Skip to main content

2014 | OriginalPaper | Buchkapitel

8. Monitoring Ice Accumulation and Active De-icing Control of Wind Turbine Blades

verfasst von : Shervin Shajiee, Lucy Y. Pao, Robert R. McLeod

Erschienen in: Wind Turbine Control and Monitoring

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ice accumulation on wind turbines operating in cold regions reduces power generation by degrading aerodynamic efficiency and causes mass imbalance and fatigue loads on the blades. Due to blade rotation and variation of the pitch angle, different locations on the blade experience large variation of Reynolds number, Nusselt number, heat loss, and nonuniform ice distribution. Hence, applying different amounts of heat flux in different blade locations can provide more effective de-icing for the same total power consumption. This large variation of required heat flux highly motivates using distributed resistive heating with the capability of locally adjusting thermal power as a function of location on the blade. Under medium/severe icing conditions, active de-icing with accurate direct ice detection is more energy efficient and effective in keeping the blade ice-free. This chapter includes: (1) A literature study on different methods of ice detection and a review on passive and active anti/de-icing techniques on wind turbines, (2) Development of an optical ice sensing method for direct detection of ice on the blade, including experimental results, (3) Development of an aero/thermodynamic model, which predicts how much heat flux is needed locally for de-icing under variable atmospheric conditions, (4) Experimental results showing a proof of concept of closed-loop de-icing using distributed optical ice sensing and resistive heating, and (5) Numerical modeling of ice melting on a blade for different distributed heater layouts and geometries in order to optimize thermal actuation strategy, improve de-icing efficiency, and reduce power consumption. We conclude with discussions of future directions on distributed ice sensing and thermal actuation for the next generation of de-icing systems on wind turbines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Seifert H, Richert F (1997) Aerodynamics of iced airfoils and their influence on loads and power production. In: Proceedings of European wind energy conference Seifert H, Richert F (1997) Aerodynamics of iced airfoils and their influence on loads and power production. In: Proceedings of European wind energy conference
2.
Zurück zum Zitat Baring-Gould I, Tallhaug L, Ronsten G, Horbaty R, Cattin R, Laakso T, Durstewitz M, Lacroix A, Peltola E, Wallenius T (2009) Recommendations for wind energy projects in cold climates. Technical report, International Energy Agency Baring-Gould I, Tallhaug L, Ronsten G, Horbaty R, Cattin R, Laakso T, Durstewitz M, Lacroix A, Peltola E, Wallenius T (2009) Recommendations for wind energy projects in cold climates. Technical report, International Energy Agency
3.
Zurück zum Zitat Laakso T, Baring-Gould I, Durstewitz M, Horbaty R, Lacroix A, Peltola E, Ronsten G, Tallhaug L, Wallenius T (2009) State-of-the-art of wind energy in cold climates. Technical report, International Energy Agency Laakso T, Baring-Gould I, Durstewitz M, Horbaty R, Lacroix A, Peltola E, Ronsten G, Tallhaug L, Wallenius T (2009) State-of-the-art of wind energy in cold climates. Technical report, International Energy Agency
4.
Zurück zum Zitat Boluk Y (1996) Adhesion of freezing precipitates to aircraft surfaces. Transport Canada, pp 44 Boluk Y (1996) Adhesion of freezing precipitates to aircraft surfaces. Transport Canada, pp 44
5.
Zurück zum Zitat Fikke S et al (2006) Atmospheric icing on structures: measurements and data collection on icing: state of the art. MeteoSwiss 75:110 Fikke S et al (2006) Atmospheric icing on structures: measurements and data collection on icing: state of the art. MeteoSwiss 75:110
6.
Zurück zum Zitat ISO-12494 (2001) Atmospheric icing of structures. ISO copyright office, Geneva, p 56 ISO-12494 (2001) Atmospheric icing of structures. ISO copyright office, Geneva, p 56
7.
Zurück zum Zitat Richert F (1996) Is Rotorcraft icing knowledge transferable to wind turbines? BOREAS III. FMI, Saariselkä, pp 366–380 Richert F (1996) Is Rotorcraft icing knowledge transferable to wind turbines? BOREAS III. FMI, Saariselkä, pp 366–380
8.
Zurück zum Zitat Ilinca A (2011) Analysis and mitigation of icing effects on wind turbines. In: Al-Bahadly I (ed) Wind turbines, 1st Edn. InTech, Rijeka Ilinca A (2011) Analysis and mitigation of icing effects on wind turbines. In: Al-Bahadly I (ed) Wind turbines, 1st Edn. InTech, Rijeka
9.
Zurück zum Zitat Mason J (1971) The physics of clouds. Technical report. Oxford University Press, London Mason J (1971) The physics of clouds. Technical report. Oxford University Press, London
10.
Zurück zum Zitat Homola M, Nicklasson P, Sundsbo P (2006) Ice sensors for wind turbines. J Cold Reg Sci Technol 46:125–131CrossRef Homola M, Nicklasson P, Sundsbo P (2006) Ice sensors for wind turbines. J Cold Reg Sci Technol 46:125–131CrossRef
11.
Zurück zum Zitat Makkonen L (2000) Jn Detektointi Kosteusmittauksen Avulla [Detection of Ice from Humidity Measurements]. Technical report, Report in Finnish to the Vilho, Yrj and Kalle Visl Foundation, Helsinki Makkonen L (2000) Jn Detektointi Kosteusmittauksen Avulla [Detection of Ice from Humidity Measurements]. Technical report, Report in Finnish to the Vilho, Yrj and Kalle Visl Foundation, Helsinki
12.
Zurück zum Zitat Parent O, Ilinca A (2011) Anti-icing and de-icing techniques for wind turbines: critical review. J Cold Reg Sci Technol 65:88–96CrossRef Parent O, Ilinca A (2011) Anti-icing and de-icing techniques for wind turbines: critical review. J Cold Reg Sci Technol 65:88–96CrossRef
13.
Zurück zum Zitat Geraldi J, Hickman G, Khatkhate A, Pruzan D (1996) Measuring ice distribution on a surface with attached capacitance electrodes. Technical report, United States Patent number 5,551,288 Geraldi J, Hickman G, Khatkhate A, Pruzan D (1996) Measuring ice distribution on a surface with attached capacitance electrodes. Technical report, United States Patent number 5,551,288
14.
Zurück zum Zitat Shajiee S, Wagner P, Pao L Y, Mcleod R R (2012) Development of a novel ice sensing and active de-icing method for wind turbines. In: Proceedings of AIAA aerospace sciences meeting, Nashville, 15 p Shajiee S, Wagner P, Pao L Y, Mcleod R R (2012) Development of a novel ice sensing and active de-icing method for wind turbines. In: Proceedings of AIAA aerospace sciences meeting, Nashville, 15 p
15.
Zurück zum Zitat Walsh M (2010) Accretion and removal of wind turbine icing in polar conditions. Masters Thesis, AALTO University, Helsinki Walsh M (2010) Accretion and removal of wind turbine icing in polar conditions. Masters Thesis, AALTO University, Helsinki
16.
Zurück zum Zitat Mulherin N, Richter-Menge J, Tantillo T, Gould L, Durell G, Elder B (1990) Laboratory test for measurement of adhesion strength of spray ice to coated flat plates. Cold regions research and engineering, Laboratory report 90-2, US Army Corps of Engineers Mulherin N, Richter-Menge J, Tantillo T, Gould L, Durell G, Elder B (1990) Laboratory test for measurement of adhesion strength of spray ice to coated flat plates. Cold regions research and engineering, Laboratory report 90-2, US Army Corps of Engineers
17.
Zurück zum Zitat Battisti L, Baggio P, Fedrizzi R (2006) Warm-air intermittent de-icing system for wind turbines. Wind Eng 30(5):361–374CrossRef Battisti L, Baggio P, Fedrizzi R (2006) Warm-air intermittent de-icing system for wind turbines. Wind Eng 30(5):361–374CrossRef
18.
Zurück zum Zitat Wang X (2008) Convective heat transfer and experimental icing aerodynamics of wind turbine blades. Ph.D. Thesis, University of Manitoba Wang X (2008) Convective heat transfer and experimental icing aerodynamics of wind turbine blades. Ph.D. Thesis, University of Manitoba
19.
Zurück zum Zitat Marjaniemi M, Peltola E (1998) Blade heating element design and practical experiences. In: BOREAS IV conference on wind energy production in cold climates, Yllas Marjaniemi M, Peltola E (1998) Blade heating element design and practical experiences. In: BOREAS IV conference on wind energy production in cold climates, Yllas
20.
Zurück zum Zitat Makinen J (1996) Ice detection and de-icing system improves the economics of a wind turbine in the Arctic weather conditions. In: BOREAS III conference on wind energy production in cold climates, Saariselka Makinen J (1996) Ice detection and de-icing system improves the economics of a wind turbine in the Arctic weather conditions. In: BOREAS III conference on wind energy production in cold climates, Saariselka
21.
Zurück zum Zitat Huber R, Wojtkowski M, Fujimoto JG (2006) Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. J Opt Express 14:3225–3237CrossRef Huber R, Wojtkowski M, Fujimoto JG (2006) Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. J Opt Express 14:3225–3237CrossRef
22.
Zurück zum Zitat Moore ED, McLeod RR (2011) Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness. J Opt Express 19:8117–8126 Moore ED, McLeod RR (2011) Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness. J Opt Express 19:8117–8126
23.
Zurück zum Zitat Fuhr PL, Huston DR (1993) Multiplexed fiber optic pressure and vibration sensors for hydroelectric dam monitoring. Smart Mater Struct 2:260CrossRef Fuhr PL, Huston DR (1993) Multiplexed fiber optic pressure and vibration sensors for hydroelectric dam monitoring. Smart Mater Struct 2:260CrossRef
24.
Zurück zum Zitat Laakso T, Peltola E (2005) Review on blade heating technology and future prospects. In: BOREAS VII FMI, Saariselkä, pp 2–13 Laakso T, Peltola E (2005) Review on blade heating technology and future prospects. In: BOREAS VII FMI, Saariselkä, pp 2–13
25.
Zurück zum Zitat Mayer C, Illinca A, Fortin G, Perron J (2007) Wind tunnel study of electro-thermal de-icing of wind turbine blades. Int J Offshore Polar Eng 17:182–188 Mayer C, Illinca A, Fortin G, Perron J (2007) Wind tunnel study of electro-thermal de-icing of wind turbine blades. Int J Offshore Polar Eng 17:182–188
27.
Zurück zum Zitat Hochart C, Fortin G, Perron J, Ilinca A (2008) Wind turbine performance under icing conditions. Wind Energy 11:319–333 Hochart C, Fortin G, Perron J, Ilinca A (2008) Wind turbine performance under icing conditions. Wind Energy 11:319–333
32.
Zurück zum Zitat Dierer S, Oechslin R, Cattin R (2011) Wind turbines in icing conditions: performance and prediction. Adv Sci Res 6:245–250CrossRef Dierer S, Oechslin R, Cattin R (2011) Wind turbines in icing conditions: performance and prediction. Adv Sci Res 6:245–250CrossRef
33.
Zurück zum Zitat Shajiee S, Pao LY, Wagner P, Moore ED, McLeod RR (2013) Direct ice sensing and localized closed-loop heating for active de-icing of wind turbine blades. In: Proceedings of American control conference, pp 634–639, Washington, D.C. Shajiee S, Pao LY, Wagner P, Moore ED, McLeod RR (2013) Direct ice sensing and localized closed-loop heating for active de-icing of wind turbine blades. In: Proceedings of American control conference, pp 634–639, Washington, D.C.
Metadaten
Titel
Monitoring Ice Accumulation and Active De-icing Control of Wind Turbine Blades
verfasst von
Shervin Shajiee
Lucy Y. Pao
Robert R. McLeod
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-08413-8_8