Skip to main content
Erschienen in: Engineering with Computers 3/2019

16.10.2018 | Original Article

Multi-physics bi-directional evolutionary topology optimization on GPU-architecture

verfasst von: David J. Munk, Timoleon Kipouros, Gareth A. Vio

Erschienen in: Engineering with Computers | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Topology optimization has proven to be viable for use in the preliminary phases of real world design problems. Ultimately, the restricting factor is the computational expense since a multitude of designs need to be considered. This is especially imperative in such fields as aerospace, automotive and biomedical, where the problems involve multiple physical models, typically fluids and structures, requiring excessive computational calculations. One possible solution to this is to implement codes on massively parallel computer architectures, such as graphics processing units (GPUs). The present work investigates the feasibility of a GPU-implemented lattice Boltzmann method for multi-physics topology optimization for the first time. Noticeable differences between the GPU implementation and a central processing unit (CPU) version of the code are observed and the challenges associated with finding feasible solutions in a computational efficient manner are discussed and solved here, for the first time on a multi-physics topology optimization problem. The main goal of this paper is to speed up the topology optimization process for multi-physics problems without restricting the design domain, or sacrificing considerable performance in the objectives. Examples are compared with both standard CPU and various levels of numerical precision GPU codes to better illustrate the advantages and disadvantages of this implementation. A structural and fluid objective topology optimization problem is solved to vary the dependence of the algorithm on the GPU, extending on the previous literature that has only considered structural objectives of non-design dependent load problems. The results of this work indicate some discrepancies between GPU and CPU implementations that have not been seen before in the literature and are imperative to the speed-up of multi-physics topology optimization algorithms using GPUs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abrahamson S, Lonnes S (1995) Uncertainty in calculating vorticity from 2D velocity fields using circulation and least-squares approach. Exp Fluids 20:10–20CrossRef Abrahamson S, Lonnes S (1995) Uncertainty in calculating vorticity from 2D velocity fields using circulation and least-squares approach. Exp Fluids 20:10–20CrossRef
3.
Zurück zum Zitat Aissa M, Verstraete T, Vuik C (2014) Use of modern GPUs in design optimization. In: 10th ASMO-UK/ISSMO conference on engineering design optimization. Association for Structural and Multidisciplinary Optimization in the UK Aissa M, Verstraete T, Vuik C (2014) Use of modern GPUs in design optimization. In: 10th ASMO-UK/ISSMO conference on engineering design optimization. Association for Structural and Multidisciplinary Optimization in the UK
5.
Zurück zum Zitat Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654MATHCrossRef Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654MATHCrossRef
6.
Zurück zum Zitat Bendsøe M, Sigmund O (2003) Topology optimization—theory, methods and applications, 2nd edn. Springer, BerlinMATH Bendsøe M, Sigmund O (2003) Topology optimization—theory, methods and applications, 2nd edn. Springer, BerlinMATH
7.
Zurück zum Zitat Cecka C, Lew A, Darve E (2011) Assembly of finite element methods on graphics processors. Int J Numer Methods Eng 85:640–669MATHCrossRef Cecka C, Lew A, Darve E (2011) Assembly of finite element methods on graphics processors. Int J Numer Methods Eng 85:640–669MATHCrossRef
8.
Zurück zum Zitat Challis V, Roberts A, Grotowski J (2014) High resolution topology optimization using graphics processing units (GPUs). Struct Multidiscip Optim 49(2):315–325CrossRef Challis V, Roberts A, Grotowski J (2014) High resolution topology optimization using graphics processing units (GPUs). Struct Multidiscip Optim 49(2):315–325CrossRef
9.
Zurück zum Zitat Chu D, Xie Y, Hira A, Steven G (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21:239–251MATHCrossRef Chu D, Xie Y, Hira A, Steven G (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21:239–251MATHCrossRef
10.
Zurück zum Zitat D’Ammaro A, Kipouros T, Saddawi S, Savill A, Djenidi L (2010) Computational design for micro fluidic devices using Lattice Boltzmann and heuristic optimisation algorithms. In: Joint OCCAM/ICFD lattice Boltzmann workshop, OCCAM/ICFD D’Ammaro A, Kipouros T, Saddawi S, Savill A, Djenidi L (2010) Computational design for micro fluidic devices using Lattice Boltzmann and heuristic optimisation algorithms. In: Joint OCCAM/ICFD lattice Boltzmann workshop, OCCAM/ICFD
12.
Zurück zum Zitat Delbosc N, Khan J, Kapur N, Noakes C (2014) Optimized implementation of the lattice Boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput Math Appl 67:462–475MathSciNetMATHCrossRef Delbosc N, Khan J, Kapur N, Noakes C (2014) Optimized implementation of the lattice Boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput Math Appl 67:462–475MathSciNetMATHCrossRef
14.
Zurück zum Zitat Djenidi L, Moghtaderi B (2006) Numerical investigations of laminar mixing in a coaxial microreactor. J Fluid Mech 568:223–243MATHCrossRef Djenidi L, Moghtaderi B (2006) Numerical investigations of laminar mixing in a coaxial microreactor. J Fluid Mech 568:223–243MATHCrossRef
15.
Zurück zum Zitat Garcia M, Gutierrez J, Rueda N (2011) Fluid-structure coupling using lattice-Boltzmann and fixed-grid FEM. Finite Elem Anal Des 47:906–912CrossRef Garcia M, Gutierrez J, Rueda N (2011) Fluid-structure coupling using lattice-Boltzmann and fixed-grid FEM. Finite Elem Anal Des 47:906–912CrossRef
16.
Zurück zum Zitat Georgescu S, Chow P, Okuda H (2013) GPU acceleration for FEM-based structural analysis. Arch Comput Methods Eng 20(2):111–121MathSciNetMATHCrossRef Georgescu S, Chow P, Okuda H (2013) GPU acceleration for FEM-based structural analysis. Arch Comput Methods Eng 20(2):111–121MathSciNetMATHCrossRef
17.
Zurück zum Zitat Herrero D, Martinez J, Marti P (2013) An implementation of level set based topology optimization using GPU. In: Proceedings of 10th World congress on structural and multidisciplinary optimization, WCSMO/ISSMO Herrero D, Martinez J, Marti P (2013) An implementation of level set based topology optimization using GPU. In: Proceedings of 10th World congress on structural and multidisciplinary optimization, WCSMO/ISSMO
18.
Zurück zum Zitat Huang X, Xie Y (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049CrossRef Huang X, Xie Y (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049CrossRef
19.
Zurück zum Zitat Huang X, Xie Y (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43:393–401MathSciNetMATHCrossRef Huang X, Xie Y (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43:393–401MathSciNetMATHCrossRef
20.
Zurück zum Zitat Huang X, Xie Y (2010) Topology optimization of continuum structures: methods and applications, 1st edn. Wiley, New YorkMATHCrossRef Huang X, Xie Y (2010) Topology optimization of continuum structures: methods and applications, 1st edn. Wiley, New YorkMATHCrossRef
21.
Zurück zum Zitat Kasumba H, Kunisch K (2012) Vortex control in channel flows using translation invariant cost functionals. Comput Optim Appl 52:691–717MathSciNetMATHCrossRef Kasumba H, Kunisch K (2012) Vortex control in channel flows using translation invariant cost functionals. Comput Optim Appl 52:691–717MathSciNetMATHCrossRef
22.
Zurück zum Zitat Khan M, Delbosc N, Noakes C, Summers J (2015) Real-time flow simulation of indoor environments using lattice Boltzmann method. Build Simul 8:405–414CrossRef Khan M, Delbosc N, Noakes C, Summers J (2015) Real-time flow simulation of indoor environments using lattice Boltzmann method. Build Simul 8:405–414CrossRef
23.
Zurück zum Zitat Kuznik F, Obrecht C, Rusaouen G, Roux JJ (2010) LBM based flow simulations using GPU computing processor. Comput Math Appl 59:2380–2392MATHCrossRef Kuznik F, Obrecht C, Rusaouen G, Roux JJ (2010) LBM based flow simulations using GPU computing processor. Comput Math Appl 59:2380–2392MATHCrossRef
24.
Zurück zum Zitat Laniewski-Wollk L, Rokicki J (2016) Adjoint lattice Boltzmann for topology optimization on multi-GPU architecture. Comput Math Appl 71:833–848MathSciNetMATHCrossRef Laniewski-Wollk L, Rokicki J (2016) Adjoint lattice Boltzmann for topology optimization on multi-GPU architecture. Comput Math Appl 71:833–848MathSciNetMATHCrossRef
25.
Zurück zum Zitat Li Q, Luo K (2014) Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid–vapor flows. Appl Therm Eng 72(1):56–61CrossRef Li Q, Luo K (2014) Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid–vapor flows. Appl Therm Eng 72(1):56–61CrossRef
26.
Zurück zum Zitat Li Q, Luo K, Kang Q, He Y, Chen Q, Liu Q (2016) Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog Energy Combust Sci 52:62–105CrossRef Li Q, Luo K, Kang Q, He Y, Chen Q, Liu Q (2016) Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog Energy Combust Sci 52:62–105CrossRef
27.
Zurück zum Zitat Liu H, Kang Q, Leonardi C, Schmieschek S, Narváez A, Jones B, Williams J, Valocchi A, Harting J (2016) Multiphase lattice Boltzmann simulations for porous media applications. Comput Geosci 20:777–805MathSciNetMATHCrossRef Liu H, Kang Q, Leonardi C, Schmieschek S, Narváez A, Jones B, Williams J, Valocchi A, Harting J (2016) Multiphase lattice Boltzmann simulations for porous media applications. Comput Geosci 20:777–805MathSciNetMATHCrossRef
28.
Zurück zum Zitat Mahdavi A, Balaji R, Frecker M, Mockensturm E (2006) Topology optimization of 2D continua for minimum compliance using parallel computing. Struct Multidiscio Optim 32(2):121–132CrossRef Mahdavi A, Balaji R, Frecker M, Mockensturm E (2006) Topology optimization of 2D continua for minimum compliance using parallel computing. Struct Multidiscio Optim 32(2):121–132CrossRef
29.
Zurück zum Zitat Makhija D, Pingen G, Yang R, Maute K (2012) Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method. Comput Fluids 67:104–114MathSciNetMATHCrossRef Makhija D, Pingen G, Yang R, Maute K (2012) Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method. Comput Fluids 67:104–114MathSciNetMATHCrossRef
30.
Zurück zum Zitat Martinez-Frutos J, Herrero-Perez D (2017) GPU acceleration for evolutionary topology optimization of continuum structures using isosurfaces. Comput Struct 182:119–136CrossRef Martinez-Frutos J, Herrero-Perez D (2017) GPU acceleration for evolutionary topology optimization of continuum structures using isosurfaces. Comput Struct 182:119–136CrossRef
31.
Zurück zum Zitat Martins J, Lambe A (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 59:2049–2075CrossRef Martins J, Lambe A (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 59:2049–2075CrossRef
32.
Zurück zum Zitat Micikevicius P (2009) 3D finite difference computation on GPUs using CUDA. In: Proceedings of 2nd workshop on general purpose processing on graphics processing units. ACM Micikevicius P (2009) 3D finite difference computation on GPUs using CUDA. In: Proceedings of 2nd workshop on general purpose processing on graphics processing units. ACM
33.
Zurück zum Zitat Moghtaderi B, Shames I, Djenidi L (2006) Microfluidic characteristics of a multi-holed baffle plate micro-reactor. Int J Heat Fluid Flow 27:1069–1077CrossRef Moghtaderi B, Shames I, Djenidi L (2006) Microfluidic characteristics of a multi-holed baffle plate micro-reactor. Int J Heat Fluid Flow 27:1069–1077CrossRef
35.
Zurück zum Zitat Munk D, Kipouros T, Vio G, Steven G, Parks G (2017) Topology optimization of micro fluidic mixers considering fluid–structure interactions with a coupled lattice Boltzmann algorithm. J Comput Phys 349:11–32MathSciNetCrossRef Munk D, Kipouros T, Vio G, Steven G, Parks G (2017) Topology optimization of micro fluidic mixers considering fluid–structure interactions with a coupled lattice Boltzmann algorithm. J Comput Phys 349:11–32MathSciNetCrossRef
36.
Zurück zum Zitat Munk D, Kipouros T, Vio G, Parks G, Steven G (2018a) Multiobjective and multi-physics topology optimization using an updated smart normal constraint bi-directional evolutionary structural optimization algorithm. Struct Multidiscip Optim 57:665–688CrossRef Munk D, Kipouros T, Vio G, Parks G, Steven G (2018a) Multiobjective and multi-physics topology optimization using an updated smart normal constraint bi-directional evolutionary structural optimization algorithm. Struct Multidiscip Optim 57:665–688CrossRef
37.
Zurück zum Zitat Munk D, Kipouros T, Vio G, Parks G, Steven G (2018b) On the effect of fluid–structure interactions and choice of algorithm in multi-physics topology optimisation. Finite Elem Anal Des 145:32–54CrossRef Munk D, Kipouros T, Vio G, Parks G, Steven G (2018b) On the effect of fluid–structure interactions and choice of algorithm in multi-physics topology optimisation. Finite Elem Anal Des 145:32–54CrossRef
38.
Zurück zum Zitat Nguyen H (2007) GPU Gems 3. Addison-Wesley Professional, Boston Nguyen H (2007) GPU Gems 3. Addison-Wesley Professional, Boston
39.
Zurück zum Zitat NVIDIA Corporation (2008) NVIDIA CUDA—programming language. NVIDIA, Santa Clara NVIDIA Corporation (2008) NVIDIA CUDA—programming language. NVIDIA, Santa Clara
40.
Zurück zum Zitat Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2013) Multi-GPU implementation of the lattice Boltzmann method. Comput Math Appl 65:252–261MathSciNetMATHCrossRef Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2013) Multi-GPU implementation of the lattice Boltzmann method. Comput Math Appl 65:252–261MathSciNetMATHCrossRef
41.
Zurück zum Zitat Osher S, Sethian J (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formations. J Comput Phys 78(1):12–49MATHCrossRef Osher S, Sethian J (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formations. J Comput Phys 78(1):12–49MATHCrossRef
42.
Zurück zum Zitat Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidiscip Optim 36:507–524MathSciNetMATHCrossRef Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidiscip Optim 36:507–524MathSciNetMATHCrossRef
43.
Zurück zum Zitat Pingen G, Evgrafov A, Maute K (2009) Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput Fluids 38:910–923MathSciNetMATHCrossRef Pingen G, Evgrafov A, Maute K (2009) Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput Fluids 38:910–923MathSciNetMATHCrossRef
44.
Zurück zum Zitat Querin O, Steven G, Xie Y (1998) Evolutionary structural optimization (ESO) using a bi-directional algorithm. Eng Comput 15:1034–1048CrossRef Querin O, Steven G, Xie Y (1998) Evolutionary structural optimization (ESO) using a bi-directional algorithm. Eng Comput 15:1034–1048CrossRef
46.
Zurück zum Zitat Sanders J, Kandrot E (2010) CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley Professional, Santa Clara Sanders J, Kandrot E (2010) CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley Professional, Santa Clara
47.
Zurück zum Zitat Schmidt S, Schulz V (2011) A 2589 line topology optimization code written for the graphics card. Comput Vis Sci 14(6):249–256MathSciNetMATHCrossRef Schmidt S, Schulz V (2011) A 2589 line topology optimization code written for the graphics card. Comput Vis Sci 14(6):249–256MathSciNetMATHCrossRef
48.
Zurück zum Zitat Schönherr M, Kucher K, Geier M, Stiebler M, Freudiger S, Krafczyk M (2011) Multi-thread implementations of the lattice-Boltzmann method on non-uniform grids for CPUs and GPUs. Comput Math Appl 61:3730–3743CrossRef Schönherr M, Kucher K, Geier M, Stiebler M, Freudiger S, Krafczyk M (2011) Multi-thread implementations of the lattice-Boltzmann method on non-uniform grids for CPUs and GPUs. Comput Math Appl 61:3730–3743CrossRef
50.
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRef
51.
Zurück zum Zitat Steven G, Li Q, Xie Y (2000) Evolutionary topology and shape design for general physical field problems. Comput Mech 26:129–139MATHCrossRef Steven G, Li Q, Xie Y (2000) Evolutionary topology and shape design for general physical field problems. Comput Mech 26:129–139MATHCrossRef
52.
Zurück zum Zitat Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond, 1st edn. Oxford University Press, OxfordMATH Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond, 1st edn. Oxford University Press, OxfordMATH
53.
54.
Zurück zum Zitat Taufer M, Padron O, Saponaro P, Patel S (2010) Improving numerical reproducibility and stability in large-scale numerical simulations on GPUs. In: 24th IEEE international symposium on parallel and distributed processing (IPDPS). IEEE, pp 1–9 Taufer M, Padron O, Saponaro P, Patel S (2010) Improving numerical reproducibility and stability in large-scale numerical simulations on GPUs. In: 24th IEEE international symposium on parallel and distributed processing (IPDPS). IEEE, pp 1–9
55.
Zurück zum Zitat Tölke J, Krafczyk M (2008) TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int J Comput Fluid Dyn 22:443–456MATHCrossRef Tölke J, Krafczyk M (2008) TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int J Comput Fluid Dyn 22:443–456MATHCrossRef
56.
Zurück zum Zitat Tsotskas C, Kipouros T, Savill A (2014) The design and implementation of a GPU-enabled multi-objective Tabu-search intended for real world and high-dimensional applications. Procedia Comput Sci 29:2152–2161CrossRef Tsotskas C, Kipouros T, Savill A (2014) The design and implementation of a GPU-enabled multi-objective Tabu-search intended for real world and high-dimensional applications. Procedia Comput Sci 29:2152–2161CrossRef
57.
Zurück zum Zitat Tsotskas C, Kipouros T, Savill A (2015) Fast multi-objective optimisation of a micro-fluidic device by using graphics accelerators. Procedia Comput Sci 51:2237–2246CrossRef Tsotskas C, Kipouros T, Savill A (2015) Fast multi-objective optimisation of a micro-fluidic device by using graphics accelerators. Procedia Comput Sci 51:2237–2246CrossRef
58.
Zurück zum Zitat Vemaganti K, Lawrence WE (2005) Parallel methods for optimality criteria-based topology optimization. Comput Methods Appl Mech Eng 194:3637–3667MathSciNetMATHCrossRef Vemaganti K, Lawrence WE (2005) Parallel methods for optimality criteria-based topology optimization. Comput Methods Appl Mech Eng 194:3637–3667MathSciNetMATHCrossRef
59.
60.
Zurück zum Zitat Wang H, Menon S (2001) Fuel–air mixing enhancement by synthetic microjets. AIAA J 39:2308–2319CrossRef Wang H, Menon S (2001) Fuel–air mixing enhancement by synthetic microjets. AIAA J 39:2308–2319CrossRef
61.
Zurück zum Zitat Woodfield P, Kazuyoshi N, Suzuki K (2003) Numerical study for enhancement of laminar flow mixing using multiple confined jets in a micro-can combustor. Int J Heat Mass Transf 46:2655–2663CrossRef Woodfield P, Kazuyoshi N, Suzuki K (2003) Numerical study for enhancement of laminar flow mixing using multiple confined jets in a micro-can combustor. Int J Heat Mass Transf 46:2655–2663CrossRef
62.
Zurück zum Zitat Wu J, Dick C, Westermann R (2016) A system for high resolution topology optimization. IEEE Trans Vis Comput Gr 22:1195–1208CrossRef Wu J, Dick C, Westermann R (2016) A system for high resolution topology optimization. IEEE Trans Vis Comput Gr 22:1195–1208CrossRef
64.
Zurück zum Zitat Xie Y, Steven G (1996) Evolutionary structural optimization for dynamical problems. Comput Struct 58:1067–1073MATHCrossRef Xie Y, Steven G (1996) Evolutionary structural optimization for dynamical problems. Comput Struct 58:1067–1073MATHCrossRef
65.
Zurück zum Zitat Xie Y, Steven G (1997) Evolutionary structural optimization, 1st edn. Springer, BerlinMATHCrossRef Xie Y, Steven G (1997) Evolutionary structural optimization, 1st edn. Springer, BerlinMATHCrossRef
66.
Zurück zum Zitat Yang X, Xie Y, Steven G (2005) Evolutionary methods for topology optimization of continuous structures with design dependent loads. Comput Struct 83:956–963CrossRef Yang X, Xie Y, Steven G (2005) Evolutionary methods for topology optimization of continuous structures with design dependent loads. Comput Struct 83:956–963CrossRef
Metadaten
Titel
Multi-physics bi-directional evolutionary topology optimization on GPU-architecture
verfasst von
David J. Munk
Timoleon Kipouros
Gareth A. Vio
Publikationsdatum
16.10.2018
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2019
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-018-0651-1

Weitere Artikel der Ausgabe 3/2019

Engineering with Computers 3/2019 Zur Ausgabe

Neuer Inhalt