Skip to main content
Erschienen in:

01.12.2020 | Original Article

MR-IBC: MapReduce-based incremental betweenness centrality in large-scale complex networks

verfasst von: Ranjan Kumar Behera, Debadatta Naik, Dharavath Ramesh, Santanu Kumar Rath

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Da das soziale Netzwerk heterogen ist, können einige seiner Entitäten wie Knoten und Kanten einflussreicher sein als andere Entitäten. Es wird beobachtet, dass die Identifizierung der einflussreichsten Entitäten in großen Netzwerken viele Echtzeitanwendungen hat, wie soziale Netzwerkanalyse, Betrugserkennung, Gemeinschaftserkennung, Verkehrskontrolle des Transportnetzwerks, softwaredefinierte Netzwerke und vieles mehr. Mehrere Zentralitätsmaßnahmen existieren, um die Bedeutung eines Knotens im Netzwerk zu identifizieren. Allerdings erweist sich die Zentralität zwischen den beiden als die vielversprechendste, um ein Netzwerk und die Bedeutung von Knoten im Netzwerk zu untersuchen. Im Zeitalter der Big Data nimmt die Größe des sozialen Netzwerks exponentiell zu. Obwohl eine Anzahl von Algorithmen existieren, um die Zentralität zwischen den großen Netzwerken zu ermitteln, ist die Entwässerung der Algorithmen zentral, sehr wenige Algorithmen versuchen, die einflussreichen Knoten in einem dynamischen Netzwerk zu identifizieren.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamic LA, Huberman BA (2000) Power-law distribution of the worldwide web. Science 287(5461):2115–2115CrossRef Adamic LA, Huberman BA (2000) Power-law distribution of the worldwide web. Science 287(5461):2115–2115CrossRef
Zurück zum Zitat Barabâsi A-L et al (2002) Evolution of the social network of scientific collaborations.". Phys A 311(3–4):590–614MathSciNetCrossRef Barabâsi A-L et al (2002) Evolution of the social network of scientific collaborations.". Phys A 311(3–4):590–614MathSciNetCrossRef
Zurück zum Zitat Barthelemy M (2004) Betweenness centrality in large complex networks. Eur Phys J B 38(2):163–168CrossRef Barthelemy M (2004) Betweenness centrality in large complex networks. Eur Phys J B 38(2):163–168CrossRef
Zurück zum Zitat Behera RK, Rath SK (2016) An efficient modularity based algorithm for community detection in social network. IEEE, International conference on internet of things and applications (IOTA)CrossRef Behera RK, Rath SK (2016) An efficient modularity based algorithm for community detection in social network. IEEE, International conference on internet of things and applications (IOTA)CrossRef
Zurück zum Zitat Behera RK, Rath SK, Jena M (2016) Spanning tree based community detection using min-max modularity. Procedia Computer Science 93:1070–1076CrossRef Behera RK, Rath SK, Jena M (2016) Spanning tree based community detection using min-max modularity. Procedia Computer Science 93:1070–1076CrossRef
Zurück zum Zitat Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28(4):466–484CrossRef Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28(4):466–484CrossRef
Zurück zum Zitat Brandes U (2001) A faster algorithm for betweenness centrality. J Math Soc 25(2):163–177CrossRef Brandes U (2001) A faster algorithm for betweenness centrality. J Math Soc 25(2):163–177CrossRef
Zurück zum Zitat Cook DJ, Holder LB (eds) (2006) Mining graph data. Wiley, Hoboken Cook DJ, Holder LB (eds) (2006) Mining graph data. Wiley, Hoboken
Zurück zum Zitat Das K, Samanta S, Pal M (2018) Study on centrality measures in social networks: a survey. Social Netw Anal Min 8(1):13CrossRef Das K, Samanta S, Pal M (2018) Study on centrality measures in social networks: a survey. Social Netw Anal Min 8(1):13CrossRef
Zurück zum Zitat Fellman PV, Wright R (2014) Modeling terrorist networks, complex systems at the mid-range." arXiv preprint arXiv:1405.6989. Fellman PV, Wright R (2014) Modeling terrorist networks, complex systems at the mid-range." arXiv preprint arXiv:​1405.​6989.
Zurück zum Zitat Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef
Zurück zum Zitat Green O, McColl R, Bader DA (2012) A fast algorithm for streaming betweenness centrality. In: 2012 international conference on privacy, security, risk and trust (PASSAT) and 2012 international conference on social computing (SocialCom). IEEE Green O, McColl R, Bader DA (2012) A fast algorithm for streaming betweenness centrality. In: 2012 international conference on privacy, security, risk and trust (PASSAT) and 2012 international conference on social computing (SocialCom). IEEE
Zurück zum Zitat Holme P et al (2002) Attack vulnerability of complex networks. Phys Rev E 65(5):056109CrossRef Holme P et al (2002) Attack vulnerability of complex networks. Phys Rev E 65(5):056109CrossRef
Zurück zum Zitat Jamour F, Skiadopoulos S, Kalnis P (2018) Parallel algorithm for incremental betweenness centrality on large graphs. IEEE Trans Parallel Distrib Syst 29(3):659–672CrossRef Jamour F, Skiadopoulos S, Kalnis P (2018) Parallel algorithm for incremental betweenness centrality on large graphs. IEEE Trans Parallel Distrib Syst 29(3):659–672CrossRef
Zurück zum Zitat Kas M et al (2013) Incremental algorithm for updating betweenness centrality in dynamically growing networks. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining. ACM Kas M et al (2013) Incremental algorithm for updating betweenness centrality in dynamically growing networks. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining. ACM
Zurück zum Zitat Khopkar SS, Nagi R, Nikolaev AG, Bhembre V (2014) Efficient algorithms for incremental all pairs shortest paths, closeness and betweenness in social network analysis. Soc Netw Anal Min 4(1):220CrossRef Khopkar SS, Nagi R, Nikolaev AG, Bhembre V (2014) Efficient algorithms for incremental all pairs shortest paths, closeness and betweenness in social network analysis. Soc Netw Anal Min 4(1):220CrossRef
Zurück zum Zitat Kourtellis N et al (2013) Identifying high betweenness centrality nodes in large social networks. Soc Netw Anal Min 3(4):899–914CrossRef Kourtellis N et al (2013) Identifying high betweenness centrality nodes in large social networks. Soc Netw Anal Min 3(4):899–914CrossRef
Zurück zum Zitat Lee M-J et al (2012) Qube: a quick algorithm for updating betweenness centrality. In: Proceedings of the 21st international conference on World Wide Web. ACM Lee M-J et al (2012) Qube: a quick algorithm for updating betweenness centrality. In: Proceedings of the 21st international conference on World Wide Web. ACM
Zurück zum Zitat Leskovec J, Mcauley JJ (2012) Learning to discover social circles in ego networks. In: Advances in neural information processing systems Leskovec J, Mcauley JJ (2012) Learning to discover social circles in ego networks. In: Advances in neural information processing systems
Zurück zum Zitat Liben-Nowell D, Balakrishnan H, Karger D (2002) Analysis of the evolution of peer-to-peer systems. In: Proceedings of the twenty-first annual symposium on principles of distributed computing. ACM Liben-Nowell D, Balakrishnan H, Karger D (2002) Analysis of the evolution of peer-to-peer systems. In: Proceedings of the twenty-first annual symposium on principles of distributed computing. ACM
Zurück zum Zitat Mahyar H, Hasheminezhad R, Ghalebi E, Nazemian A, Grosu R, Movaghar A, Rabiee HR (2018) Identifying central nodes for information flow in social networks using compressive sensing. Soc Netw Anal Min 8(1):33CrossRef Mahyar H, Hasheminezhad R, Ghalebi E, Nazemian A, Grosu R, Movaghar A, Rabiee HR (2018) Identifying central nodes for information flow in social networks using compressive sensing. Soc Netw Anal Min 8(1):33CrossRef
Zurück zum Zitat Nathan E, Bader DA (2018) Incrementally updating Katz centrality in dynamic graphs. Soc Netw Anal Min 8(1):26CrossRef Nathan E, Bader DA (2018) Incrementally updating Katz centrality in dynamic graphs. Soc Netw Anal Min 8(1):26CrossRef
Zurück zum Zitat Nasre M, Pontecorvi M, Ramachandran V (2014) Betweenness centrality–incremental and faster. In: International symposium on mathematical foundations of computer science. Springer, Berlin Nasre M, Pontecorvi M, Ramachandran V (2014) Betweenness centrality–incremental and faster. In: International symposium on mathematical foundations of computer science. Springer, Berlin
Zurück zum Zitat Newman MEJ (2004) Analysis of weighted networks. Phys Rev E 70(5):056131CrossRef Newman MEJ (2004) Analysis of weighted networks. Phys Rev E 70(5):056131CrossRef
Zurück zum Zitat Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54CrossRef Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54CrossRef
Zurück zum Zitat Newman MEJ, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci 99(suppl 1):2566–2572CrossRef Newman MEJ, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci 99(suppl 1):2566–2572CrossRef
Zurück zum Zitat Newman ME, Barabási ALE, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press Newman ME, Barabási ALE, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press
Zurück zum Zitat Ruhnau B (2000) Eigenvector-centrality—a node-centrality? Soc Netw 22(4):357–365CrossRef Ruhnau B (2000) Eigenvector-centrality—a node-centrality? Soc Netw 22(4):357–365CrossRef
Zurück zum Zitat Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(1):88CrossRef Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(1):88CrossRef
Zurück zum Zitat Singh RR et al (2015) A faster algorithm to update betweenness centrality after node alteration. Internet Math 11(4–5):403–420MathSciNetCrossRef Singh RR et al (2015) A faster algorithm to update betweenness centrality after node alteration. Internet Math 11(4–5):403–420MathSciNetCrossRef
Metadaten
Titel
MR-IBC: MapReduce-based incremental betweenness centrality in large-scale complex networks
verfasst von
Ranjan Kumar Behera
Debadatta Naik
Dharavath Ramesh
Santanu Kumar Rath
Publikationsdatum
01.12.2020
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2020
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-020-00636-9