, “Effect of phenolic resin structure on the bonding properties of nitrile rubber-based adhesives,” J. Adhes. Sci. Technol. 18, 1483–1495 (2004).CrossRef P. Santhana Gopala Krishnan, N. Venkatesan, and K. Adhinarayana, “Effect of phenolic resin structure on the bonding properties of nitrile rubber-based adhesives,” J. Adhes. Sci. Technol. 18, 1483–1495 (2004).CrossRef
18.
Zurück zum Zitat H. Maa, G. Wei, X. Zhang, et al., “Effect of elastomeric nanoparticles on properties of phenolic resin,” Polym. 46, 10568–10573 (2005).CrossRef H. Maa, G. Wei, X. Zhang, et al., “Effect of elastomeric nanoparticles on properties of phenolic resin,” Polym. 46, 10568–10573 (2005).CrossRef
20.
Zurück zum Zitat Adhesives based on phenol-formaldehyde resins modified with rubbers (phenol rubber adhesives). http://kraska.biz/sinteticheskie-klei/klei-na-osnove-fenoloformaldegidnyx-smol-modificirovannyx-kauchukami-fenolokauchukovye-klei/. Adhesives based on phenol-formaldehyde resins modified with rubbers (phenol rubber adhesives). http://​kraska.​biz/​sinteticheskie-klei/​klei-na-osnove-fenoloformaldegi​dnyx-smol-modificirovannyx​-kauchukami-fenolokauchukovy​e-klei/​.​
21.
Zurück zum Zitat A. P. Petrova, N. F. Lukina, L. A. Dement’eva, and L. I. Anikhovskaya, “Film structural adhesives,” Polym. Sci., Ser. D 8, 138–143 (2015). A. P. Petrova, N. F. Lukina, L. A. Dement’eva, and L. I. Anikhovskaya, “Film structural adhesives,” Polym. Sci., Ser. D 8, 138–143 (2015).
22.
Zurück zum Zitat V. N. Kirillov, V. A. Ufimov, A. K. Shvedkova, and E. V. Nikolaev, “Study of the influence of climatic factors and mechanical loading on the structure and mechanical properties of PCM,” Aviats. Mater. Tekhnol., No. 4, 41–45 (2011). V. N. Kirillov, V. A. Ufimov, A. K. Shvedkova, and E. V. Nikolaev, “Study of the influence of climatic factors and mechanical loading on the structure and mechanical properties of PCM,” Aviats. Mater. Tekhnol., No. 4, 41–45 (2011).
23.
Zurück zum Zitat L. A. Varghese and E. T. Thachil, “Studies on the adhesive properties of neoprene-phenolic blends,” J. Adhes. Sci. Technol. 18, 181–193 (2004).CrossRef L. A. Varghese and E. T. Thachil, “Studies on the adhesive properties of neoprene-phenolic blends,” J. Adhes. Sci. Technol. 18, 181–193 (2004).CrossRef
24.
Zurück zum Zitat L. A. Varghese and E. T. Thachil, “Performance of neoprene-phenolic adhesives on different substrates,” J. Adhes. Sci. Technol. 20, 1625–1635 (2006).CrossRef L. A. Varghese and E. T. Thachil, “Performance of neoprene-phenolic adhesives on different substrates,” J. Adhes. Sci. Technol. 20, 1625–1635 (2006).CrossRef
25.
Zurück zum Zitat D. Zheleva, “Mechanisms of interaction between the components in adhesive compositions based on chloroprene rubber,” J. Chem. Technol. Metall. 48, 535–542 (2013). D. Zheleva, “Mechanisms of interaction between the components in adhesive compositions based on chloroprene rubber,” J. Chem. Technol. Metall. 48, 535–542 (2013).
26.
Zurück zum Zitat I. N. Ismail, Z. A. M. Ishak, M. F. Jaafar, et al., “Thermomechanical properties of toughened phenolic resol resin,” Solid State Sci. Technol. 17, 155–165 (2009). I. N. Ismail, Z. A. M. Ishak, M. F. Jaafar, et al., “Thermomechanical properties of toughened phenolic resol resin,” Solid State Sci. Technol. 17, 155–165 (2009).
27.
Zurück zum Zitat J. A. Bishopp, “The history of Redux(R) and the Redux bonding process,” Int. J. Adhes. Adhes. 17, 287–301 (1997).CrossRef J. A. Bishopp, “The history of Redux(R) and the Redux bonding process,” Int. J. Adhes. Adhes. 17, 287–301 (1997).CrossRef
28.
Zurück zum Zitat A. Higgins, “Adhesive bonding of aircraft structures,” Int. J. Adhes. Adhes. 20, 367—376 (2000).CrossRef A. Higgins, “Adhesive bonding of aircraft structures,” Int. J. Adhes. Adhes. 20, 367—376 (2000).CrossRef
29.
Zurück zum Zitat Redux (adhesive). https://wikizero.com/en/Redux_ (adhesive). Redux (adhesive). https://​wikizero.​com/​en/​Redux_​ (adhesive).
30.
Zurück zum Zitat S. Abrahami, T. Hauffman, J. de Kok, et al., “Adhesive bonding and corrosion performance investigated as a function of auminum oide chemistry and adhesives,” Corrosion: J. Sci. Eng. 73, 903–914 (2017).CrossRef S. Abrahami, T. Hauffman, J. de Kok, et al., “Adhesive bonding and corrosion performance investigated as a function of auminum oide chemistry and adhesives,” Corrosion: J. Sci. Eng. 73, 903–914 (2017).CrossRef
31.
Zurück zum Zitat A. Kwakernaak, J. Hofstede, J. Poulis, and R. Benedictus, “Improvements in Bonding Metals for Aerospace and Other Applications,” in Welding and Joining of Aerospace Materials (Woodhead Publ., Cambridge, 2012), pp. 235–287. A. Kwakernaak, J. Hofstede, J. Poulis, and R. Benedictus, “Improvements in Bonding Metals for Aerospace and Other Applications,” in Welding and Joining of Aerospace Materials (Woodhead Publ., Cambridge, 2012), pp. 235–287.
32.
Zurück zum Zitat S. D. Sinyakov, O. B. Zastrogina, and B. F. Pavlyuk. “Compositions based on phenol-formaldehyde resins modified with polyvinyl acetals (review),” Novosti Materialoved. Nauka Tekh., Nos. 1—2, 56—67 (2018). S. D. Sinyakov, O. B. Zastrogina, and B. F. Pavlyuk. “Compositions based on phenol-formaldehyde resins modified with polyvinyl acetals (review),” Novosti Materialoved. Nauka Tekh., Nos. 1—2, 56—67 (2018).
33.
Zurück zum Zitat O. V. Shuklina and N. F. Lukina, “Properties of the new heat-resistant adhesive VS-10T-U,” Klei. Germetiki. Tekhnol. No. 5, 8—9 (2012). O. V. Shuklina and N. F. Lukina, “Properties of the new heat-resistant adhesive VS-10T-U,” Klei. Germetiki. Tekhnol. No. 5, 8—9 (2012).
34.
Zurück zum Zitat N. F. Lukina, A. P. Petrova, and E. V. Kotova, “Adhesive for high temperature tensometry,” Klei. Germetiki. Tekhnol., No. 1, 7—12 (2021). N. F. Lukina, A. P. Petrova, and E. V. Kotova, “Adhesive for high temperature tensometry,” Klei. Germetiki. Tekhnol., No. 1, 7—12 (2021).
35.
Zurück zum Zitat Bonding in Mechanical Engineering: A Handbook, Ed. by G. V. Malysheva (Nauka i Tekhnologii, Moscow, 2005), Vol. 1 [in Russian]. Bonding in Mechanical Engineering: A Handbook, Ed. by G. V. Malysheva (Nauka i Tekhnologii, Moscow, 2005), Vol. 1 [in Russian].
36.
Zurück zum Zitat C. Wang, Y. D. Huang, and B. Wang, “Study on heat-resistant property of adhesive/carbon-carbon composites joints, Int. J. Adhes. Adhes 26, 206–211 (2006).CrossRef C. Wang, Y. D. Huang, and B. Wang, “Study on heat-resistant property of adhesive/carbon-carbon composites joints, Int. J. Adhes. Adhes 26, 206–211 (2006).CrossRef
37.
Zurück zum Zitat E. N. Kablov, L. I. Anikhovskaya, N. F. Lukina, et al., “Heat resistant adhesive composition,” RF Patent No. 2276679 (2006). E. N. Kablov, L. I. Anikhovskaya, N. F. Lukina, et al., “Heat resistant adhesive composition,” RF Patent No. 2276679 (2006).
38.
Zurück zum Zitat A. P. Petrova and N. F. Lukina, “The influence of glued-material composition on properties of adhesive joints,” Polym. Sci. Ser. D 7, 290–292 (2014).CrossRef A. P. Petrova and N. F. Lukina, “The influence of glued-material composition on properties of adhesive joints,” Polym. Sci. Ser. D 7, 290–292 (2014).CrossRef
39.
Zurück zum Zitat N. F. Lukina and A. P. Petrova, “Properties and application of adhesives in instrument technology,” Trudy VIAM 204336 (2005). https://viam.ru/sites/default/files/scipub/2005/2005-204336.pdf. N. F. Lukina and A. P. Petrova, “Properties and application of adhesives in instrument technology,” Trudy VIAM 204336 (2005). https://​viam.​ru/​sites/​default/​files/​scipub/​2005/​2005-204336.​pdf.​
40.
Zurück zum Zitat S. N. Gladkikh and M. G. Mokrushin, “Heat- and high-temperature-resistant adhesives for joining carbon and ceramic materials,” Polym. Sci. Ser. D 3, 258–262 (2010).CrossRef S. N. Gladkikh and M. G. Mokrushin, “Heat- and high-temperature-resistant adhesives for joining carbon and ceramic materials,” Polym. Sci. Ser. D 3, 258–262 (2010).CrossRef
41.
Zurück zum Zitat S. N. Gladkikh, A. E. Dvoretskii, and A. I. Vyalov, “New adhesives developed by JSC “Kompozit” for products of rocket and space technology//Adhesion materials,” in Proceedings of Scientific and Technical Conference (VIAM, Moscow, 2016). S. N. Gladkikh, A. E. Dvoretskii, and A. I. Vyalov, “New adhesives developed by JSC “Kompozit” for products of rocket and space technology//Adhesion materials,” in Proceedings of Scientific and Technical Conference (VIAM, Moscow, 2016).
42.
Zurück zum Zitat W. Miao, W. Cheng, Zh. Wang, et al., “Influence of n-butyl acrylate and maleic anhydride copolymer on the structure and properties of phenolic resin,” Mater. Today 23, 100879 (2020). W. Miao, W. Cheng, Zh. Wang, et al., “Influence of n-butyl acrylate and maleic anhydride copolymer on the structure and properties of phenolic resin,” Mater. Today 23, 100879 (2020).
43.
Zurück zum Zitat P. S. Parameswaran and M. G. Bhuvaneswary, and Th. Thachil Eby. “Control of microvoids in resol phenolic resin using unsaturated polyester,” J. Appl. Polym. Sci. 113, 802–810 (2009).CrossRef P. S. Parameswaran and M. G. Bhuvaneswary, and Th. Thachil Eby. “Control of microvoids in resol phenolic resin using unsaturated polyester,” J. Appl. Polym. Sci. 113, 802–810 (2009).CrossRef
44.
Zurück zum Zitat N. M. Rovkina and N. G. Tyukavkina, “Modification of resole-type phenol-formaldehyde resins with monoepoxides,” Al’manakh Sovrem. Nauki Obrazov., No. 11, Part 1, 161—165 (2009). N. M. Rovkina and N. G. Tyukavkina, “Modification of resole-type phenol-formaldehyde resins with monoepoxides,” Al’manakh Sovrem. Nauki Obrazov., No. 11, Part 1, 161—165 (2009).
45.
Zurück zum Zitat L. P. Rong, X. H. Liu, X. Li, et al., “Study on properties of epoxy modified phenolic resin emulsion,” Chem. Bonding 38, 27–30 (2016). L. P. Rong, X. H. Liu, X. Li, et al., “Study on properties of epoxy modified phenolic resin emulsion,” Chem. Bonding 38, 27–30 (2016).
46.
Zurück zum Zitat D. Ying, W. Zhe, R. Xiaofang, and C. Xiaoyan, “Synthesis of phenol-formaldehyde resin modified with epoxy resin,” Petrochem. Technol. 41, 583–587 (2012). D. Ying, W. Zhe, R. Xiaofang, and C. Xiaoyan, “Synthesis of phenol-formaldehyde resin modified with epoxy resin,” Petrochem. Technol. 41, 583–587 (2012).
47.
Zurück zum Zitat V. Krasinskyi, E. Spišák, I. Gajdoš, and T. Garbacz, “Heat-resistant coatings on the basis of phenol-formaldehyde compositions,” Mater. Sci. Forum 818, 105–108 (2015).CrossRef V. Krasinskyi, E. Spišák, I. Gajdoš, and T. Garbacz, “Heat-resistant coatings on the basis of phenol-formaldehyde compositions,” Mater. Sci. Forum 818, 105–108 (2015).CrossRef
48.
Zurück zum Zitat C. Vu Manh, Nguyen D. Duc., and L. Sinh Hoang, et al., “Improvement the mode I interlaminar fracture toughness of glass fiber reinforced phenolic resin by using epoxidized soybean oil,” Polym. Bull. 75, 4769–4782 (2018).CrossRef C. Vu Manh, Nguyen D. Duc., and L. Sinh Hoang, et al., “Improvement the mode I interlaminar fracture toughness of glass fiber reinforced phenolic resin by using epoxidized soybean oil,” Polym. Bull. 75, 4769–4782 (2018).CrossRef
49.
Zurück zum Zitat L. A. Varghese, B. T. Abraham, and E. T. Thachil, “Adhesive properties of neoprene-phenolic-EPN blends,” Prog. Rubber, Plast. Recycl. Technol. 22, 253–268 (2006).CrossRef L. A. Varghese, B. T. Abraham, and E. T. Thachil, “Adhesive properties of neoprene-phenolic-EPN blends,” Prog. Rubber, Plast. Recycl. Technol. 22, 253–268 (2006).CrossRef
50.
Zurück zum Zitat L. A. Varghese, PhD Thesis (Kochi, India, 2006). http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.886.859&rep=rep1&type=pdf. L. A. Varghese, PhD Thesis (Kochi, India, 2006). http://​citeseerx.​ist.​psu.​edu/​viewdoc/​download?​doi=​ 10.1.1.886.859&rep=rep1&type=pdf.
51.
Zurück zum Zitat Modification of phenol-formaldehyde resins. http://www.tehnology-pro.ru/modifikaciya-fenoloformaldegidnykh-smol.html. Modification of phenol-formaldehyde resins. http://​www.​tehnology-pro.​ru/​modifikaciya-fenoloformaldegi​dnykh-smol.​html.​
52.
Zurück zum Zitat W. Yang, M. Rallini, M. Natali, et al., “Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: A comparative study,” Mater. Des. 161, 55–63 (2019).CrossRef W. Yang, M. Rallini, M. Natali, et al., “Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: A comparative study,” Mater. Des. 161, 55–63 (2019).CrossRef
53.
Zurück zum Zitat Q. Fang, H. Cui, and G. Du, “Montmorillonite reinforced phenol formaldehyde resin: Preparation, characterization, and application in wood bonding,” Int. J. Adhes. Adhes. 49, 33–37 (2014).CrossRef Q. Fang, H. Cui, and G. Du, “Montmorillonite reinforced phenol formaldehyde resin: Preparation, characterization, and application in wood bonding,” Int. J. Adhes. Adhes. 49, 33–37 (2014).CrossRef
54.
Zurück zum Zitat F. Javanbakht, B. Razavi, M. Salami Kalajahi, et al., “Fabrication of high thermal stable cured novolac/Cloisite 30b nanocomposites by chemical modification of resin structure,” Polym. Adv. Technol., 1–7 (2019). https://doi.org/10.1002/pat.4761 F. Javanbakht, B. Razavi, M. Salami Kalajahi, et al., “Fabrication of high thermal stable cured novolac/Cloisite 30b nanocomposites by chemical modification of resin structure,” Polym. Adv. Technol., 1–7 (2019). https://​doi.​org/​10.​1002/​pat.​4761
55.
Zurück zum Zitat D. X. Wang, Z. M. Chen, G. X. Zhang, et al., “Study on fast-curing phenol-formaldehyde resin adhesive,” Chem. Adhes. 38, 447–449 (2016). D. X. Wang, Z. M. Chen, G. X. Zhang, et al., “Study on fast-curing phenol-formaldehyde resin adhesive,” Chem. Adhes. 38, 447–449 (2016).
56.
Zurück zum Zitat G. Özbay, E. S. Kokten, and A. Ozcifci, “Synthesis and characterization of resol type phenol-formaldehyde resin improved by SiO2-NP,” Wood Res. 66, 161–170 (2021).CrossRef G. Özbay, E. S. Kokten, and A. Ozcifci, “Synthesis and characterization of resol type phenol-formaldehyde resin improved by SiO2-NP,” Wood Res. 66, 161–170 (2021).CrossRef
57.
Zurück zum Zitat G. Hernández-Padrón, F. Rojas, and V. M. Castaño, “Ordered SiO2–(phenolic-formaldehyde resin) in situ nanocomposites,” Nanotecnology 15, 98–103 (2003).CrossRef G. Hernández-Padrón, F. Rojas, and V. M. Castaño, “Ordered SiO2–(phenolic-formaldehyde resin) in situ nanocomposites,” Nanotecnology 15, 98–103 (2003).CrossRef
58.
Zurück zum Zitat J. Yun, L. Chen, X. Zhang, et al., “Synthesis and structure evolution of phenolic resin/silicone hybrid composites with improved thermal stability,” J. Mater. Sci. 53, 14185–14203 (2018).CrossRef J. Yun, L. Chen, X. Zhang, et al., “Synthesis and structure evolution of phenolic resin/silicone hybrid composites with improved thermal stability,” J. Mater. Sci. 53, 14185–14203 (2018).CrossRef
59.
Zurück zum Zitat Z. Fang and J. Suo, “Synthesis and characterization of phenolic resol resin blended with silica sol and PVA,” J. Appl. Polym. Sci. 119, 744–751 (2010).CrossRef Z. Fang and J. Suo, “Synthesis and characterization of phenolic resol resin blended with silica sol and PVA,” J. Appl. Polym. Sci. 119, 744–751 (2010).CrossRef
60.
Zurück zum Zitat Z. Yudong, L. Sangho, Y. Mitra, et al., “Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: Structure and properties,” Polymer 47, 2984–2996 (2006).CrossRef Z. Yudong, L. Sangho, Y. Mitra, et al., “Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: Structure and properties,” Polymer 47, 2984–2996 (2006).CrossRef
61.
Zurück zum Zitat J. Chen, W. Zhang, J. Liu, et al., “Improved thermal stability of phenolic resin by graphene-encapsulated nano-SiO2 hybrids,” J. Therm. Anal. Calorim. 135, 2377–2387 (2018).CrossRef J. Chen, W. Zhang, J. Liu, et al., “Improved thermal stability of phenolic resin by graphene-encapsulated nano-SiO2 hybrids,” J. Therm. Anal. Calorim. 135, 2377–2387 (2018).CrossRef
62.
Zurück zum Zitat J.-G. Wang, Q.-G. Guo, L. Liu, and J.-R. Song, “Study on the microstructural evolution of high temperature adhesives for graphite bonding,” Carbon 40, 2447–2452 (2002).CrossRef J.-G. Wang, Q.-G. Guo, L. Liu, and J.-R. Song, “Study on the microstructural evolution of high temperature adhesives for graphite bonding,” Carbon 40, 2447–2452 (2002).CrossRef
63.
Zurück zum Zitat J. Wang, N. Jiang, and H. Jiang, “Effect of the evolution of phenol–formaldehyde resin on the high-temperature bonding,” Int. J. Adhes. Adhes. 29, 718–723 (2009).CrossRef J. Wang, N. Jiang, and H. Jiang, “Effect of the evolution of phenol–formaldehyde resin on the high-temperature bonding,” Int. J. Adhes. Adhes. 29, 718–723 (2009).CrossRef
64.
Zurück zum Zitat J. Wang, N. Jiang, Q. Guo, et al., “Study on the structural evolution of modified phenol–formaldehyde resin adhesive for the high-temperature bonding of graphite,” J. Nucl. Mater. 348, 2 (2006).CrossRef J. Wang, N. Jiang, Q. Guo, et al., “Study on the structural evolution of modified phenol–formaldehyde resin adhesive for the high-temperature bonding of graphite,” J. Nucl. Mater. 348, 2 (2006).CrossRef
65.
Zurück zum Zitat J. Wang, Q. Guo, L. Liu, and J. Song, “The Preparation and Performance of High-Temperature Adhesives for Graphite Bonding,” Int. J. Adhes. Adhes. 25, 495–501 (2005).CrossRef J. Wang, Q. Guo, L. Liu, and J. Song, “The Preparation and Performance of High-Temperature Adhesives for Graphite Bonding,” Int. J. Adhes. Adhes. 25, 495–501 (2005).CrossRef
66.
Zurück zum Zitat S. A. Haddadi, M. Mahdavian-Ahadi, and F. Abbasi, “Effect of nanosilica and boron carbide on adhesion strength of high temperature adhesive based on phenolic resin for graphite bonding,” Ind. Eng. Chem. Res. 53, 11747–11754 (2014).CrossRef S. A. Haddadi, M. Mahdavian-Ahadi, and F. Abbasi, “Effect of nanosilica and boron carbide on adhesion strength of high temperature adhesive based on phenolic resin for graphite bonding,” Ind. Eng. Chem. Res. 53, 11747–11754 (2014).CrossRef
67.
Zurück zum Zitat H. Jiang, J. Wang, S. Wu, et al., “Study on the property of boron carbide-modified phenol-formaldehyde resin for silicon carbide bonding,” Russ. J. Appl. Chem. 87, 904–908 (2014).CrossRef H. Jiang, J. Wang, S. Wu, et al., “Study on the property of boron carbide-modified phenol-formaldehyde resin for silicon carbide bonding,” Russ. J. Appl. Chem. 87, 904–908 (2014).CrossRef
68.
Zurück zum Zitat J. Wang, N. Jiang, H. Jiang, et al., “The high-temperatures bonding of graphite/ceramics by organ resin matrix adhesive,” Int. J. Adhes. Adhes. 26, 532–536 (2006).CrossRef J. Wang, N. Jiang, H. Jiang, et al., “The high-temperatures bonding of graphite/ceramics by organ resin matrix adhesive,” Int. J. Adhes. Adhes. 26, 532–536 (2006).CrossRef
70.
Zurück zum Zitat N. H. Tai, M. K. Yeh, and J. H. Liu, “Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement,” Carbon 42, 2774–2777 (2004).CrossRef N. H. Tai, M. K. Yeh, and J. H. Liu, “Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement,” Carbon 42, 2774–2777 (2004).CrossRef
71.
Zurück zum Zitat Y. A. Kim, S. Kamio, T. Tajiri, et al., “Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotube,” Appl. Phys. Lett. 90, 093125 (2007).CrossRef Y. A. Kim, S. Kamio, T. Tajiri, et al., “Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotube,” Appl. Phys. Lett. 90, 093125 (2007).CrossRef
72.
Zurück zum Zitat I. S. Epifanovskii, A. N. Ponomarev, A. A. Donskoi, and S. V. Kashirin, “Modification of the properties of polymer materials by low concentrations of fulleroids,” Perspektivnye Mater. No. 2, 15—18 (2006). I. S. Epifanovskii, A. N. Ponomarev, A. A. Donskoi, and S. V. Kashirin, “Modification of the properties of polymer materials by low concentrations of fulleroids,” Perspektivnye Mater. No. 2, 15—18 (2006).
73.
Zurück zum Zitat R. Lin, L. Fang, X. Li, et al., “Study on phenolic resins modified by copper nanoparticles,” Polym. J. 38, 178–183 (2006).CrossRef R. Lin, L. Fang, X. Li, et al., “Study on phenolic resins modified by copper nanoparticles,” Polym. J. 38, 178–183 (2006).CrossRef
75.
Zurück zum Zitat L. Zhi, T. Zhao, and Y. Yu, “Preparation of phenolic resin/silver nanocomposites via in situ reduction,” Scripta Materialia 47, 875–879 (2002).CrossRef L. Zhi, T. Zhao, and Y. Yu, “Preparation of phenolic resin/silver nanocomposites via in situ reduction,” Scripta Materialia 47, 875–879 (2002).CrossRef
76.
Zurück zum Zitat Y. Lee, K. Jun, and K. Lee, “Phenol-derived carbon sealant inspired by a coalification process,” Angew. Chemie Int. Ed. 59, 3864–3870 (2020).CrossRef Y. Lee, K. Jun, and K. Lee, “Phenol-derived carbon sealant inspired by a coalification process,” Angew. Chemie Int. Ed. 59, 3864–3870 (2020).CrossRef
77.
Zurück zum Zitat J. Sun, R. H. Lin, and W. X. Bo, et al., “Sodium silicate as catalyst and modifier for phenol-formaldehyde resin,” Appl. Mech. Mater. 184–185, 1198– 1206 (2012). J. Sun, R. H. Lin, and W. X. Bo, et al., “Sodium silicate as catalyst and modifier for phenol-formaldehyde resin,” Appl. Mech. Mater. 184–185, 1198– 1206 (2012).
78.
Zurück zum Zitat Y. Chai, J. Liu, Y. Zhao, and N. Yan, “Characterization of modified phenol formaldehyde resole resins synthesized in situ with various boron compounds,” Ind. Eng. Chem. Res. 55, 9840–9850 (2016).CrossRef Y. Chai, J. Liu, Y. Zhao, and N. Yan, “Characterization of modified phenol formaldehyde resole resins synthesized in situ with various boron compounds,” Ind. Eng. Chem. Res. 55, 9840–9850 (2016).CrossRef
79.
Zurück zum Zitat P. M. Valetskii and A. P. Petrova, “Polymer adhesives based on carborane-containing compounds,” Trudy VIAM 2004, 204186 (2004). https://viam.ru/sites/default/files/scipub/2004/2004-204186.pdf. P. M. Valetskii and A. P. Petrova, “Polymer adhesives based on carborane-containing compounds,” Trudy VIAM 2004, 204186 (2004). https://​viam.​ru/​sites/​default/​files/​scipub/​2004/​2004-204186.​pdf.​
80.
Zurück zum Zitat A. P. Petrova and A. B. Laptev, “Phenolic rubber adhesives modified with carboranes,” Klei. Germetiki. Tekhnol. No. 6, 2—6 (2017). A. P. Petrova and A. B. Laptev, “Phenolic rubber adhesives modified with carboranes,” Klei. Germetiki. Tekhnol. No. 6, 2—6 (2017).
81.
Zurück zum Zitat A. P. Petrova and A. B. Laptev, “Thermal stability of carborane-containing adhesive systems based on phenol-formaldehyde oligomers,” Klei. Germetiki. Tekhnol., No. 7, 2—6 (2017). A. P. Petrova and A. B. Laptev, “Thermal stability of carborane-containing adhesive systems based on phenol-formaldehyde oligomers,” Klei. Germetiki. Tekhnol., No. 7, 2—6 (2017).
82.
Zurück zum Zitat A. P. Petrova, G. N. Zadorozhnaya, O. A. Akulova, et al., “Heat resistant adhesive composition,” RF Patent No. 2002786 (1993). A. P. Petrova, G. N. Zadorozhnaya, O. A. Akulova, et al., “Heat resistant adhesive composition,” RF Patent No. 2002786 (1993).
83.
Zurück zum Zitat E. N. Kablov, V. T. Minakov, A. P. Petrova, et al., “Heat resistant adhesive composition,” RF Patent No. 2203917 (2003). E. N. Kablov, V. T. Minakov, A. P. Petrova, et al., “Heat resistant adhesive composition,” RF Patent No. 2203917 (2003).
84.
Zurück zum Zitat A. P. Petrova, “Influence of carborane groups on the curing processes of carborane-containing adhesives of various chemical nature. Part 1. Curing adhesives based on phenol-formaldehyde oligomers,” Novosti Materialoved. Nauka Tekh. Vols. 3—4, 42—55 (2017). A. P. Petrova, “Influence of carborane groups on the curing processes of carborane-containing adhesives of various chemical nature. Part 1. Curing adhesives based on phenol-formaldehyde oligomers,” Novosti Materialoved. Nauka Tekh. Vols. 3—4, 42—55 (2017).
86.
Zurück zum Zitat A. P. Petrova, “Phenolic-rubber carborane-containing adhesive with intrinsic ferromagnetism,” Plast. Massy, No. 11, 3—4 (2006). A. P. Petrova, “Phenolic-rubber carborane-containing adhesive with intrinsic ferromagnetism,” Plast. Massy, No. 11, 3—4 (2006).
87.
Zurück zum Zitat Z. Bin, S. Ming-ming, Z. Xu-gang, et al., “High temperature-resistant adhesive of modified phenolic resin with polyborosiloxane,” Polym. Mater. Sci. Eng. 101746532 (2008). Z. Bin, S. Ming-ming, Z. Xu-gang, et al., “High temperature-resistant adhesive of modified phenolic resin with polyborosiloxane,” Polym. Mater. Sci. Eng. 101746532 (2008).
88.
Zurück zum Zitat “Preparation method of polyborosiloxane modified phenol formaldehyde resin (PF) adhesive with high temperature resistance,” Patent CN103805116A (2014). “Preparation method of polyborosiloxane modified phenol formaldehyde resin (PF) adhesive with high temperature resistance,” Patent CN103805116A (2014).
89.
Zurück zum Zitat V. D. Solodovnik, A. B. Davydov, Z. G. Ivanova, et al. “Study of the properties and possibilities of using organosilicon polymers as heat-resistant adhesives,” Plast. Massy, No. 3, 39—44 (1963). V. D. Solodovnik, A. B. Davydov, Z. G. Ivanova, et al. “Study of the properties and possibilities of using organosilicon polymers as heat-resistant adhesives,” Plast. Massy, No. 3, 39—44 (1963).
90.
Zurück zum Zitat P. Xu and F. Yang, “Modification of phenolic resin composites by hyperbranched polyborate and polybenzoxazine,” Polym. Compos. 33, 1960– 1968 (2012).CrossRef P. Xu and F. Yang, “Modification of phenolic resin composites by hyperbranched polyborate and polybenzoxazine,” Polym. Compos. 33, 1960– 1968 (2012).CrossRef
91.
Zurück zum Zitat S. A. Sosunov, G. V. Komarov, S. V. Bukharov, and G. A. Kravetskii, “Heat-resistant compounds of materials with phenol-furfural-formaldehyde adhesives,” Plast. Massy, No. 9, 40–41 (2003). S. A. Sosunov, G. V. Komarov, S. V. Bukharov, and G. A. Kravetskii, “Heat-resistant compounds of materials with phenol-furfural-formaldehyde adhesives,” Plast. Massy, No. 9, 40–41 (2003).
92.
Zurück zum Zitat E. K. Syzdykov, A. V. Zhavoronkov, A. I. Loginov, et al., “Compound adhesive,” RF Patent No. 2473582 (2013). E. K. Syzdykov, A. V. Zhavoronkov, A. I. Loginov, et al., “Compound adhesive,” RF Patent No. 2473582 (2013).
93.
Zurück zum Zitat Y. D. Zhang, H. F. Hu, Ch. R. Zhang, and G. D. Li, “Online-joining of C/SiC-C/SiC via slurry reaction and precursor infiltration and pyrolysis process with C/SiC pins,” Key Eng. Mater. 531–532, 135–140 (2012). Y. D. Zhang, H. F. Hu, Ch. R. Zhang, and G. D. Li, “Online-joining of C/SiC-C/SiC via slurry reaction and precursor infiltration and pyrolysis process with C/SiC pins,” Key Eng. Mater. 531–532, 135–140 (2012).
94.
Zurück zum Zitat S. A. Sosunov, G. V. Komarov, S. V. Bukharov, and G. A. Kravetsky, “Heat-resistant compounds of carbon materials with phenol-furfural-formaldehyde adhesives,” Plastics, No. 9, 40–41 (2003). S. A. Sosunov, G. V. Komarov, S. V. Bukharov, and G. A. Kravetsky, “Heat-resistant compounds of carbon materials with phenol-furfural-formaldehyde adhesives,” Plastics, No. 9, 40–41 (2003).
Metadaten
Titel
Modern Phenolic Adhesives for Aviation and Engineering. Part 1. The Effect of Modifying Additives
verfasst von
D. A. Aronovich
A. P. Petrova
Publikationsdatum
01.09.2023
Verlag
Pleiades Publishing
Erschienen in
Polymer Science, Series D / Ausgabe 3/2023
Print ISSN: 1995-4212
Elektronische ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223030024

Weitere Artikel der Ausgabe 3/2023

Polymer Science, Series D 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.