Skip to main content
Erschienen in: Journal of Materials Science 8/2017

03.01.2017 | Original Paper

Morphology and mechanical properties of nanocrystalline Cu/Ag alloy

verfasst von: Ao Li, Izabela Szlufarska

Erschienen in: Journal of Materials Science | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hybrid Monte Carlo/molecular dynamics (MD) simulations are conducted to study the microstructures of nanocrystalline (nc) Cu/Ag alloys with various Ag concentrations. When the Ag concentration is below 50 Ag atoms/nm2, an increase in Ag concentration leads to a gradual growth of monolayer grain boundary (GB) complexions into nanolayer complexions. Above the concentration of 50 Ag atoms/nm2, wetting layers with a bulk crystalline phase are observed. The effects of Ag on mechanical properties and deformation mechanisms of nc Cu/Ag alloys are investigated in MD simulations of uniaxial tension. GB sliding resistance is found to first increase and then decrease with an increase in Ag concentration. Surprisingly, we also find that the dislocation density decreases monotonically with an increase in Ag concentration, which suggests that the grain interiors are softened by the introduction of Ag dopants at GBs. In addition, there is a critical Ag concentration that maximizes flow stress of nc Cu/Ag alloys. The flow stress, GB sliding resistance, and the intragranular dislocation densities become less sensitive to Ag dopants when the grain diameter increases from 5 to 40 nm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sakai Y, Inoue K, Asano T, Wada H, Maeda H (1991) Development of high-strength, high-conductivity Cu–Ag alloys for high-field pulsed magnet use. Appl Phys Lett 59:2965–2967CrossRef Sakai Y, Inoue K, Asano T, Wada H, Maeda H (1991) Development of high-strength, high-conductivity Cu–Ag alloys for high-field pulsed magnet use. Appl Phys Lett 59:2965–2967CrossRef
2.
Zurück zum Zitat Koch CC (2003) Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr Mater 49:657–662CrossRef Koch CC (2003) Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr Mater 49:657–662CrossRef
3.
Zurück zum Zitat Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef
4.
Zurück zum Zitat Lu L, Sui ML, Lu K (2000) Superplastic extensibility of nanocrystalline copper at room temperature. Science 287:1463–1466CrossRef Lu L, Sui ML, Lu K (2000) Superplastic extensibility of nanocrystalline copper at room temperature. Science 287:1463–1466CrossRef
5.
Zurück zum Zitat Schiotz J, Jacobsen KW (2003) A maximum in the strength of nanocrystalline copper. Science 301:1357–1359CrossRef Schiotz J, Jacobsen KW (2003) A maximum in the strength of nanocrystalline copper. Science 301:1357–1359CrossRef
6.
Zurück zum Zitat Schiotz J, Di Tolla FD, Jacobsen W (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563CrossRef Schiotz J, Di Tolla FD, Jacobsen W (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563CrossRef
7.
Zurück zum Zitat Li A, Szlufarska I (2015) How grain size controls friction and wear in nanocrystalline metals. Phys Rev B 92:075418-1–075418-8 Li A, Szlufarska I (2015) How grain size controls friction and wear in nanocrystalline metals. Phys Rev B 92:075418-1–075418-8
8.
Zurück zum Zitat Song JS, Ahn JH, Kim HS, Hong SI (2001) Comparison of microstructure and strength in wire-drawn and rolled Cu-9 Fe-1.2 Ag filamentary microcomposite. J Mater Sci 36:5881–5884. doi:10.1023/A:1012976610114 CrossRef Song JS, Ahn JH, Kim HS, Hong SI (2001) Comparison of microstructure and strength in wire-drawn and rolled Cu-9 Fe-1.2 Ag filamentary microcomposite. J Mater Sci 36:5881–5884. doi:10.​1023/​A:​1012976610114 CrossRef
9.
Zurück zum Zitat Seydei MKP, Suthanthiraraj SA (1993) Structural, thermal and transport studies on Ag1−xCuxI(0.05 ≤ x ≤ 0.25) solid electrolyte. J Mater Sci 28:3519–3522. doi:10.1007/BF01159832 CrossRef Seydei MKP, Suthanthiraraj SA (1993) Structural, thermal and transport studies on Ag1−xCuxI(0.05 ≤ x ≤ 0.25) solid electrolyte. J Mater Sci 28:3519–3522. doi:10.​1007/​BF01159832 CrossRef
10.
11.
Zurück zum Zitat Bao G, Xu Y, Huang L, Lu X, Zhang L, Fang Y, Meng L, Liu J (2016) Strengthening effect of Ag precipitates in Cu–Ag alloys: a quantitative approach. Mater Res Lett 4:37–42CrossRef Bao G, Xu Y, Huang L, Lu X, Zhang L, Fang Y, Meng L, Liu J (2016) Strengthening effect of Ag precipitates in Cu–Ag alloys: a quantitative approach. Mater Res Lett 4:37–42CrossRef
12.
Zurück zum Zitat Vo NQ, Schafer J, Averback RS, Albe K, Ashkenazya Y, Bellon P (2011) Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping. Scr Mater 65:660–663CrossRef Vo NQ, Schafer J, Averback RS, Albe K, Ashkenazya Y, Bellon P (2011) Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping. Scr Mater 65:660–663CrossRef
13.
Zurück zum Zitat Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRef Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRef
14.
Zurück zum Zitat Tian YZ, Zhang ZF (2009) Microstructures and tensile deformation behavior of Cu–16 wt% Ag binary alloy. Mater Sci Eng A 508:209–213CrossRef Tian YZ, Zhang ZF (2009) Microstructures and tensile deformation behavior of Cu–16 wt% Ag binary alloy. Mater Sci Eng A 508:209–213CrossRef
15.
Zurück zum Zitat Shu S, Zhang X, Bellon P, Averback RS (2016) Non-equilibrium grain boundary wetting in Cu–Ag alloys containing W nanoparticles. Mater Res Lett 1:22–26CrossRef Shu S, Zhang X, Bellon P, Averback RS (2016) Non-equilibrium grain boundary wetting in Cu–Ag alloys containing W nanoparticles. Mater Res Lett 1:22–26CrossRef
16.
Zurück zum Zitat Kingstedt OT, Eftink BP, Robertson IM, Lambros J (2016) Inelastic strain recovery of a dynamically deformed unidirectional Ag-Cu eutectic alloy. Acta Mater 113:293–300CrossRef Kingstedt OT, Eftink BP, Robertson IM, Lambros J (2016) Inelastic strain recovery of a dynamically deformed unidirectional Ag-Cu eutectic alloy. Acta Mater 113:293–300CrossRef
17.
Zurück zum Zitat Eftink BP, Li A, Szlufarska I, Mara NA, Robertson IM (2016) Deformation response of Ag-Cu interfaces investigated by in situ and ex situ TEM straining (in preparation) Eftink BP, Li A, Szlufarska I, Mara NA, Robertson IM (2016) Deformation response of Ag-Cu interfaces investigated by in situ and ex situ TEM straining (in preparation)
18.
Zurück zum Zitat Eftink BP, Li A, Szlufarska I, Robertson IM (2016) Interface mediated mechanisms of plastic strain recovery in a Ag-Cu alloy. Acta Mater 117:111–121CrossRef Eftink BP, Li A, Szlufarska I, Robertson IM (2016) Interface mediated mechanisms of plastic strain recovery in a Ag-Cu alloy. Acta Mater 117:111–121CrossRef
19.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRef
20.
Zurück zum Zitat Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106-1–224106-16CrossRef Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106-1–224106-16CrossRef
21.
Zurück zum Zitat Williams PL, Mishin Y, Hamilton JC (2006) An embedded-atom potential for the Cu–Ag system. Modell Simul Mater Sci Eng 14:817–833CrossRef Williams PL, Mishin Y, Hamilton JC (2006) An embedded-atom potential for the Cu–Ag system. Modell Simul Mater Sci Eng 14:817–833CrossRef
22.
Zurück zum Zitat Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Ultratough nanocrystalline copper with a narrow grain size distribution. Appl Phys Lett 85:925–931CrossRef Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Ultratough nanocrystalline copper with a narrow grain size distribution. Appl Phys Lett 85:925–931CrossRef
23.
Zurück zum Zitat Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L (2012) Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B 85:184203-1–184203-11CrossRef Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L (2012) Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B 85:184203-1–184203-11CrossRef
24.
Zurück zum Zitat Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell Simul Mater Sci Eng 18:085001-1–085001-13 Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell Simul Mater Sci Eng 18:085001-1–085001-13
25.
Zurück zum Zitat Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963CrossRef Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963CrossRef
26.
Zurück zum Zitat Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 57:7192–7205CrossRef Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 57:7192–7205CrossRef
27.
Zurück zum Zitat Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions. Acta Mater 62:1–48CrossRef Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions. Acta Mater 62:1–48CrossRef
28.
Zurück zum Zitat Zheng SJ, Wang J, Carpenter JS, Mook WM, Dickerson PO, Mara NA, Beyerlein IJ (2014) Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater 79:282–291CrossRef Zheng SJ, Wang J, Carpenter JS, Mook WM, Dickerson PO, Mara NA, Beyerlein IJ (2014) Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater 79:282–291CrossRef
29.
Zurück zum Zitat Tian YZ, Zhang ZF (2012) Bulk eutectic Cu-Ag alloys with abundant twin boundaries. Scr Mater 66:65–68CrossRef Tian YZ, Zhang ZF (2012) Bulk eutectic Cu-Ag alloys with abundant twin boundaries. Scr Mater 66:65–68CrossRef
30.
Zurück zum Zitat Swygenhoven HV, Derlet PM (2001) Grain-boundary sliding in nanocrystalline fcc metals. Phys Rev B 64:224105-1–224105-9 Swygenhoven HV, Derlet PM (2001) Grain-boundary sliding in nanocrystalline fcc metals. Phys Rev B 64:224105-1–224105-9
31.
Zurück zum Zitat Mo Y, Stone D, Szlufarska I (2011) Strength of ultrananocrystalline diamond controlled by friction of buried interfaces. J Phys D 44:405401-1–405401-10CrossRef Mo Y, Stone D, Szlufarska I (2011) Strength of ultrananocrystalline diamond controlled by friction of buried interfaces. J Phys D 44:405401-1–405401-10CrossRef
32.
Zurück zum Zitat Kumar KS, Swygenhoven HV, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774CrossRef Kumar KS, Swygenhoven HV, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774CrossRef
33.
Zurück zum Zitat Kocks UF (1970) The relation between polycrystal deformation and single crystal deformation. Metall Trans 1:1121–1143 Kocks UF (1970) The relation between polycrystal deformation and single crystal deformation. Metall Trans 1:1121–1143
34.
Zurück zum Zitat Firstov SA, Rogul OA, Shut OA (2009) Transition from microstructures to nanostructures and ultimate hardening. Funct Mater 16:364–373 Firstov SA, Rogul OA, Shut OA (2009) Transition from microstructures to nanostructures and ultimate hardening. Funct Mater 16:364–373
35.
Zurück zum Zitat Conrad H, Feuerstein S, Rice L (1967) Effects of grain size on the dislocation density and flow stress of niobium. Mater Sci Eng 2:157–158CrossRef Conrad H, Feuerstein S, Rice L (1967) Effects of grain size on the dislocation density and flow stress of niobium. Mater Sci Eng 2:157–158CrossRef
Metadaten
Titel
Morphology and mechanical properties of nanocrystalline Cu/Ag alloy
verfasst von
Ao Li
Izabela Szlufarska
Publikationsdatum
03.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0700-3

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Science 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.