Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

07.11.2017 | Ausgabe 4/2019

Wireless Networks 4/2019

Movement prediction models for vehicular networks: an empirical analysis

Zeitschrift:
Wireless Networks > Ausgabe 4/2019
Autoren:
Noura Aljeri, Azzedine Boukerche
Wichtige Hinweise
This work was partially supported by NSERC, NSERC CREATE-TRANSIT and Canada Research Chair Programs.

Abstract

In recent years, the role of vehicular networks has become increasingly important for the future of Intelligent Transportation Systems, as they are useful for providing safety, assistance to drivers, and traffic control management. Many vehicular network applications such as routing, mobility management, service discovery, and collision avoidance protocols would benefit from possessing vehicles’ prior location information to improve their performance. However, the rapid mobility of vehicles and the degree of error in positioning systems create a challenging problem regarding the accuracy and efficiency of any location prediction-based model for vehicular networks. Therefore, a number of location prediction techniques has been proposed in the literature. In this paper, we study and compare the accuracy and effectiveness of the following location-based movement prediction models: Kalman filter, Extended Kalman filter (EKF), Unscented Kalman filter (UKF), and Particle filter for vehicular networks. We compare the performances of these prediction techniques with respect to different mobility models, and provide some insights on their capabilities and limitations. Our results indicate that Particle filter outperforms all other predictors with respect to location error. In addition, EKF and UKF demonstrated an increase in efficiency of more than 50% when additional measurements input were integrated with the predictors.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

Wireless Networks 4/2019 Zur Ausgabe