Skip to main content
Erschienen in: Wireless Networks 1/2020

16.08.2018

Mono-bit millimeter-wave channel estimation: Bayesian and adaptive quantization frameworks

verfasst von: Majid Shakhsi Dastgahian, Hossein Khoshbin

Erschienen in: Wireless Networks | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To achieve a more reasonable cost, employment of a mono-bit quantization structure is essential in wide bandwidth millimeter-wave communications (mmW). However, in mmW channel estimation, one of the critical challenges of mono-bit quantization in each branch of the antenna is the loss of data amplitude. The latest researches offer several approaches to estimate the channel in mono-bit single and multiple antenna structures. Such methods not consider the recovery of channel amplitude and consequently are limited to finding direction. Moreover, they do not provide sparsity into account. Thus, two new schemes are introduced based on a non-adaptive Bayesian algorithm and adaptive sigma–delta modulation (SDM) to tackle these issues. In both methods, we exploit the sparsity of mmWC channel in the angle domain. To extract the sparse-based Laplacian density in case that the sparsity level is unknown, we propose a Bayesian algorithm which employs a hierarchical chain composed of Gaussian and exponential prior. Furthermore, in case that the sparsity level of an application is known or can be estimated, the adaptive mono-bit quantization schemes is proposed which retrieves the amplitude of the sparse channel by the aid of SDM and CS tools. Simulation results show that the adaptive mono-bit estimator outperforms the non-adaptive Bayesian approach comparing the mean square error as an index. Also, the proposed adaptive method, especially when a sufficient number of one-bit measurements are available, can asymptotically converge into optimum full-bit observations with lower computational complexity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang, P., Li, Y., Song, L., & Vucetic, B. (2015). Multi-gigabit millimeter wave wireless communications for 5G: From fixed access to cellular networks. IEEE Communications Magazine,53, 168–178.CrossRef Wang, P., Li, Y., Song, L., & Vucetic, B. (2015). Multi-gigabit millimeter wave wireless communications for 5G: From fixed access to cellular networks. IEEE Communications Magazine,53, 168–178.CrossRef
2.
Zurück zum Zitat Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine,52, 74–80.CrossRef Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine,52, 74–80.CrossRef
3.
Zurück zum Zitat Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation,61, 1850–1859.CrossRef Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation,61, 1850–1859.CrossRef
4.
Zurück zum Zitat Walden, R. H. (1999). Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications,17, 539–550.CrossRef Walden, R. H. (1999). Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications,17, 539–550.CrossRef
6.
Zurück zum Zitat El Ayach, O., Rajagopal, S., Abu-Surra, S., Zhouyue, P., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications,13, 1499–1513.CrossRef El Ayach, O., Rajagopal, S., Abu-Surra, S., Zhouyue, P., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications,13, 1499–1513.CrossRef
7.
Zurück zum Zitat Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing,8, 831–846.CrossRef Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing,8, 831–846.CrossRef
8.
Zurück zum Zitat Ghauch, H., Bengtsson, M., Kim, T., & Skoglund, M. (2015). Subspace estimation and decomposition for hybrid analog–digital millimetre-wave MIMO systems. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 395–399). Ghauch, H., Bengtsson, M., Kim, T., & Skoglund, M. (2015). Subspace estimation and decomposition for hybrid analog–digital millimetre-wave MIMO systems. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 395–399).
9.
Zurück zum Zitat Schniter, P., & Sayeed, A. (2014). Channel estimation and precoder design for millimeter-wave communications: The sparse way. In 48th Asilomar conference on signals, systems and computers (pp. 273–277). Schniter, P., & Sayeed, A. (2014). Channel estimation and precoder design for millimeter-wave communications: The sparse way. In 48th Asilomar conference on signals, systems and computers (pp. 273–277).
10.
Zurück zum Zitat Zhang, T.-C., Wen, C.-K., Jin, S., & Jiang, T. (2016). Mixed-ADC massive MIMO detectors: Performance analysis and design optimization. IEEE Transactions on Wireless Communications,15, 7738–7752.CrossRef Zhang, T.-C., Wen, C.-K., Jin, S., & Jiang, T. (2016). Mixed-ADC massive MIMO detectors: Performance analysis and design optimization. IEEE Transactions on Wireless Communications,15, 7738–7752.CrossRef
11.
Zurück zum Zitat Jacobsson, S., Durisi, G., Coldrey, M., Gustavsson, U., & Studer, C. (2015). “One-bit massive MIMO: Channel estimation and high-order modulations,” in Communication Workshop (ICCW). IEEE International Conference on,2015, 1304–1309. Jacobsson, S., Durisi, G., Coldrey, M., Gustavsson, U., & Studer, C. (2015). “One-bit massive MIMO: Channel estimation and high-order modulations,” in Communication Workshop (ICCW). IEEE International Conference on,2015, 1304–1309.
13.
Zurück zum Zitat Zhang, J., Dai, L., Sun, S., & Wang, Z. (2016). On the spectral efficiency of massive MIMO systems with low-resolution ADCs. IEEE Communications Letters,20, 842–845.CrossRef Zhang, J., Dai, L., Sun, S., & Wang, Z. (2016). On the spectral efficiency of massive MIMO systems with low-resolution ADCs. IEEE Communications Letters,20, 842–845.CrossRef
14.
Zurück zum Zitat Fan, L., Jin, S., Wen, C.-K., & Zhang, H. (2015). Uplink achievable rate for massive MIMO systems with low-resolution ADC. IEEE Communications Letters,19, 2186–2189.CrossRef Fan, L., Jin, S., Wen, C.-K., & Zhang, H. (2015). Uplink achievable rate for massive MIMO systems with low-resolution ADC. IEEE Communications Letters,19, 2186–2189.CrossRef
15.
Zurück zum Zitat Li, Y., Tao, C., Seco-Granados, G., Mezghani, A., Swindlehurst, A. L., & Liu, L. (2016). Channel estimation and performance analysis of one-bit massive MIMO systems. arXiv preprint arXiv:1609.07427. Li, Y., Tao, C., Seco-Granados, G., Mezghani, A., Swindlehurst, A. L., & Liu, L. (2016). Channel estimation and performance analysis of one-bit massive MIMO systems. arXiv preprint arXiv:​1609.​07427.
16.
Zurück zum Zitat Stöckle, C., Munir, J., Mezghani, A., & Nossek, J. A. (2016). Channel estimation in massive MIMO systems using 1-bit quantization. In IEEE 17th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–6). Stöckle, C., Munir, J., Mezghani, A., & Nossek, J. A. (2016). Channel estimation in massive MIMO systems using 1-bit quantization. In IEEE 17th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–6).
17.
Zurück zum Zitat Yin, H., Wang, Z., Ke, L., & Wang, J. (2010). Monobit digital receivers: Design, performance, and application to impulse radio. IEEE Transactions on Communications,58, 1695–1704.CrossRef Yin, H., Wang, Z., Ke, L., & Wang, J. (2010). Monobit digital receivers: Design, performance, and application to impulse radio. IEEE Transactions on Communications,58, 1695–1704.CrossRef
18.
Zurück zum Zitat Mo, J., Schniter, P., Prelcic, N. G., & Heath, R. W. (2014). Channel estimation in millimeter wave MIMO systems with one-bit quantization. In 48th Asilomar conference on signals, systems and computers (pp. 957–961). Mo, J., Schniter, P., Prelcic, N. G., & Heath, R. W. (2014). Channel estimation in millimeter wave MIMO systems with one-bit quantization. In 48th Asilomar conference on signals, systems and computers (pp. 957–961).
19.
Zurück zum Zitat Rusu, C., Mendez-Rial, R., Gonzalez-Prelcic, N., & Heath, R. W. (2015) Adaptive one-bit compressive sensing with application to low-precision receivers at mmWave. In IEEE global communications conference (GLOBECOM) (pp. 1–6). Rusu, C., Mendez-Rial, R., Gonzalez-Prelcic, N., & Heath, R. W. (2015) Adaptive one-bit compressive sensing with application to low-precision receivers at mmWave. In IEEE global communications conference (GLOBECOM) (pp. 1–6).
20.
Zurück zum Zitat Mo, J., Schniter, P., & Heath, R. W. Jr. (2016). Channel estimation in broadband millimeter wave MIMO systems with few-bit ADCs. arXiv preprint arXiv:1610.02735. Mo, J., Schniter, P., & Heath, R. W. Jr. (2016). Channel estimation in broadband millimeter wave MIMO systems with few-bit ADCs. arXiv preprint arXiv:​1610.​02735.
21.
Zurück zum Zitat Jacques, L., Laska, J. N., Boufounos, P. T., & Baraniuk, R. G. (2013). Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions on Information Theory,59, 2082–2102.MathSciNetCrossRef Jacques, L., Laska, J. N., Boufounos, P. T., & Baraniuk, R. G. (2013). Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions on Information Theory,59, 2082–2102.MathSciNetCrossRef
22.
Zurück zum Zitat Xu, Y., Kabashima, Y., & Zdeborová, L. (2014). Bayesian signal reconstruction for 1-bit compressed sensing. Journal of Statistical Mechanics: Theory and Experiment,2014, P11015.MathSciNetCrossRef Xu, Y., Kabashima, Y., & Zdeborová, L. (2014). Bayesian signal reconstruction for 1-bit compressed sensing. Journal of Statistical Mechanics: Theory and Experiment,2014, P11015.MathSciNetCrossRef
23.
Zurück zum Zitat Yan, M., Yang, Y., & Osher, S. (2012). Robust 1-bit compressive sensing using adaptive outlier pursuit. IEEE Transactions on Signal Processing,60, 3868–3875.MathSciNetCrossRef Yan, M., Yang, Y., & Osher, S. (2012). Robust 1-bit compressive sensing using adaptive outlier pursuit. IEEE Transactions on Signal Processing,60, 3868–3875.MathSciNetCrossRef
24.
Zurück zum Zitat Stöckle, C., Munir, J., Mezghani, A., & Nossek, J. A. (2015). 1-Bit direction of arrival estimation based on compressed sensing. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 246–250). Stöckle, C., Munir, J., Mezghani, A., & Nossek, J. A. (2015). 1-Bit direction of arrival estimation based on compressed sensing. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 246–250).
25.
Zurück zum Zitat Stein, M., Barbé, K., & Nossek, J. A. (2016). DOA parameter estimation with 1-bit quantization-bounds, methods and the exponential replacement. arXiv preprint arXiv:1602.05462. Stein, M., Barbé, K., & Nossek, J. A. (2016). DOA parameter estimation with 1-bit quantization-bounds, methods and the exponential replacement. arXiv preprint arXiv:​1602.​05462.
26.
Zurück zum Zitat Ivrlac, M. T., & Nossek, J. A. (2007). On MIMO channel estimation with single-bit signal-quantization. In ITG smart antenna workshop. Ivrlac, M. T., & Nossek, J. A. (2007). On MIMO channel estimation with single-bit signal-quantization. In ITG smart antenna workshop.
27.
Zurück zum Zitat Pedersen, N. L., Manchón, C. N., Badiu, M.-A., Shutin, D., & Fleury, B. H. (2015). Sparse estimation using Bayesian hierarchical prior modeling for real and complex linear models. Signal Processing,115, 94–109.CrossRef Pedersen, N. L., Manchón, C. N., Badiu, M.-A., Shutin, D., & Fleury, B. H. (2015). Sparse estimation using Bayesian hierarchical prior modeling for real and complex linear models. Signal Processing,115, 94–109.CrossRef
28.
Zurück zum Zitat Knudson, K., Saab, R., & Ward, R. (2016). One-bit compressive sensing with norm estimation. IEEE Transactions on Information Theory,62, 2748–2758.MathSciNetCrossRef Knudson, K., Saab, R., & Ward, R. (2016). One-bit compressive sensing with norm estimation. IEEE Transactions on Information Theory,62, 2748–2758.MathSciNetCrossRef
29.
Zurück zum Zitat Baraniuk, R., Foucart, S., Needell, D., Plan, Y., & Wootters, M. (2014). Exponential decay of reconstruction error from binary measurements of sparse signals. arXiv preprint arXiv:1407.8246. Baraniuk, R., Foucart, S., Needell, D., Plan, Y., & Wootters, M. (2014). Exponential decay of reconstruction error from binary measurements of sparse signals. arXiv preprint arXiv:​1407.​8246.
30.
Zurück zum Zitat Saab, R., Wang, R., & Yılmaz, Ö. (2018). Quantization of compressive samples with stable and robust recovery. Applied and Computational Harmonic Analysis,44(1), 123–143.MathSciNetCrossRef Saab, R., Wang, R., & Yılmaz, Ö. (2018). Quantization of compressive samples with stable and robust recovery. Applied and Computational Harmonic Analysis,44(1), 123–143.MathSciNetCrossRef
31.
Zurück zum Zitat Boufounos, P., & Baraniuk, R. G. (2007). Sigma delta quantization for compressive sensing. In Optical engineering + applications (pp. 670104–670104-13). Boufounos, P., & Baraniuk, R. G. (2007). Sigma delta quantization for compressive sensing. In Optical engineering + applications (pp. 670104–670104-13).
32.
Zurück zum Zitat Chou, E., Güntürk, C. S., Krahmer, F., Saab, R., & Yılmaz, Ö. (2015). Noise-shaping quantization methods for frame-based and compressive sampling systems. In G. Pfander (Ed.), Sampling theory, a renaissance (pp. 157–184). Berlin: Springer.CrossRef Chou, E., Güntürk, C. S., Krahmer, F., Saab, R., & Yılmaz, Ö. (2015). Noise-shaping quantization methods for frame-based and compressive sampling systems. In G. Pfander (Ed.), Sampling theory, a renaissance (pp. 157–184). Berlin: Springer.CrossRef
33.
Zurück zum Zitat Eldar, Y. C., & Kutyniok, G. (2012). Compressed sensing: Theory and applications. Cambridge: Cambridge University Press.CrossRef Eldar, Y. C., & Kutyniok, G. (2012). Compressed sensing: Theory and applications. Cambridge: Cambridge University Press.CrossRef
34.
Zurück zum Zitat Yu, X., Shen, J.-C., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing,10, 485–500.CrossRef Yu, X., Shen, J.-C., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing,10, 485–500.CrossRef
35.
Zurück zum Zitat Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications,32, 1164–1179.CrossRef Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications,32, 1164–1179.CrossRef
36.
Zurück zum Zitat Hansen, R. C. (2009). Phased array antennas (Vol. 213). New York: Wiley.CrossRef Hansen, R. C. (2009). Phased array antennas (Vol. 213). New York: Wiley.CrossRef
37.
Zurück zum Zitat Schniter, P., & Sayeed, A. (2004). A sparseness-preserving virtual MIMO channel model. In Proceedings of 38th annual conference information science and systems (CISS’04) (pp. 36–41). Schniter, P., & Sayeed, A. (2004). A sparseness-preserving virtual MIMO channel model. In Proceedings of 38th annual conference information science and systems (CISS’04) (pp. 36–41).
38.
Zurück zum Zitat Hong, Z., Liu, K., Heath, R. W., & Sayeed, A. M. (2003). Spatial multiplexing in correlated fading via the virtual channel representation. IEEE Journal on Selected Areas in Communications,21, 856–866.CrossRef Hong, Z., Liu, K., Heath, R. W., & Sayeed, A. M. (2003). Spatial multiplexing in correlated fading via the virtual channel representation. IEEE Journal on Selected Areas in Communications,21, 856–866.CrossRef
39.
Zurück zum Zitat Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. Technical University of Denmark,7, 15. Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. Technical University of Denmark,7, 15.
40.
Zurück zum Zitat Blanchard, J. D., Cermak, M., Hanle, D., & Jing, Y. (2014). Greedy algorithms for joint sparse recovery. IEEE Transactions on Signal Processing,62, 1694–1704.MathSciNetCrossRef Blanchard, J. D., Cermak, M., Hanle, D., & Jing, Y. (2014). Greedy algorithms for joint sparse recovery. IEEE Transactions on Signal Processing,62, 1694–1704.MathSciNetCrossRef
41.
Zurück zum Zitat Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In The elements of statistical learning (pp. 485–585). Berlin: Springer. Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In The elements of statistical learning (pp. 485–585). Berlin: Springer.
42.
Zurück zum Zitat Figueiredo, M. (2002). Adaptive sparseness using Jeffreys prior. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems (pp. 697–704). Figueiredo, M. (2002). Adaptive sparseness using Jeffreys prior. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems (pp. 697–704).
43.
Zurück zum Zitat Yu, Y. (2012). Monotonically overrelaxed EM algorithms. Journal of Computational and Graphical Statistics, 21(2), 518–537.MathSciNetCrossRef Yu, Y. (2012). Monotonically overrelaxed EM algorithms. Journal of Computational and Graphical Statistics, 21(2), 518–537.MathSciNetCrossRef
44.
Zurück zum Zitat Dellaert, F. (2002). The expectation maximization algorithm. Dellaert, F. (2002). The expectation maximization algorithm.
45.
Zurück zum Zitat Babacan, S. D., Molina, R., & Katsaggelos, A. K. (2010). Bayesian compressive sensing using Laplace priors. IEEE Transactions on Image Processing,19, 53–63.MathSciNetCrossRef Babacan, S. D., Molina, R., & Katsaggelos, A. K. (2010). Bayesian compressive sensing using Laplace priors. IEEE Transactions on Image Processing,19, 53–63.MathSciNetCrossRef
46.
Zurück zum Zitat Shutin, D., Buchgraber, T., Kulkarni, S. R., & Poor, H. V. (2011). Fast adaptive variational sparse Bayesian learning with automatic relevance determination. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2180–2183). Shutin, D., Buchgraber, T., Kulkarni, S. R., & Poor, H. V. (2011). Fast adaptive variational sparse Bayesian learning with automatic relevance determination. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2180–2183).
47.
Zurück zum Zitat Fang, J., & Li, H. (2010). Adaptive distributed estimation of signal power from one-bit quantized data. IEEE Transactions on Aerospace and Electronic Systems,46, 1893–1905.CrossRef Fang, J., & Li, H. (2010). Adaptive distributed estimation of signal power from one-bit quantized data. IEEE Transactions on Aerospace and Electronic Systems,46, 1893–1905.CrossRef
48.
Zurück zum Zitat Saab, R., & Wang, R. (2016). From compressed sensing to compressed bit-streams: practical encoders, tractable decoders. arXiv preprint arXiv:1604.00700. Saab, R., & Wang, R. (2016). From compressed sensing to compressed bit-streams: practical encoders, tractable decoders. arXiv preprint arXiv:​1604.​00700.
49.
Zurück zum Zitat Ribeiro, A., & Giannakis, G. B. (2006). Bandwidth-constrained distributed estimation for wireless sensor networks-part I: Gaussian case. IEEE Transactions on Signal Processing,54, 1131–1143.CrossRef Ribeiro, A., & Giannakis, G. B. (2006). Bandwidth-constrained distributed estimation for wireless sensor networks-part I: Gaussian case. IEEE Transactions on Signal Processing,54, 1131–1143.CrossRef
50.
Zurück zum Zitat Boufounos, P. T., Jacques, L., Krahmer, F., & Saab, R. (2015). Quantization and compressive sensing. In H. Boche, R. Calderbank, G. Kutyniok, & J. Vybíral (Eds.), Compressed sensing and its applications (pp. 193–237). Berlin: Springer.CrossRef Boufounos, P. T., Jacques, L., Krahmer, F., & Saab, R. (2015). Quantization and compressive sensing. In H. Boche, R. Calderbank, G. Kutyniok, & J. Vybíral (Eds.), Compressed sensing and its applications (pp. 193–237). Berlin: Springer.CrossRef
51.
Zurück zum Zitat Tropp, J. A., Dhillon, I. S., Heath, R. W., & Strohmer, T. (2005). Designing structured tight frames via an alternating projection method. IEEE Transactions on Information Theory,51, 188–209.MathSciNetCrossRef Tropp, J. A., Dhillon, I. S., Heath, R. W., & Strohmer, T. (2005). Designing structured tight frames via an alternating projection method. IEEE Transactions on Information Theory,51, 188–209.MathSciNetCrossRef
52.
Zurück zum Zitat Laska, J. N., Wen, Z., Yin, W., & Baraniuk, R. G. (2011). Trust, but verify: Fast and accurate signal recovery from 1-bit compressive measurements. IEEE Transactions on Signal Processing,59, 5289–5301.MathSciNetCrossRef Laska, J. N., Wen, Z., Yin, W., & Baraniuk, R. G. (2011). Trust, but verify: Fast and accurate signal recovery from 1-bit compressive measurements. IEEE Transactions on Signal Processing,59, 5289–5301.MathSciNetCrossRef
Metadaten
Titel
Mono-bit millimeter-wave channel estimation: Bayesian and adaptive quantization frameworks
verfasst von
Majid Shakhsi Dastgahian
Hossein Khoshbin
Publikationsdatum
16.08.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1815-z

Weitere Artikel der Ausgabe 1/2020

Wireless Networks 1/2020 Zur Ausgabe

Neuer Inhalt