Skip to main content
Erschienen in: Journal of Engineering Thermophysics 1/2022

01.03.2022

Modified Homogeneous and Heterogeneous Chemical Reaction and Flow Performance of Maxwell Nanofluid with Cattaneo–Christov Heat Flux Law

verfasst von: Sk Md Tausif, K. Das, P. K. Kundu

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An MHD boundary layer flow of upper-convected Maxwell (UCM) nanofluid over an extending surface has been studied in the current literature. The most recent double diffusive heat flux model proposed by Cattaneo and modified by Christov has been incorporated into the energy equation instead of the conventional Fourier model in the governing equation of the flow. Homogeneous and heterogeneous chemical reaction is incorporated in the fluid system with heat generation due to the homogeneous chemical reaction and chemical reaction dependent thermal intake capacity of nanoparticles. After an arduous numerical calculation, the impact of numerous germane factors on the heat and mass relocation characteristics of flow has been illustrated through charts and graphs, and the consequences have been explained with proper reasoning. In every graph and table, we compare the outcomes for the conventional Fourier law and the Cattaneo–Christov law. To measure the relation of the flow regulator factor with the flow performance, we introduce correlation coefficients and coefficients of determination and present them with proper charts. It is observed that the correlation is high.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sadeghy, K., Najafi, A.H., and Saffaripour, M., Sakiadis Flow of an Upper-Convected Maxwell Fluid, Int. J. Non-Lin. Mech., 2005, vol. 40, no. 9, pp. 1220–1228.CrossRef Sadeghy, K., Najafi, A.H., and Saffaripour, M., Sakiadis Flow of an Upper-Convected Maxwell Fluid, Int. J. Non-Lin. Mech., 2005, vol. 40, no. 9, pp. 1220–1228.CrossRef
2.
Zurück zum Zitat Hayat, T., Abbas, Z., and Ali, N., MHD Flow and Mass Transfer of a Upper-Convected Maxwell Fluid past a Porous Shrinking Sheet with Chemical Reaction Species, Phys. Lett. A, 2008, vol. 372, no. 26, pp. 4698–4704.ADSCrossRef Hayat, T., Abbas, Z., and Ali, N., MHD Flow and Mass Transfer of a Upper-Convected Maxwell Fluid past a Porous Shrinking Sheet with Chemical Reaction Species, Phys. Lett. A, 2008, vol. 372, no. 26, pp. 4698–4704.ADSCrossRef
3.
Zurück zum Zitat Abel, M.S., Tawade, J.V., and Nandeppanavar, M.M., MHD Flow and Heat Transfer for the Upper-Convected Maxwell Fluid over a Stretching Sheet, Meccanica, 2012, vol. 47, no. 2, pp. 385–393.MathSciNetCrossRef Abel, M.S., Tawade, J.V., and Nandeppanavar, M.M., MHD Flow and Heat Transfer for the Upper-Convected Maxwell Fluid over a Stretching Sheet, Meccanica, 2012, vol. 47, no. 2, pp. 385–393.MathSciNetCrossRef
4.
Zurück zum Zitat Hayat, T., Mustafa, M., Shehzad, S.A., and Obaidat, S., Melting Heat Transfer in the Stagnation-Point Flow of an Upper-Convected Maxwell (UCM) Fluid past a Stretching Sheet, Int. J. Numer. Meth. Fluids, 2012, vol. 68, no. 2, pp. 233–243.MathSciNetCrossRef Hayat, T., Mustafa, M., Shehzad, S.A., and Obaidat, S., Melting Heat Transfer in the Stagnation-Point Flow of an Upper-Convected Maxwell (UCM) Fluid past a Stretching Sheet, Int. J. Numer. Meth. Fluids, 2012, vol. 68, no. 2, pp. 233–243.MathSciNetCrossRef
5.
Zurück zum Zitat Hayat, T., Shehzad, S.A., and Alsaedi, A., MHD Three-Dimensional Flow of Maxwell Fluid with Variable Thermal Conductivity and Heat Source/Sink, Int. J. Numer. Meth. Heat Fluid Flow, 2014, vol. 24, no. 5, pp. 1073–1085.MathSciNetCrossRef Hayat, T., Shehzad, S.A., and Alsaedi, A., MHD Three-Dimensional Flow of Maxwell Fluid with Variable Thermal Conductivity and Heat Source/Sink, Int. J. Numer. Meth. Heat Fluid Flow, 2014, vol. 24, no. 5, pp. 1073–1085.MathSciNetCrossRef
6.
Zurück zum Zitat Mushtaq, A., Mustafa, M., Hayat, T., and Alsaedi, A., A Numerical Study for Three-Dimensional Viscoelastic Flow Inspired by Non-Linear Radiative Heat Flux, Int. J. Non-Lin. Mech., 2016, vol. 79, pp. 83–87.CrossRef Mushtaq, A., Mustafa, M., Hayat, T., and Alsaedi, A., A Numerical Study for Three-Dimensional Viscoelastic Flow Inspired by Non-Linear Radiative Heat Flux, Int. J. Non-Lin. Mech., 2016, vol. 79, pp. 83–87.CrossRef
7.
Zurück zum Zitat Hayat, T., Muhammad, T., Shehzad, S.A., Chen, G.Q., and Abbas, I.A., Interaction of Magnetic Field in Flow of Maxwell Nanofluid with Convective Effect, J. Magnetism Magn. Mat., 2015, vol. 389, pp. 48–55.ADSCrossRef Hayat, T., Muhammad, T., Shehzad, S.A., Chen, G.Q., and Abbas, I.A., Interaction of Magnetic Field in Flow of Maxwell Nanofluid with Convective Effect, J. Magnetism Magn. Mat., 2015, vol. 389, pp. 48–55.ADSCrossRef
8.
Zurück zum Zitat Hussain, T., Hussain, S., and Hayat, T., Impact of Double Stratification and Magnetic Field in Mixed Convective Radiative Flow of Maxwell Nanofluid, J. Molec. Liquids, 2016, vol. 220, pp. 870–878.CrossRef Hussain, T., Hussain, S., and Hayat, T., Impact of Double Stratification and Magnetic Field in Mixed Convective Radiative Flow of Maxwell Nanofluid, J. Molec. Liquids, 2016, vol. 220, pp. 870–878.CrossRef
9.
Zurück zum Zitat Kumar, S.G., Varma, S., Prasad, P.D., Raju, C.S., Makinde, O.D., and Sharma, R., MHD Reacting and Radiating 3-D Flow of Maxwell Fluid past a Stretching Sheet with Heat Source/Sink and Soret Effects in a Porous Medium, Defect Diffusion Forum, 2018, vol. 387, pp. 145–156.CrossRef Kumar, S.G., Varma, S., Prasad, P.D., Raju, C.S., Makinde, O.D., and Sharma, R., MHD Reacting and Radiating 3-D Flow of Maxwell Fluid past a Stretching Sheet with Heat Source/Sink and Soret Effects in a Porous Medium, Defect Diffusion Forum, 2018, vol. 387, pp. 145–156.CrossRef
10.
Zurück zum Zitat Ahmed, J., Khan, M. and Ahmad, L., Stagnation Point Flow of Maxwell Nanofluid over a Permeable Rotating Disk with Heat Source/Sink, J. Molec. Liquids, 2019, vol. 287, article 110853.CrossRef Ahmed, J., Khan, M. and Ahmad, L., Stagnation Point Flow of Maxwell Nanofluid over a Permeable Rotating Disk with Heat Source/Sink, J. Molec. Liquids, 2019, vol. 287, article 110853.CrossRef
11.
Zurück zum Zitat Khan, M., Salahuddin, T., Tanveer, A., Malik, M.Y., and Hussain, A., Change in Internal Energy of Thermal Diffusion Stagnation Point Maxwell Nanofluid Flow along with Solar Radiation and Thermal Conductivity, Chinese J. Chem. Engin., 2019, vol. 27, no. 10, pp. 2352–2358.CrossRef Khan, M., Salahuddin, T., Tanveer, A., Malik, M.Y., and Hussain, A., Change in Internal Energy of Thermal Diffusion Stagnation Point Maxwell Nanofluid Flow along with Solar Radiation and Thermal Conductivity, Chinese J. Chem. Engin., 2019, vol. 27, no. 10, pp. 2352–2358.CrossRef
12.
Zurück zum Zitat Fourier, J.B.J., Théorie analytique de la chaleur, Paris: Didot, 1822.MATH Fourier, J.B.J., Théorie analytique de la chaleur, Paris: Didot, 1822.MATH
13.
Zurück zum Zitat Christov, C.I., On Frame Indifferent Formulation of the Maxwell–Cattaneo Model of Finite-Speed Heat Conduction, Mech. Res. Commun., 2009, vol. 36, no. 4, pp. 481–486.MathSciNetCrossRef Christov, C.I., On Frame Indifferent Formulation of the Maxwell–Cattaneo Model of Finite-Speed Heat Conduction, Mech. Res. Commun., 2009, vol. 36, no. 4, pp. 481–486.MathSciNetCrossRef
14.
Zurück zum Zitat Straughan, B., Thermal Convection with the Cattaneo–Christov Model, Int. J. Heat Mass Transfer, 2010, vol. 53, nos. 1–3, pp. 95–98.CrossRef Straughan, B., Thermal Convection with the Cattaneo–Christov Model, Int. J. Heat Mass Transfer, 2010, vol. 53, nos. 1–3, pp. 95–98.CrossRef
15.
Zurück zum Zitat Tibullo, V. and Zampoli, V., A Uniqueness Result for the Cattaneo–Christov Heat Conduction Model Applied to Incompressible Fluids, Mech. Res. Commun., 2011, vol. 38, no. 1, pp. 77–79.CrossRef Tibullo, V. and Zampoli, V., A Uniqueness Result for the Cattaneo–Christov Heat Conduction Model Applied to Incompressible Fluids, Mech. Res. Commun., 2011, vol. 38, no. 1, pp. 77–79.CrossRef
16.
Zurück zum Zitat Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Waqas, M., and Yasmeen, T., Impact of Cattaneo–Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid over a Variable Thicked Surface, Int. J. Heat Mass Transfer, 2016, vol. 99, pp. 702–710.CrossRef Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Waqas, M., and Yasmeen, T., Impact of Cattaneo–Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid over a Variable Thicked Surface, Int. J. Heat Mass Transfer, 2016, vol. 99, pp. 702–710.CrossRef
17.
Zurück zum Zitat Mushtaq, A., Abbasbandy, S., Mustafa, M., Hayat, T., and Alsaedi, A., Numerical Solution for Sakiadis Flow of Upper-Convected Maxwell Fluid Using Cattaneo–Christov Heat Flux Model, AIP Advances, 2016, vol. 6, no. 1, article 015208.ADSCrossRef Mushtaq, A., Abbasbandy, S., Mustafa, M., Hayat, T., and Alsaedi, A., Numerical Solution for Sakiadis Flow of Upper-Convected Maxwell Fluid Using Cattaneo–Christov Heat Flux Model, AIP Advances, 2016, vol. 6, no. 1, article 015208.ADSCrossRef
18.
Zurück zum Zitat Sui, J., Zheng, L., and Zhang, X., Boundary Layer Heat and Mass Transfer with Cattaneo–Christov Double-Diffusion in Upper-Convected Maxwell Nanofluid past a Stretching Sheet with Slip Velocity, Int. J. Thermal Sci., 2016, vol. 104, pp. 461–468.CrossRef Sui, J., Zheng, L., and Zhang, X., Boundary Layer Heat and Mass Transfer with Cattaneo–Christov Double-Diffusion in Upper-Convected Maxwell Nanofluid past a Stretching Sheet with Slip Velocity, Int. J. Thermal Sci., 2016, vol. 104, pp. 461–468.CrossRef
19.
Zurück zum Zitat Makinde, O.D., Sandeep, N., Animasaun, I.L., and Tshehla, M.S., Numerical Exploration of Cattaneo–Christov Heat Flux and Mass Transfer in Magnetohydrodynamic Flow over Various Geometries, Defect Diffusion Forum, 2017, vol. 374, pp. 67–82. Makinde, O.D., Sandeep, N., Animasaun, I.L., and Tshehla, M.S., Numerical Exploration of Cattaneo–Christov Heat Flux and Mass Transfer in Magnetohydrodynamic Flow over Various Geometries, Defect Diffusion Forum, 2017, vol. 374, pp. 67–82.
20.
Zurück zum Zitat Gangadhar, K., Ramana, K.V., Makinde, O.D., and Kumar, B.R., MHD Flow of a Carreau Fluid past a Stretching Cylinder with Cattaneo–Christov Heat Flux Using Spectral Relaxation Method, Defect Diffusion Forum, 2018, vol. 387, pp. 91–105. Gangadhar, K., Ramana, K.V., Makinde, O.D., and Kumar, B.R., MHD Flow of a Carreau Fluid past a Stretching Cylinder with Cattaneo–Christov Heat Flux Using Spectral Relaxation Method, Defect Diffusion Forum, 2018, vol. 387, pp. 91–105.
21.
Zurück zum Zitat Scott, S.K., Isolas, Mushrooms and Oscillations in Isothermal, Autocatalytic Reaction-Diffusion Equations, Chem. Engin. Sci., 1987, vol. 42, no. 2, pp. 307–315.CrossRef Scott, S.K., Isolas, Mushrooms and Oscillations in Isothermal, Autocatalytic Reaction-Diffusion Equations, Chem. Engin. Sci., 1987, vol. 42, no. 2, pp. 307–315.CrossRef
22.
Zurück zum Zitat Merkin, J.H., A Model for Isothermal Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow, Math. Computer Model., 996, vol. 24, no. 8, pp. 125–136.MathSciNetCrossRef Merkin, J.H., A Model for Isothermal Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow, Math. Computer Model., 996, vol. 24, no. 8, pp. 125–136.MathSciNetCrossRef
23.
Zurück zum Zitat Bachok, N., Ishak, A., and Pop, I., On the Stagnation-Point Flow towards a Stretching Sheet with Homogeneous-Heterogeneous Reactions Effects, Comm. Nonlin. Sci. Numer. Simul., 2011, vol. 16, no. 11, pp. 4296–4302.ADSCrossRef Bachok, N., Ishak, A., and Pop, I., On the Stagnation-Point Flow towards a Stretching Sheet with Homogeneous-Heterogeneous Reactions Effects, Comm. Nonlin. Sci. Numer. Simul., 2011, vol. 16, no. 11, pp. 4296–4302.ADSCrossRef
24.
Zurück zum Zitat Khan, W.A. and Pop, I.M., Effects of Homogeneous-Heterogeneous Reactions on the Viscoelastic Fluid toward a Stretching Sheet, J. Heat Transfer, 2012, vol. 134, no. 6, p. 064506.CrossRef Khan, W.A. and Pop, I.M., Effects of Homogeneous-Heterogeneous Reactions on the Viscoelastic Fluid toward a Stretching Sheet, J. Heat Transfer, 2012, vol. 134, no. 6, p. 064506.CrossRef
25.
Zurück zum Zitat Kameswaran, P.K., Shaw, S., Sibanda, P.V.S.N., and Murthy, P.V.S.N., Homogeneous-Heterogeneous Reactions in a Nanofluid Flow due to a Porous Stretching Sheet, Int. J. Heat Mass Transfer, 2013, vol. 57, no. 2, pp. 465–472.CrossRef Kameswaran, P.K., Shaw, S., Sibanda, P.V.S.N., and Murthy, P.V.S.N., Homogeneous-Heterogeneous Reactions in a Nanofluid Flow due to a Porous Stretching Sheet, Int. J. Heat Mass Transfer, 2013, vol. 57, no. 2, pp. 465–472.CrossRef
26.
Zurück zum Zitat Hayat, T., Farooq, M., and Alsaedi, A., Homogeneous-Heterogeneous Reactions in the Stagnation Point Flow of Carbon Nanotubes with Newtonian Heating, AIP Advances, 2015, vol. 5, no. 2, article 027130.ADSCrossRef Hayat, T., Farooq, M., and Alsaedi, A., Homogeneous-Heterogeneous Reactions in the Stagnation Point Flow of Carbon Nanotubes with Newtonian Heating, AIP Advances, 2015, vol. 5, no. 2, article 027130.ADSCrossRef
27.
Zurück zum Zitat Hayat, T., Imtiaz, M., and Alsaedi, A., Effects of Homogeneous-Heterogeneous Reactions in Flow of Powell-Eyring Fluid, J. Central South Univ., 2015, vol. 22, no. 8, pp. 3211–3216.CrossRef Hayat, T., Imtiaz, M., and Alsaedi, A., Effects of Homogeneous-Heterogeneous Reactions in Flow of Powell-Eyring Fluid, J. Central South Univ., 2015, vol. 22, no. 8, pp. 3211–3216.CrossRef
28.
Zurück zum Zitat Makinde, O.D. and Animasaun, I.L., Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid with Nonlinear Thermal Radiation and Quartic Chemical Reaction past an Upper Horizontal Surface of a Paraboloid of Revolution, J. Molec. Liquids, 2016, vol. 221, pp. 733–743.CrossRef Makinde, O.D. and Animasaun, I.L., Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid with Nonlinear Thermal Radiation and Quartic Chemical Reaction past an Upper Horizontal Surface of a Paraboloid of Revolution, J. Molec. Liquids, 2016, vol. 221, pp. 733–743.CrossRef
29.
Zurück zum Zitat Hayat, T., Imtiaz, M., Alsaedi, A., and Almezal, S., On Cattaneo–Christov Heat Flux in MHD Flow of Oldroyd-B Fluid with Homogeneous-Heterogeneous Reactions, J. Magnetism Magn. Mat., 2016, vol. 401, pp. 296–303.ADSCrossRef Hayat, T., Imtiaz, M., Alsaedi, A., and Almezal, S., On Cattaneo–Christov Heat Flux in MHD Flow of Oldroyd-B Fluid with Homogeneous-Heterogeneous Reactions, J. Magnetism Magn. Mat., 2016, vol. 401, pp. 296–303.ADSCrossRef
30.
Zurück zum Zitat Salahuddin, T., Malik, M.Y., Hussain, A., Bilal, S., and Awais, M., MHD Flow of Cattanneo–Christov Heat Flux Model for Williamson Fluid over a Stretching Sheet with Variable Thickness: Using Numerical Approach, J. Magnetism Magn. Mat., 2016, vol. 401, pp. 991–997.ADSCrossRef Salahuddin, T., Malik, M.Y., Hussain, A., Bilal, S., and Awais, M., MHD Flow of Cattanneo–Christov Heat Flux Model for Williamson Fluid over a Stretching Sheet with Variable Thickness: Using Numerical Approach, J. Magnetism Magn. Mat., 2016, vol. 401, pp. 991–997.ADSCrossRef
31.
Zurück zum Zitat Malik, M.Y., Khan, M., Salahuddin, T., and Khan, I., Variable Viscosity and MHD Flow in Casson Fluid with Cattaneo–Christov Heat Flux Model: Using Keller Box Method, Engin. Sci. Technol., Int. J., 2016, vol. 19, no. 4, pp. 1985–1992.CrossRef Malik, M.Y., Khan, M., Salahuddin, T., and Khan, I., Variable Viscosity and MHD Flow in Casson Fluid with Cattaneo–Christov Heat Flux Model: Using Keller Box Method, Engin. Sci. Technol., Int. J., 2016, vol. 19, no. 4, pp. 1985–1992.CrossRef
32.
Zurück zum Zitat Xu, N. and Xu, H., A Modified Model for Isothermal Homogeneous and Heterogeneous Reactions in the Boundary-Layer Flow of a Nanofluid, Appl. Math. Mech., 2020, vol. 41, no. 3, pp. 479–490.MathSciNetCrossRef Xu, N. and Xu, H., A Modified Model for Isothermal Homogeneous and Heterogeneous Reactions in the Boundary-Layer Flow of a Nanofluid, Appl. Math. Mech., 2020, vol. 41, no. 3, pp. 479–490.MathSciNetCrossRef
Metadaten
Titel
Modified Homogeneous and Heterogeneous Chemical Reaction and Flow Performance of Maxwell Nanofluid with Cattaneo–Christov Heat Flux Law
verfasst von
Sk Md Tausif
K. Das
P. K. Kundu
Publikationsdatum
01.03.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 1/2022
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232822010064

Weitere Artikel der Ausgabe 1/2022

Journal of Engineering Thermophysics 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.