Skip to main content

2019 | OriginalPaper | Buchkapitel

10. Multifunctional Plasmonic Photonic Crystal Fiber Biosensors

verfasst von : Mohammad Y. Azab, Mohamed Farhat O. Hameed, Abed M. Nasr, S. S. A. Obayya

Erschienen in: Computational Photonic Sensors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, two novel designs of compact surface plasmon resonance multifunctional biosensors based on nematic liquid crystal (NLC) and Alcohol mixture photonic crystal fibers (PCFs) are proposed and studied. The suggested sensors have a central hole filled either with NLC or alcohol mixture as temperature-dependent materials. Further, another large hole filled with liquid analyte has a gold nanorod as a plasmonic material. Therefore, the proposed sensors can be used for temperature and analyte refractive index sensing via the coupling between the core-guided modes in the central hole and the surface plasmon modes around the gold nanorod. The effects of the structure geometrical parameters are studied to maximize the sensitivity of the PCF biosensors. The numerical analysis is carried out using full-vectorial finite element method with perfectly matched layer boundary conditions. The reported multifunctional NLC-based sensor offers high sensitivity of 5 nm/°C and 3700 nm/RIU (refractive index unit) for temperature and analyte refractive index sensing, respectively. In addition, the alcohol mixture PCF sensor achieves high-temperature sensitivity of 13.1 nm/°C with high analyte refractive index sensitivity of 12700 nm/RIU. To the best of the authors’ knowledge, it is the first time to introduce PCF biosensor with high sensitivity for temperature and analyte refractive index sensing as well. Further, the achieved sensitivity values of the alcohol sensor are far higher than those reported in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Hassani, M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Expr. 14, 11616–11621 (2006)CrossRef A. Hassani, M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Expr. 14, 11616–11621 (2006)CrossRef
2.
Zurück zum Zitat E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. Robinson, J. Oliver, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Exp. 16, 8427–8432 (2008)CrossRef E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. Robinson, J. Oliver, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Exp. 16, 8427–8432 (2008)CrossRef
3.
Zurück zum Zitat M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, S.S.A. Obayya, Novel multichannel surface plasmon resonance photonic crystal fiber biosensor, SPIE Photon. Europe (2016) M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, S.S.A. Obayya, Novel multichannel surface plasmon resonance photonic crystal fiber biosensor, SPIE Photon. Europe (2016)
4.
Zurück zum Zitat N. Luan, R. Wang, W. Lv, Y. Lu, J. Yao, Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14, 16035–16045 (2014)CrossRef N. Luan, R. Wang, W. Lv, Y. Lu, J. Yao, Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14, 16035–16045 (2014)CrossRef
5.
Zurück zum Zitat I. Abdulhalim, Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter. Chin. Opt. Lett. 7(8), 667–670 (2009)CrossRef I. Abdulhalim, Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter. Chin. Opt. Lett. 7(8), 667–670 (2009)CrossRef
6.
Zurück zum Zitat M.A. Ismail, N. Tamchek, M.R. Abu Hassan, K.D. Dambul, J. Selvaraj, N. Abd Rahim, S.R. Sandoghchi, F.R.M. Adikan, A fiber bragg grating—bimetal temperature sensor for solar panel inverters. Sensors 11, 8665–8673 (2009)CrossRef M.A. Ismail, N. Tamchek, M.R. Abu Hassan, K.D. Dambul, J. Selvaraj, N. Abd Rahim, S.R. Sandoghchi, F.R.M. Adikan, A fiber bragg grating—bimetal temperature sensor for solar panel inverters. Sensors 11, 8665–8673 (2009)CrossRef
7.
Zurück zum Zitat S.-J. Qiu., Y. Ch., F. Xu, Y.Q. Lu, Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37(5), 863–865 (2012)CrossRef S.-J. Qiu., Y. Ch., F. Xu, Y.Q. Lu, Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37(5), 863–865 (2012)CrossRef
8.
Zurück zum Zitat Y. Peng, J. Hou, Z. Huang, Q. Lu, Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl. Opt. 51(26), 6361–6367 (2012)CrossRef Y. Peng, J. Hou, Z. Huang, Q. Lu, Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl. Opt. 51(26), 6361–6367 (2012)CrossRef
9.
Zurück zum Zitat Y. Lu, M.T. Wang, C.J. Hao, Z.Q. Zhao, J.Q. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photon. J. 6(3), 6801307 (2014) Y. Lu, M.T. Wang, C.J. Hao, Z.Q. Zhao, J.Q. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photon. J. 6(3), 6801307 (2014)
10.
Zurück zum Zitat D.J.J. Hu, P.P. Shum, J.L. Lim, Y. Cui, K. Milenko, Y. Wang, T. Wolinski, A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT. IEEE Photon. J. 4(5), 2010–2016 (2012)CrossRef D.J.J. Hu, P.P. Shum, J.L. Lim, Y. Cui, K. Milenko, Y. Wang, T. Wolinski, A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT. IEEE Photon. J. 4(5), 2010–2016 (2012)CrossRef
11.
Zurück zum Zitat M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. ElHefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE PTL 28, 59–62 (2015)CrossRef M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. ElHefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE PTL 28, 59–62 (2015)CrossRef
12.
Zurück zum Zitat E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. Robinson, J. Oliver, A novel compact photonic crystal fibre surface plasmon resonance biosensor for an aqueous environment, in Photonic Crystals—Innovative Systems, Lasers and Waveguides, Dr. Alessandro Massaro (ed.), ISBN: 978-953-51-0416-2 (2012) E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. Robinson, J. Oliver, A novel compact photonic crystal fibre surface plasmon resonance biosensor for an aqueous environment, in Photonic Crystals—Innovative Systems, Lasers and Waveguides, Dr. Alessandro Massaro (ed.), ISBN: 978-953-51-0416-2 (2012)
13.
Zurück zum Zitat E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quant. Electron. 48, 1403–1410 (2012)CrossRef E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quant. Electron. 48, 1403–1410 (2012)CrossRef
14.
Zurück zum Zitat R. Otupiri, E.K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photon. J. 6(4), 1–11 (2014)CrossRef R. Otupiri, E.K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photon. J. 6(4), 1–11 (2014)CrossRef
15.
Zurück zum Zitat W. Qin, S. Li, Y. Yao, X. Xin, J. Xue, Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Laser Eng. 58, 1–8 (2014)CrossRef W. Qin, S. Li, Y. Yao, X. Xin, J. Xue, Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Laser Eng. 58, 1–8 (2014)CrossRef
16.
Zurück zum Zitat M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)CrossRef M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)CrossRef
17.
Zurück zum Zitat S.I. Azzam, M.F.O. Hameed, R. Eid, A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron 48(2) (2016) S.I. Azzam, M.F.O. Hameed, R. Eid, A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron 48(2) (2016)
18.
Zurück zum Zitat M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S.A. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophoton. 10(4), 046016 (2016)CrossRef M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S.A. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophoton. 10(4), 046016 (2016)CrossRef
19.
Zurück zum Zitat S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Liquid crystal photonic crystal fiber sensors, in Computational Liquid Crystal Photonics. (Wiley, 2016) S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Liquid crystal photonic crystal fiber sensors, in Computational Liquid Crystal Photonics. (Wiley, 2016)
20.
Zurück zum Zitat N.F.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt. Quant. Electron. (2016) N.F.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt. Quant. Electron. (2016)
22.
Zurück zum Zitat S.S.A. Obayya, B.M.A. Rahman, K.T.V. Grattan, Accurate finite element modal solution of photonic crystal fibres. IEE Proc.: Optoelectron. 152(5), 241–246 (2005) S.S.A. Obayya, B.M.A. Rahman, K.T.V. Grattan, Accurate finite element modal solution of photonic crystal fibres. IEE Proc.: Optoelectron. 152(5), 241–246 (2005)
23.
Zurück zum Zitat C. Kalnins, H. Ebendorff-Heidepriem, N. Spooner, T. Monro, Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibers. Opt. Mat. Exp. 2, 62 (2012)CrossRef C. Kalnins, H. Ebendorff-Heidepriem, N. Spooner, T. Monro, Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibers. Opt. Mat. Exp. 2, 62 (2012)CrossRef
24.
Zurück zum Zitat M.Y. Azab, M.F.O. Hameed, S.S.A. Obayya, Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers, Opt. Quant. Electron. 49(2) (2017) M.Y. Azab, M.F.O. Hameed, S.S.A. Obayya, Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers, Opt. Quant. Electron. 49(2) (2017)
25.
Zurück zum Zitat D.C. Zografopoulos, E.E. Kriezis, T.D. Tsiboukis, Photonic crystal-liquid crystal fibers for single-polarization or high birefringence guidance. Opt. Exp. 14(2), 914–925 (2006)CrossRef D.C. Zografopoulos, E.E. Kriezis, T.D. Tsiboukis, Photonic crystal-liquid crystal fibers for single-polarization or high birefringence guidance. Opt. Exp. 14(2), 914–925 (2006)CrossRef
26.
Zurück zum Zitat M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, M.I. Abo el Maaty, A.M. Nasr, Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. J. Lightwave Technol. 27(21), 4754–4762 (2009)CrossRef M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, M.I. Abo el Maaty, A.M. Nasr, Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. J. Lightwave Technol. 27(21), 4754–4762 (2009)CrossRef
27.
Zurück zum Zitat M.F.O. Hameed, S.S.A. Obayya, K. Al Begain, A.M. Nasr, M.I. Abo El Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fibre coupler. IET Optoelectron. 3(6), 264–273 (2009)CrossRef M.F.O. Hameed, S.S.A. Obayya, K. Al Begain, A.M. Nasr, M.I. Abo El Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fibre coupler. IET Optoelectron. 3(6), 264–273 (2009)CrossRef
28.
Zurück zum Zitat M.Y. Azab, M.F.O. Hameed, S.M. El-Hefnawy, S.S.A. Obayya, Ultra-compact liquid crystal dual core photonic crystal fibre multiplexer–demultiplexer. IET Optoelectron. 10(1), 1–7 (2015) M.Y. Azab, M.F.O. Hameed, S.M. El-Hefnawy, S.S.A. Obayya, Ultra-compact liquid crystal dual core photonic crystal fibre multiplexer–demultiplexer. IET Optoelectron. 10(1), 1–7 (2015)
29.
Zurück zum Zitat P. Alexandros, D.C. Zografopoulos, E. Kriezis, In-line polarization controller based on liquid-crystal photonic crystal fibers. J. Lightwave Technol. 29, 2560–2569 (2011)CrossRef P. Alexandros, D.C. Zografopoulos, E. Kriezis, In-line polarization controller based on liquid-crystal photonic crystal fibers. J. Lightwave Technol. 29, 2560–2569 (2011)CrossRef
30.
Zurück zum Zitat D. Daly, G.Clark, Optical measurement of glucose content of the aqueous humor, in Lein Applied Diagnostics (2004) D. Daly, G.Clark, Optical measurement of glucose content of the aqueous humor, in Lein Applied Diagnostics (2004)
31.
Zurück zum Zitat T.R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres. Meas. Sci. Technol. 17(5), 985–991 (2006)CrossRef T.R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres. Meas. Sci. Technol. 17(5), 985–991 (2006)CrossRef
32.
Zurück zum Zitat T.R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A.W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, J. Wojcik, Polarization effects in photonic liquid crystal fibers. Meas. Sci. Technol. 18(10), 3061–3069 (2007)CrossRef T.R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A.W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, J. Wojcik, Polarization effects in photonic liquid crystal fibers. Meas. Sci. Technol. 18(10), 3061–3069 (2007)CrossRef
33.
Zurück zum Zitat C. Zhou, Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt. Commun. 288, 42–46 (2013)CrossRef C. Zhou, Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt. Commun. 288, 42–46 (2013)CrossRef
34.
Zurück zum Zitat A.A. Rifat, G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R. Ahmed, F.R.M. Adikan, Photonic crystal fiberbased surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15, 11499–11510 (2015)CrossRef A.A. Rifat, G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R. Ahmed, F.R.M. Adikan, Photonic crystal fiberbased surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15, 11499–11510 (2015)CrossRef
35.
Zurück zum Zitat TIE-19: Temperature Coefficient of Refractive Index, SCHOTT Technical Information, SCHOTT North America, Inc., New York, NY, USA, July 2012, pp. 1–12 TIE-19: Temperature Coefficient of Refractive Index, SCHOTT Technical Information, SCHOTT North America, Inc., New York, NY, USA, July 2012, pp. 1–12
36.
Zurück zum Zitat W. Peng, S. Banerji, Y.C. Kim, K.S. Booksh, Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30, 2988–2990 (2005)CrossRef W. Peng, S. Banerji, Y.C. Kim, K.S. Booksh, Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30, 2988–2990 (2005)CrossRef
37.
Zurück zum Zitat F. Xiao, D. Michel, G. Li, A. Xu, K. Alameh, Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. J. Lightwave Technol. 32, 3567–3571 (2014) F. Xiao, D. Michel, G. Li, A. Xu, K. Alameh, Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. J. Lightwave Technol. 32, 3567–3571 (2014)
38.
Zurück zum Zitat P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)CrossRef P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)CrossRef
39.
Zurück zum Zitat P. Falkenstein, B.L. Justus, Fused Array Preform Fabrication of Holey Optical Fibers (Google Patents, 2013) P. Falkenstein, B.L. Justus, Fused Array Preform Fabrication of Holey Optical Fibers (Google Patents, 2013)
40.
Zurück zum Zitat H. Lee, Plasmonic Photonic crystal Fiber, PhD, Max Plank Institute (2012) H. Lee, Plasmonic Photonic crystal Fiber, PhD, Max Plank Institute (2012)
41.
Zurück zum Zitat Y. Huang, Y. Xu, A. Yariv, Fabrication of functional microstructured optical fibers through selective filling technique. Appl. Phys. Lett. 85, 5182–5184 (2004)CrossRef Y. Huang, Y. Xu, A. Yariv, Fabrication of functional microstructured optical fibers through selective filling technique. Appl. Phys. Lett. 85, 5182–5184 (2004)CrossRef
42.
Zurück zum Zitat S.G. Leon-Saval, T.A. Birks, N.Y. Joly, A.K. George, W.J. Wadsworth, G. Kakarantzas, P.S.J. Russel, Splice-free interfacing of photonic crystal fibers. Opt. Lett. 30(13), 1629–1631 (2005)CrossRef S.G. Leon-Saval, T.A. Birks, N.Y. Joly, A.K. George, W.J. Wadsworth, G. Kakarantzas, P.S.J. Russel, Splice-free interfacing of photonic crystal fibers. Opt. Lett. 30(13), 1629–1631 (2005)CrossRef
Metadaten
Titel
Multifunctional Plasmonic Photonic Crystal Fiber Biosensors
verfasst von
Mohammad Y. Azab
Mohamed Farhat O. Hameed
Abed M. Nasr
S. S. A. Obayya
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-76556-3_10