Skip to main content
Erschienen in: Chemistry and Technology of Fuels and Oils 4/2023

03.10.2023 | INNOVATIVE TECHNOLOGIES OF OIL AND GAS

Molecular Dynamic Simulation on the Synergistic Corrosion Inhibition Effect and Mechanism of Quinoline Quaternary Ammonium Salt and L-Methionine

verfasst von: Jiasheng Deng, Zhijun Gao, Wangda He, Zhiwen Bai, Yanzhao Meng, Yuanqiang Zhu, Nanjun Lai

Erschienen in: Chemistry and Technology of Fuels and Oils | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The synergistic effect and synergistic mechanism of quinoline quaternary ammonium salt (QQAS) and L-methionine (L-Met) as Q235 carbon steel corrosion inhibitors in 1.0 M HCl solution were studied by weight-loss and electrochemistry and theoretical methods at 60°C. Both the weight-loss and the electrochemistry experiment results show that there is obvious synergistic effect with a synergistic index of 8.81 between QQAS and L-Met. The results of the electrochemical experiments show that the inhibition efficiency of the mixture corrosion inhibitor reaches 98.46% when the concentration of the mixture inhibitor is 50 mg/L with the molar ratio of QQAS and L-Met of 3 to 1. The quantum chemical parameters calculated at B3LYP/6-311++G** level indicate that QQAS can be preferentially adsorbed for its stronger offer electron ability. The results of molecular dynamics studies show that QQAS is preferentially adsorbed onto the surface of carbon steel forming the framework of the corrosion inhibitor film. And L-Met molecules fills the gap to make the film more condensed. The adsorption energy and the density distribution of the inhibitor and water molecules indicate that the corrosion inhibition performance is the best when the molar ratio of QQAS and L-Met is 3:1. And the synergistic inhibition mechanism is the monolayer adsorption mechanism. These results can provide useful guidance for further study on the synergistic corrosion inhibition effects of QQAS and other compounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Finšgar, J. Jackson. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros. Sci., 86 (2014) 17–41.CrossRef M. Finšgar, J. Jackson. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros. Sci., 86 (2014) 17–41.CrossRef
2.
Zurück zum Zitat W. W. Zhang, B. L. Nie, H. J. Li, et al. Inhibition of mild steel corrosion in 1 M HCl by chondroitin sulfate and its synergistic effect with sodium alginate. Carbohydr. Polym., 260 (2021) 117842-117851.PubMedCrossRef W. W. Zhang, B. L. Nie, H. J. Li, et al. Inhibition of mild steel corrosion in 1 M HCl by chondroitin sulfate and its synergistic effect with sodium alginate. Carbohydr. Polym., 260 (2021) 117842-117851.PubMedCrossRef
3.
Zurück zum Zitat A. Alrebh, M. B. Rammal, S. Omanovic. A pyridine derivative 2-(2- Methylamino-ethyl) pyridine (MAEP) as a ‘green’ corrosion inhibitor for low-carbon steel in hydrochloric acid media. J.Mol.Struct.,1238 (2021) 130333-130343.CrossRef A. Alrebh, M. B. Rammal, S. Omanovic. A pyridine derivative 2-(2- Methylamino-ethyl) pyridine (MAEP) as a ‘green’ corrosion inhibitor for low-carbon steel in hydrochloric acid media. J.Mol.Struct.,1238 (2021) 130333-130343.CrossRef
4.
Zurück zum Zitat A. Toghan, H. S. Gadow, H. M. Dardeer, et al. New promising alogenated cyclic imides derivatives as potential corrosion inhibitors for carbon steel in hydrochloric acid solution. J.Mol.Liq., 325 (2021) 115136-115156.CrossRef A. Toghan, H. S. Gadow, H. M. Dardeer, et al. New promising alogenated cyclic imides derivatives as potential corrosion inhibitors for carbon steel in hydrochloric acid solution. J.Mol.Liq., 325 (2021) 115136-115156.CrossRef
5.
Zurück zum Zitat Z. Chen, M. Wang, A.A. Fadhil, et al. Preparation, characterization, and corrosion inhibition performance of graphene oxide quantum dots for Q235 steel in 1 M hydrochloric acid solution. Colloids Surf. A., 627 (2021) 127209-127223.CrossRef Z. Chen, M. Wang, A.A. Fadhil, et al. Preparation, characterization, and corrosion inhibition performance of graphene oxide quantum dots for Q235 steel in 1 M hydrochloric acid solution. Colloids Surf. A., 627 (2021) 127209-127223.CrossRef
6.
Zurück zum Zitat E. Alzahrani, H. M. Abo-Dief, F. Algethami. Electrochemical Investigations of Hydrochloric Acid Corrosion for Carbon Steel and Coating Effect by Poly(butyl Methacrylate)-Grafted Alginate/Fe3O4. Arab.J.Chem.,14 (2021) 103100-103123.CrossRef E. Alzahrani, H. M. Abo-Dief, F. Algethami. Electrochemical Investigations of Hydrochloric Acid Corrosion for Carbon Steel and Coating Effect by Poly(butyl Methacrylate)-Grafted Alginate/Fe3O4. Arab.J.Chem.,14 (2021) 103100-103123.CrossRef
7.
Zurück zum Zitat H.B. Zhang, Z.H. Ni, H.T. Wu, et al. Corrosion Inhibition of Carbon Steel in Hydrochloric Acid by Chrysanthemum Indicum Extract. Int. J. Electrochem. Sci., 15 (2020) 5487–5499.CrossRef H.B. Zhang, Z.H. Ni, H.T. Wu, et al. Corrosion Inhibition of Carbon Steel in Hydrochloric Acid by Chrysanthemum Indicum Extract. Int. J. Electrochem. Sci., 15 (2020) 5487–5499.CrossRef
8.
Zurück zum Zitat P. Bai, H. Zhao, S. Zheng, C. Chen. Initiation and developmental stages of steel corrosion in wet H2S environments. Corros. Sci., 93 (2015) 109–119.CrossRef P. Bai, H. Zhao, S. Zheng, C. Chen. Initiation and developmental stages of steel corrosion in wet H2S environments. Corros. Sci., 93 (2015) 109–119.CrossRef
9.
Zurück zum Zitat C. Zhang, V. Z. Asl, Y. Lu, et al. Investigation of the corrosion inhibition peRfilmormances of various inhibitors for carbon steel in CO2 and CO2/H2S environments. Corros. Eng. Sci. Technol., 55 (2020) 1-8.CrossRef C. Zhang, V. Z. Asl, Y. Lu, et al. Investigation of the corrosion inhibition peRfilmormances of various inhibitors for carbon steel in CO2 and CO2/H2S environments. Corros. Eng. Sci. Technol., 55 (2020) 1-8.CrossRef
10.
Zurück zum Zitat J. Tan, L. Guo, H. Yang, et al. Synergistic effect of potassium iodide and sodium dodecyl sulfonate on the corrosion inhibition of carbon steel in HCI medium: a combined experimental and theoretical investigation. RSC Advances., 10 (2020) 15163-15170.PubMedPubMedCentralCrossRef J. Tan, L. Guo, H. Yang, et al. Synergistic effect of potassium iodide and sodium dodecyl sulfonate on the corrosion inhibition of carbon steel in HCI medium: a combined experimental and theoretical investigation. RSC Advances., 10 (2020) 15163-15170.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat C. Verma X, D. K. Verma, E. E. Ebenso, et al. Sulfur and phosphorus heteroatom-containing compounds as corrosion inhibitors: An overview Heteroatom Chem., 10 (2020) 15163-15170. C. Verma X, D. K. Verma, E. E. Ebenso, et al. Sulfur and phosphorus heteroatom-containing compounds as corrosion inhibitors: An overview Heteroatom Chem., 10 (2020) 15163-15170.
12.
Zurück zum Zitat H. Assad, A. Kumar. Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds. J. Mol. Liq., 344 (2021) 117755-117773.CrossRef H. Assad, A. Kumar. Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds. J. Mol. Liq., 344 (2021) 117755-117773.CrossRef
13.
Zurück zum Zitat C. Verma, M.A. Quraishi, E.E. Ebenso. Quinoline and its derivatives as corrosion inhibitors: A review. Surf. Interfaces, 21 (2020) 100634-100646.CrossRef C. Verma, M.A. Quraishi, E.E. Ebenso. Quinoline and its derivatives as corrosion inhibitors: A review. Surf. Interfaces, 21 (2020) 100634-100646.CrossRef
14.
Zurück zum Zitat G. Wang, W.T. Li, X.Wang, et al. A Mannich-base imidazoline quaternary ammonium salt for corrosion inhibition of mild steel in HCl solution. Mater. Chem. Phys., 293(2023) 126956-126967. G. Wang, W.T. Li, X.Wang, et al. A Mannich-base imidazoline quaternary ammonium salt for corrosion inhibition of mild steel in HCl solution. Mater. Chem. Phys., 293(2023) 126956-126967.
15.
Zurück zum Zitat M. El. Faydy, F. Benhiba, I. Warad, et al. Bisquinoline analogs as corrosion inhibitors for carbon steel in acidic electrolyte: Experimental, DFT, and molecular dynamics simulation approaches. J. Mol. Struct., 1265 (2022) 133389- 133406. M. El. Faydy, F. Benhiba, I. Warad, et al. Bisquinoline analogs as corrosion inhibitors for carbon steel in acidic electrolyte: Experimental, DFT, and molecular dynamics simulation approaches. J. Mol. Struct., 1265 (2022) 133389- 133406.
16.
Zurück zum Zitat B. E. Ibrahimi, A. Jrmiai, L. Bazzi, et al. Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab. J. Chem., 13 (2020) 770-777.CrossRef B. E. Ibrahimi, A. Jrmiai, L. Bazzi, et al. Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab. J. Chem., 13 (2020) 770-777.CrossRef
17.
Zurück zum Zitat D. Yan, Y. Wang, J. Liu. Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy. J. Alloys Compd., 824 (2020) 153918-153929.CrossRef D. Yan, Y. Wang, J. Liu. Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy. J. Alloys Compd., 824 (2020) 153918-153929.CrossRef
18.
Zurück zum Zitat K.F. Khaled. Corrosion control of copper in nitric acid solutions using some amino acids-A combined experimental and theoretical study. Corros.Sci.,52 (2010) 3225-3234.CrossRef K.F. Khaled. Corrosion control of copper in nitric acid solutions using some amino acids-A combined experimental and theoretical study. Corros.Sci.,52 (2010) 3225-3234.CrossRef
19.
Zurück zum Zitat Y.Q. Zhu, Q.Q. Sun, Y. Wang, et al. Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of oleic acid imidazoline and L-cysteine corrosion inhibitors. Corros. Sci., 185 (2021) 109414- 109424.CrossRef Y.Q. Zhu, Q.Q. Sun, Y. Wang, et al. Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of oleic acid imidazoline and L-cysteine corrosion inhibitors. Corros. Sci., 185 (2021) 109414- 109424.CrossRef
20.
Zurück zum Zitat R. Fuchs-Godec. A Synergistic Effect between Stearic Acid and (+)-alpha- Tocopherol as a Green Inhibitor on Ferritic Stainless Steel Corrosion Inhibition in 3.0% NaCl Solution. Coatings, 11 (2021) 971-981. R. Fuchs-Godec. A Synergistic Effect between Stearic Acid and (+)-alpha- Tocopherol as a Green Inhibitor on Ferritic Stainless Steel Corrosion Inhibition in 3.0% NaCl Solution. Coatings, 11 (2021) 971-981.
21.
Zurück zum Zitat A. Saviour, M. M. Umoren. Solomon. Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A Review. J. Environ. Chem. Eng., 5 (2017) 246–273. A. Saviour, M. M. Umoren. Solomon. Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A Review. J. Environ. Chem. Eng., 5 (2017) 246–273.
22.
Zurück zum Zitat J. Zhao, H. Duan, R. Jiang. Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution. Corrosion Sci., 91 ( 2015) 108-119.CrossRef J. Zhao, H. Duan, R. Jiang. Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution. Corrosion Sci., 91 ( 2015) 108-119.CrossRef
23.
Zurück zum Zitat Z. Yang, C. Qian, W. Chen, et al. Synergistic effect of the bromide and chloride ion on the inhibition of quaternary ammonium salts in haloid acid, corrosion inhibition of carbon steel measured by weight loss. Colloid and Interface Sci. Com., 34 (2020) 100228-100237.CrossRef Z. Yang, C. Qian, W. Chen, et al. Synergistic effect of the bromide and chloride ion on the inhibition of quaternary ammonium salts in haloid acid, corrosion inhibition of carbon steel measured by weight loss. Colloid and Interface Sci. Com., 34 (2020) 100228-100237.CrossRef
24.
Zurück zum Zitat J. Haque, M.J. Mohammad, M. Quraishi, et al. Pyrrolidine-based quaternary ammonium salts containing propargyl and hydrophobic C-12 and C-16 alkyl chains as corrosion inhibitors in aqueous acidic media. J. Mol. Liq., 320 (2020) 114473-114488.CrossRef J. Haque, M.J. Mohammad, M. Quraishi, et al. Pyrrolidine-based quaternary ammonium salts containing propargyl and hydrophobic C-12 and C-16 alkyl chains as corrosion inhibitors in aqueous acidic media. J. Mol. Liq., 320 (2020) 114473-114488.CrossRef
25.
Zurück zum Zitat E.E. Oguzie, Y. Li, F. Wang. Effect of surface nanocrystallization on. corrosion. and corrosion inhibition of low carbon steel: Synerqistic effect of methionine and iodide ion. Electrochim. Acta., 52( 2007) 6988- 6996. E.E. Oguzie, Y. Li, F. Wang. Effect of surface nanocrystallization on. corrosion. and corrosion inhibition of low carbon steel: Synerqistic effect of methionine and iodide ion. Electrochim. Acta., 52( 2007) 6988- 6996.
26.
Zurück zum Zitat D.Q. Zhang, Q.R. Cai, X.M. He, et al. Corrosion inhibition and adsorption behavior of methionine on copper in HCL and synergistic effect of zinc ions. Mater. Chem. Phys., 114 (2009) 612–617.CrossRef D.Q. Zhang, Q.R. Cai, X.M. He, et al. Corrosion inhibition and adsorption behavior of methionine on copper in HCL and synergistic effect of zinc ions. Mater. Chem. Phys., 114 (2009) 612–617.CrossRef
27.
Zurück zum Zitat Z. Zhang, N.C. Tian, W.N. Zhang, et al. Inhibition of carbon steel corrosion in phase-change-materials solution by methionine and proline. Corros. Sci., 111 (2016) 675-689.CrossRef Z. Zhang, N.C. Tian, W.N. Zhang, et al. Inhibition of carbon steel corrosion in phase-change-materials solution by methionine and proline. Corros. Sci., 111 (2016) 675-689.CrossRef
28.
Zurück zum Zitat X.S. Chen, Y. Chen, J.J. Cui, et al. Molecular dynamics simulation and DFT calculation of “green” scale and corrosion inhibitor. Comput. Mater. Sci., 188 (2021) 110229-110239.CrossRef X.S. Chen, Y. Chen, J.J. Cui, et al. Molecular dynamics simulation and DFT calculation of “green” scale and corrosion inhibitor. Comput. Mater. Sci., 188 (2021) 110229-110239.CrossRef
29.
Zurück zum Zitat Z. Razaghi, M. Rezaei. Corrosion mechanism of sulfate, chloride, and tetrafluoroborate ions interacted with Ni-19wt% Cr coating: A combined experimental study and molecular dynamics simulation. J.Mol. Liq., 319 (2020) 114243-114256.CrossRef Z. Razaghi, M. Rezaei. Corrosion mechanism of sulfate, chloride, and tetrafluoroborate ions interacted with Ni-19wt% Cr coating: A combined experimental study and molecular dynamics simulation. J.Mol. Liq., 319 (2020) 114243-114256.CrossRef
30.
Zurück zum Zitat Y.Q. Zhu, S.D. Qu, Y. Shen, et al. Investigation on the synergistic effects and mechanism of oleic imidazoline and mercaptoethanol corrosion inhibitors by experiment and molecular dynamic simulation. J. Mol.Struct., 1274 (2023) 134512-134522.CrossRef Y.Q. Zhu, S.D. Qu, Y. Shen, et al. Investigation on the synergistic effects and mechanism of oleic imidazoline and mercaptoethanol corrosion inhibitors by experiment and molecular dynamic simulation. J. Mol.Struct., 1274 (2023) 134512-134522.CrossRef
31.
Zurück zum Zitat C. Verma, H. Lgaz, D.K. Verma, et al. Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. J. Mol. Liq., 260 (2018) 99-120.CrossRef C. Verma, H. Lgaz, D.K. Verma, et al. Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. J. Mol. Liq., 260 (2018) 99-120.CrossRef
32.
Zurück zum Zitat A. Suhasaria, M.Murmu, S. Satpati, et al. Bis-benzothiazoles as efficient corrosion inhibitors for mild steel in aqueous HCl: Molecular structure-reactivity correlation study. J. Mol. Liq., 313 (2020) 113537-113549.CrossRef A. Suhasaria, M.Murmu, S. Satpati, et al. Bis-benzothiazoles as efficient corrosion inhibitors for mild steel in aqueous HCl: Molecular structure-reactivity correlation study. J. Mol. Liq., 313 (2020) 113537-113549.CrossRef
33.
Zurück zum Zitat S. Sengupta, M. Murmu, S. Mandal, et al. Competitive corrosion inhibition performance of alkyl/acyl substituted 2-(2-hydroxybenzylideneamino) phenol protecting mild steel used in adverse acidic medium: A dual approach analysis using FMOs/molecular dynamics simulation corroborated experimental findings. Colloids Surf. A., 617 (2021) 126314-126332.CrossRef S. Sengupta, M. Murmu, S. Mandal, et al. Competitive corrosion inhibition performance of alkyl/acyl substituted 2-(2-hydroxybenzylideneamino) phenol protecting mild steel used in adverse acidic medium: A dual approach analysis using FMOs/molecular dynamics simulation corroborated experimental findings. Colloids Surf. A., 617 (2021) 126314-126332.CrossRef
34.
Zurück zum Zitat S. Sengupta, M. Murmu, N.C. Murmu, et al. Adsorption of redox-active Schiff bases and corrosion inhibiting property for mild steel in 1 mol·L-1 H2SO4: Experimental analysis supported by ab initio DFT, DFTB and molecular dynamics simulation approach. J. Mol. Liq., 326 (2021) 115215-115237.CrossRef S. Sengupta, M. Murmu, N.C. Murmu, et al. Adsorption of redox-active Schiff bases and corrosion inhibiting property for mild steel in 1 mol·L-1 H2SO4: Experimental analysis supported by ab initio DFT, DFTB and molecular dynamics simulation approach. J. Mol. Liq., 326 (2021) 115215-115237.CrossRef
35.
Zurück zum Zitat Y.Q. Zhu, Q.Q. Sun, Y. Wang, et al. A Study on Inhibition Performance of Mercaptoalcohols As Corrosion Inhibitors by First Principle and Molecular Dynamics Simulation. Russ.J.Phys.Chem.A,94 (2020) 1877–1886.CrossRef Y.Q. Zhu, Q.Q. Sun, Y. Wang, et al. A Study on Inhibition Performance of Mercaptoalcohols As Corrosion Inhibitors by First Principle and Molecular Dynamics Simulation. Russ.J.Phys.Chem.A,94 (2020) 1877–1886.CrossRef
36.
Zurück zum Zitat J. Liu, D.B. He, M.J. Zhang, et al. Hexamethylenetetramine as a corrosion inhibitor in hydrochloric acid solution. Advances in Engineering Research., 63 (2016) 348-351. J. Liu, D.B. He, M.J. Zhang, et al. Hexamethylenetetramine as a corrosion inhibitor in hydrochloric acid solution. Advances in Engineering Research., 63 (2016) 348-351.
37.
Zurück zum Zitat N. A. Wazzan. DFT calculations of thiosemicarbazide, arylisothiocynates, and 1-aryl-2,5-dithiohydrazodicarbonamides as corrosion inhibitors of copper in an aqueous chloride solution. J. Ind. Eng. Chem., 26 (2015) 291-308.CrossRef N. A. Wazzan. DFT calculations of thiosemicarbazide, arylisothiocynates, and 1-aryl-2,5-dithiohydrazodicarbonamides as corrosion inhibitors of copper in an aqueous chloride solution. J. Ind. Eng. Chem., 26 (2015) 291-308.CrossRef
38.
Zurück zum Zitat S. K. Saha, P. Ghosh, A. Hens, et al. Density functional theory and molecular dynamics simulation study on corrosion inhibition peRfilmormance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica. E., 66 (2015) 332–341.CrossRef S. K. Saha, P. Ghosh, A. Hens, et al. Density functional theory and molecular dynamics simulation study on corrosion inhibition peRfilmormance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica. E., 66 (2015) 332–341.CrossRef
39.
Zurück zum Zitat M.J. Frisch, G.W. Trucks, H.B. Schlegel, , et al. Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, 2013. M.J. Frisch, G.W. Trucks, H.B. Schlegel, , et al. Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, 2013.
40.
Zurück zum Zitat P. Senet. Chemical hardnesses of atoms and molecules from frontier orbitals. Chem. Phys. Lett., 275 (1997) 527-532.CrossRef P. Senet. Chemical hardnesses of atoms and molecules from frontier orbitals. Chem. Phys. Lett., 275 (1997) 527-532.CrossRef
41.
Zurück zum Zitat J. M. Costa, J. M. Lluch. The use of quantum mechanics calculations for the study of corrosion inhibitors. Corros. Sci., 24 (1984) 929–933.CrossRef J. M. Costa, J. M. Lluch. The use of quantum mechanics calculations for the study of corrosion inhibitors. Corros. Sci., 24 (1984) 929–933.CrossRef
42.
Zurück zum Zitat H. Shokry. Molecular dynamics simulation and quantum chemical calculations for the adsorption of some Azo-azomethine derivatives on mild steel. J. Mol. Struct., 1060 (2014) 80–87.CrossRef H. Shokry. Molecular dynamics simulation and quantum chemical calculations for the adsorption of some Azo-azomethine derivatives on mild steel. J. Mol. Struct., 1060 (2014) 80–87.CrossRef
43.
Zurück zum Zitat M.E. Belghiti. Piperine derivatives as green corrosion inhibitors on iron surface; DFT, Monte Carlo dynamics study and complexation modes. J. Mol. Liq., 261 (2018) 62–75.CrossRef M.E. Belghiti. Piperine derivatives as green corrosion inhibitors on iron surface; DFT, Monte Carlo dynamics study and complexation modes. J. Mol. Liq., 261 (2018) 62–75.CrossRef
44.
Zurück zum Zitat Materials Studio, Revision8.0, Accelrys Inc., Elsevier B.V., San Diego, USA, 2017. Materials Studio, Revision8.0, Accelrys Inc., Elsevier B.V., San Diego, USA, 2017.
45.
Zurück zum Zitat M. Hosseini, S.F.L. Mertens, M.R. Arshadi. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine. Corros.Sci., 45 (2003) 1473–1489.CrossRef M. Hosseini, S.F.L. Mertens, M.R. Arshadi. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine. Corros.Sci., 45 (2003) 1473–1489.CrossRef
46.
Zurück zum Zitat A. A. Olajire. Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors-A review. J.Mol.Liq., 248 (2017) 775–808.CrossRef A. A. Olajire. Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors-A review. J.Mol.Liq., 248 (2017) 775–808.CrossRef
47.
Zurück zum Zitat U. Ghani. Carbazole and hydrazone derivatives as new competitive inhibitors of tyrosinase : Experimental clues to binuclear copper active site binding. Bioorg. Chem., 83 (2019) 235–241.PubMedCrossRef U. Ghani. Carbazole and hydrazone derivatives as new competitive inhibitors of tyrosinase : Experimental clues to binuclear copper active site binding. Bioorg. Chem., 83 (2019) 235–241.PubMedCrossRef
48.
Zurück zum Zitat M. P. Desimone, G. Grundmeier, G. Gordillo, et al. Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2 saturated solution : Polarization, EIS and PM-IRRAS studies. Electrochim. Acta., 56 (2011) 2990–2998.CrossRef M. P. Desimone, G. Grundmeier, G. Gordillo, et al. Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2 saturated solution : Polarization, EIS and PM-IRRAS studies. Electrochim. Acta., 56 (2011) 2990–2998.CrossRef
49.
Zurück zum Zitat I. B. Obot, N. O. Obi-egbedi. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation. Corros. Sci., 52 (2010) 198–204.CrossRef I. B. Obot, N. O. Obi-egbedi. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation. Corros. Sci., 52 (2010) 198–204.CrossRef
50.
Zurück zum Zitat R. Ling, J. P. Chen, J. Shao, et al. Degradation of organic compounds during the corrosion of ZVI by hydrogen peroxide at neutral pH : Kinetics, mechanisms and effect of corrosion promoting and inhibiting ions. Water Res., 134 (2018) 44–53.PubMedCrossRef R. Ling, J. P. Chen, J. Shao, et al. Degradation of organic compounds during the corrosion of ZVI by hydrogen peroxide at neutral pH : Kinetics, mechanisms and effect of corrosion promoting and inhibiting ions. Water Res., 134 (2018) 44–53.PubMedCrossRef
51.
Zurück zum Zitat Y. Duda, R. Govea-rueda, H. I. Beltra, L. S. Zamudio-rivera. Corrosion Inhibitors: Design, Performance, and Computer Simulations. J. Phys. Chem. B., 109 (2005) 22674–22684.PubMedCrossRef Y. Duda, R. Govea-rueda, H. I. Beltra, L. S. Zamudio-rivera. Corrosion Inhibitors: Design, Performance, and Computer Simulations. J. Phys. Chem. B., 109 (2005) 22674–22684.PubMedCrossRef
52.
Zurück zum Zitat N. O. Obi-Egbedi, I. B. Obot. Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4. Corros. Sci., 53 (2011) 263-275.CrossRef N. O. Obi-Egbedi, I. B. Obot. Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4. Corros. Sci., 53 (2011) 263-275.CrossRef
53.
Zurück zum Zitat Z. El. Adnani, M. MchaRfilmi, et al. DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros. Sci., 68 (2013) 223-230. Z. El. Adnani, M. MchaRfilmi, et al. DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros. Sci., 68 (2013) 223-230.
54.
Zurück zum Zitat R. G. Parr, W. Yang. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 106 (1984) 4049-4050.CrossRef R. G. Parr, W. Yang. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 106 (1984) 4049-4050.CrossRef
55.
Zurück zum Zitat G. Breket, E. Hur, C. Ogretir. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium. J. Mol. Struct (Theochem), 578 (2002) 79-88.CrossRef G. Breket, E. Hur, C. Ogretir. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium. J. Mol. Struct (Theochem), 578 (2002) 79-88.CrossRef
56.
Zurück zum Zitat R. G. Pearson. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem., 27 (1988) 734-740.CrossRef R. G. Pearson. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem., 27 (1988) 734-740.CrossRef
Metadaten
Titel
Molecular Dynamic Simulation on the Synergistic Corrosion Inhibition Effect and Mechanism of Quinoline Quaternary Ammonium Salt and L-Methionine
verfasst von
Jiasheng Deng
Zhijun Gao
Wangda He
Zhiwen Bai
Yanzhao Meng
Yuanqiang Zhu
Nanjun Lai
Publikationsdatum
03.10.2023
Verlag
Springer US
Erschienen in
Chemistry and Technology of Fuels and Oils / Ausgabe 4/2023
Print ISSN: 0009-3092
Elektronische ISSN: 1573-8310
DOI
https://doi.org/10.1007/s10553-023-01591-9

Weitere Artikel der Ausgabe 4/2023

Chemistry and Technology of Fuels and Oils 4/2023 Zur Ausgabe