Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

Open Access 01.05.2024

Multiple solitons structures in optical fibers via PNLSE with a novel truncated M-derivative: modulated wave gain

verfasst von: H. I. Abdel-Gawad

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study introduces a novel truncated Mittage–Leffler (M)- proportional derivative (TMPD) and examines its impact on the perturbed nonlinear Schrödinger equation (PNLSE) that includes fourth-order dispersion and cubic-quintic nonlinearity. The TMPD-PNLSE is used to model light signals in nanofibers. In addition to dispersion and Kerr nonlinearity, which are characteristics of the NLSE, the PNLSE also exhibits self-steepening and self-phase modulation effects. The unified method is implemented to derive exact solutions for the model equation. These solutions provide a variety of phenomena; including breathers, geometric chaos, and complex solitons. The solutions also exhibit numerous structures, such as geometric chaos, where undulated M-shaped and M-shaped solitons are embedded. The modulation instability is analyzed, finding that it is triggered when the coefficient of the fourth-order dispersion surpasses a critical value.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

The PNLSE describes of soliton propagation in nonlinear optical fibers. It received a great attention of numerous research works in the literature. Mainly, the studies were focused on the different techniques used for solving PNLSE. In this area new exact solutions (ESs) to a PNLSE, among them, breather, multi-waves, periodic -cross kink, M-shaped, and Lump-two stripe solutions were derived in Ozisik (2022), and Gilson et al. (2003). The Riccati-Bernoulli Sub-ODE method, infinite series method and cosine-function method, were used to investigate ESs of the PNLSE in Shehata (2016), Zai-Yun et al. (2012), and Yusuf et al. (2019). The similarity solutions of the PNLSE was analyzed and the ESs were obtained via introducing similarity transformations and by using the extended unified method (Abdel-Gawad 2022). Solitons in optical fiber Bragg gratings for PNLSE having cubic-quartic dispersive reflectivity with parabolic-nonlocal combo law of refractive index were investigated (Benoudina et al. 2023). In Owyed et al. (2020), Mahak and Akram (2020), two algorithms for some expansion methods were suggested for constructing new optical solitons solutions for the fractional PNLSE. The generalized traveling wave (TW) method was developed for the NLSE with general perturbations in order to obtain the equations of motion for collective coordinates (Quintero et al. 2010; Ghanbari and Raza 2019).
An improved PNLSE with Kerr law non-linearity equation was studied in Jhangeer et al. (2021), and Mirzazadeh et al. (2017). In Khalil et al. (2021), and Bisws et al. (2012), the perturbation of the improved version of the NLSE was studied via the semi-inverse variational principle. The dynamical behavior of improved PNLSE was discussed by the extended rational sine-cosine/sinh-cosh techniques,\(\varphi ^{6}\) -model expansion method and generalized exponential rational function method (Younas et al. 2022). New exact TW solutions of the PNLSE were derived by using generalized (\(G\prime /G\)) -expansion method 17]. In Ray and Das (2022), the space-time fractional PNLSE) in nanofibers was studied using the improved\(tan(\phi (\xi )/2)\) expansion method to explore new exact solutions. The soliton solutions for the improved PNLSE with quadratic-cubic law nonlinearity by utilizing the log transformation and symbolic computation were studied (Rizvi et al. 2022).
In Alharbi et al. (2021), a new stochastic robust solver to solve several classes of nonlinear stochastic partial differential equations was introduced and applied to PNLSE. Bright, dark and singular soliton solutions to quadratic-cubic nonlinear media in the presence of perturbation were derived (Biswas et al. 2018; Rizvi et al. 2021). The dynamics of soliton propagation through optical fibers with non-Kerr law nonlinearities NLSE was integrated in the presence of perturbation terms (Biswas et al. 2012; Osman et al. 2022; Zhang and Z. -H. Liu X. -J. Miao, Y. -Z. Chen, 2010). Hyperbolic, periodic, singular, domain walls, dark-like dromions (solitons) for perturbed fractional NLSE were retrieved (Kodama 1985).The TW solutions to the PNLSE with Kerr law nonlinearity were constructed by using the modified (\(G^{\prime }/G)\)-expansion method and Jacobi elliptic ansatz method (Miao and Zhang 2011; Aslan and Inc 2019). The sub-equation method was implemented to construct exact solutions for the conformable PNLSE, where three different types of nonlinear perturbations were considered (Martínez et al. 2022). The exact two-soliton solution to the unperturbed NLSE and prediction of strongly inelastic collisions (Dmitriev et al. 2002). Further relevant works were presented in Kodama (1985), Wazwaz et al. (2023), Wazwaz (2021), Guan et al. (2023), Qiu and Zhang (2023), and Xu and Wazwaz (2023)
In the present work, we introduce a novel definition for MTPD and study the PNLSE with fourth order dispersion and cubic-quintic nonlinearity. The exact solutions are derived by implementing the unified method (UM) (Abdel-Gawad 2023; Abdel-Gawad et al. 2023; Abdel-Gawad 2023, 2023, 2012).
The organization of this paper is as follows. In Sect. 2, The MTPD is introduced, formulation of the problem is presented and description of the UM is outlined. Section 3 is devoted to distinguish different kinds of chaos solitons. Non chaotic solitons are presented in Sect. 4. In (5) and (6) analysis of modulation instability and investigation of global bifurcation are done. Section 5 is devoted to conclusions

2 Mathematical formulation

2.1 The novel TMPD

Proportional derivatives such as conformable derivative (Khalil et al. 2014; Abdelhakim and Machado 2019) and \(\beta\)-derivative (Hussain et al. 2020) were introduced in the literature. A truncated M derivative is, also, presented.
Definition 1
Let f: \(R^{+}\longrightarrow R, 0 < \rho ,\gamma \le 1\). The M-truncated derivative is defined (Hussain et al. 2020),
$$\begin{aligned} _{i}^{MT}D_{t}^{\rho ,\gamma }f(t)=Lim_{\epsilon \rightarrow 0}\frac{f(t_{i}E_{\rho }(\epsilon (t^{\gamma -1}))-f(t)}{\epsilon },0<\rho ,\gamma <1,{}_{i}E_{\rho }(t)=\sum _{j=1}^{j=i}\frac{t^{j}}{\Gamma (\rho j+1)}. \end{aligned}$$
(1)
where\(_{i}E_{\rho }(t)\) is the truncated Mittage–Leffler function.
Let \(f:R^{+}\rightarrow R\) be a continuous function, we define MTPD,
Definition 2
$$\begin{aligned} _{i}^{TMP}D_{t}^{\rho }f(t)=Lim_{\varepsilon \rightarrow 0}\frac{f(t+\varepsilon \frac{_{i}E_{\rho }(t)}{_{i}E_{\rho }^{\prime }(t)})-f(t)}{\varepsilon },0<\rho <1. \end{aligned}$$
(2)
If \(f\) \(\epsilon C^{1}(\mathbb {R}^{+})\), the (2) reduces to,
$$\begin{aligned} \begin{array}{c} _{i}^{TMP}D_{t}^{\rho }f(t)=\frac{_{i}E_{\nu }(t)}{_{i}E_{\rho }^{\prime }(t)}f^{\prime }(t)=\frac{df(t)}{dLog(_{i}E_{\rho }(t))}=\frac{d\bar{f}(\tau )}{d\tau },\\ f(t)=\bar{f}(\tau ),\tau =Log(_{i}E_{\rho }(t) \end{array}. \end{aligned}$$
(3)
Basic theorems
(a)
\(_{i}^{TMP}D_{t}^{\rho }(f(t)\) \(+g(t))=_{i}^{TMP}D_{t}^{\rho }f(t)+{}_{i}^{TMP}D_{t}^{\rho }g(t)\).
 
(b)
\(_{i}^{TMP}D_{t}^{\rho }(f(t)\) \(.g(t))=f(t)_{i}^{TMP}D_{t}^{\rho }g(t)+g(t)_{i}^{TMP}D_{t}^{\rho }f(t).\)
 
(c)
\(\overset{n=2}{\overbrace{_{i}^{TMP}D_{t}^{\rho }({}_{i}^{TMP}D_{t}^{\rho }}}(f(t))=H(Hf^{\prime \prime }+\) \(H^{\prime }f^{\prime }\)), \(H=\frac{_{i}E_{\rho }(t)}{_{i}E_{\rho }^{\prime }(t)}\).
 
(d)
\(\overset{n=3}{\overbrace{_{i}^{TMP}D_{t}^{\rho }({}_{i}^{TMP}D_{t}^{\rho }({}_{k}^{TMP}D_{t}^{\rho }}}(f(t)))=H(H^{2}f^{\prime \prime \prime }+3HH^{\prime }f^{\prime \prime }+f^{\prime }(H^{\prime 2}+HH^{\prime \prime })),H=\frac{iE_{\rho }(t)}{iE_{\rho }^{\prime }(t)}\).
 
(e)
If \(_{i}^{TMP}D_{t}^{\rho }f(t)=1\Rightarrow f(t)=Log({}_{i}E_{\rho }(t))\)
 
(f)
If \(_{i}^{TMP}D_{t}^{\rho }f(t)=f(t)\) \(\Rightarrow\) \(f(t)=_{i}E_{\rho }(t).\)
 
Generalizations of (2).
Definition 3
$$\begin{aligned} _{k}^{TMP}D_{t}^{\rho }f(t)=Lim_{\varepsilon \rightarrow 0}\frac{f\left( t+\varepsilon \frac{_{i}E_{\rho }(t^{\rho })}{\left( \frac{d_{i}E_{\rho }(t^{\rho })}{dt}\right) }\right) -f(t)}{\varepsilon },0<\rho <1. \end{aligned}$$
(4)
In (1), when \(i\rightarrow \infty ,\)
Definition 4
$$\begin{aligned} _{k}^{TMP}D_{t}^{\rho }f(t)=Lim_{\varepsilon \rightarrow 0}\frac{f\left( t+\varepsilon \frac{E_{\rho }(t^{\rho })}{\frac{d(E_{\rho }(t^{\rho }))}{dt}}\right) -f(t)}{\varepsilon },0<\rho <1. \end{aligned}$$
(5)

2.2 The PNLSE and TMPD-PNLSE

The PNLSE equation read (Yusuf et al. 2019),
$$\begin{aligned} \begin{array}{l} iw_{t}++\alpha w_{xx}+\beta \mid w\mid ^{2}w\\ \quad -i(\nu \,w_{x}+\mu (\mid w\mid ^{2}w)_{x}+\sigma (\mid w\mid ^{2})_{x}w=0, \end{array} \end{aligned}$$
(6)
where \(w\equiv w(x,t)\) is the complex field envelope, \(\alpha\) is the group dispersion velocity, \(\beta\) and is the Kerr nonlinearity coefficient, \(\mu\) and \(\sigma\) are the coefficients of self-steepening and self-phase modulation respectively.
The PNLSE with fourth order dispersion and quintic nonlinearity is,
$$\begin{aligned} \begin{array}{c} iw_{t}++\alpha w_{xx}+\delta w_{xxxx}+\beta \mid w\mid ^{2}w+\gamma \mid w\mid ^{4}w\\ -i(\nu \,w_{x}+\mu (\mid w\mid ^{2}w)_{x}+\sigma (\mid w\mid ^{2})_{x}w=0, \end{array} \end{aligned}$$
(7)
where \(\delta\) is the coefficients of forth order dispersion and \(\gamma\) is quintic nonlinearity coefficient. The MTPD-PNLSE takes the form,
$$\begin{aligned} \begin{array}{c} i(_{i}^{TMP}D_{t}^{\rho }w)+\alpha w_{xx}+\delta w_{xxxx}+\beta \mid w\mid ^{2}w+\gamma \mid w\mid ^{4}w\\ -i(\nu \,w_{x}+\mu (\mid w\mid ^{2}w)_{x}+\sigma (\mid w\mid ^{2})_{x}w=0. \end{array} \end{aligned}$$
(8)
In (8), by using (e) in the above, we introduce the transformation, \(w(x,t)=\bar{w}(x,\tau ),\) \(\tau =\) \(Log(_{i}E_{\rho }(t))\), and it reduces to,
$$\begin{aligned} \begin{array}{c} \bar{w_{\tau }}++\alpha \bar{w}_{xx}+\delta \bar{w}_{xxxx}+\beta \mid \bar{w}\mid ^{2}\bar{w}+\gamma \mid \bar{w}\mid ^{4}\bar{w}\\ -i(\nu \,\bar{w}_{x}+\mu (\mid \bar{w}\mid ^{2}\bar{w})_{x}+\sigma (\mid \bar{w}\mid ^{2})_{x}\bar{w}=0. \end{array} \end{aligned}$$
(9)
In (9), we use the transformation,
$$\begin{aligned} \bar{w}(x,\tau )=(u(x,\tau )+iv(x,\tau ))e^{i(kx-\omega \tau )}, \end{aligned}$$
(10)
and the equations for the real and imaginary parts, are given respectively by,
$$\begin{aligned}{} & {} \begin{array}{l} 4\delta k^{3}v_{x}(x,t)-6\delta k^{2}u_{xx}(x,t)-2\alpha kv_{x}-4\delta kv_{xxx}+\alpha u_{xx}+\nu v_{x}\\ -v_{\tau }+\delta k^{4}u(x,t)-\alpha k^{2}u+k\nu u++\delta u_{xxxx}+\mu u^{2}v_{x}+\beta u^{3}(+\omega u\\ +k\mu u^{3}+2\mu u_{x})uv+2\sigma u_{x}uv+\gamma u^{5}+3\mu v_{x}v^{2}+2\sigma v_{x}v^{2}\\ k\mu uv^{2}++\beta uv^{2}+\gamma uv^{4}+2\gamma u^{3}v^{2}=0, \end{array} \end{aligned}$$
(11)
$$\begin{aligned}{} & {} \begin{array}{l} -4\delta k^{3}u_{x}-6\delta k^{2}v_{xx}+2\alpha ku_{x}-\nu u_{x}+u_{\tau }+\alpha v_{xx}+4\delta ku_{xxx}+\delta v_{xxxx}\\ \delta k^{4}v-\alpha k^{2}v+k\nu v)-3\mu u^{2}u_{x}-2\sigma u_{x}u{}^{2}+\omega v-2\mu uvv_{x}-2\sigma uvv_{x}\\ +k\mu u^{2}+k\mu v^{3}-\mu u_{x}v^{2}++\beta u^{2}v+2\gamma u^{2}v^{3}+\gamma u^{4}v+\beta v^{3}+\gamma v^{5}=0. \end{array} \end{aligned}$$
(12)
For traveling wave solution, we write \(u(x,\tau )=U(z),\;v(x,\tau )=V(z)\) and \(z=px+q\tau ,\)so (11) and (12) reduce to,
$$\begin{aligned}{} & \gamma U^{5}+U^{3}\left( \beta +k\mu +2\gamma V^{2}\right) +U\left( \delta k^{4}-\alpha k^{2}+k\nu +V^{2}(\beta +k\mu ) \right. \\ &\quad \left. +\omega 2p(\mu +\sigma )VU'++\gamma V^{4}\right) +\mu pU^{2}(V'+\left( p\left( 4\delta k^{3}-2\alpha k+\nu \right) -q\right. \\ &\quad \left. +p(3\mu +2\sigma )V^{2}\right) V'+p^{2}\left( \left( \alpha -6\delta k^{2}\right) U''+\delta p\left( pU^{(4)}-4kV^{(3)}\right) \right) =0, \end{aligned}$$
(13)
$$\begin{aligned}{} & V^{3}\left( \beta +k\mu +2\gamma U^{2}\right) +\gamma V^{5}+\left( q-p\left( 4\delta k^{3}-2\alpha k+\nu \right) \right. \\ &\quad \left. -p(3\mu +2\sigma )U^{2}\right) U'-\mu pV^{2}U'+V\left( \delta k^{4}-\alpha k^{2}+k\nu \right. \\ &\quad +U^{2}(\beta +k\mu )+\omega \left. +\gamma U^{4}-2p(\mu +\sigma )UV'\right) \\ &\quad +p^{2}\left( \left( \alpha -6\delta k^{2}\right) V''+\delta p\left( 4kU^{(3)}+pV^{(4)}\right) \right) =0. \end{aligned}$$
(14)

2.3 The unified method

The UM asserts that the solutions of a nonlinear evolution equation are expressed in polynomial form and rational form in an auxiliary function that satisfies an adequate auxiliary equation (Qiu and Zhang 2023).

2.3.1 Polynomial solutions

With relevance to (13) and (14), the solutions are written,
$$\begin{aligned} U(z)=\sum _{j=0}^{j=n_{1}}a_{j}\phi (z)^{j},\quad V(z)=\sum _{j=0}^{j=n_{2}}b_{j}\phi (z)^{j},\;(\phi ^{\prime }(z))^{r}=\sum _{j=0}^{j=rs}c_{j}\phi (z)^{j},r=1,2, \end{aligned}$$
(15)
where \(\phi (z)\)is the auxiliary function and the last equation in (15) is the auxiliary equation (AE).
The Painlevé analysis can be used to test the integrability of (13) and (14) but it is too lengthy.In view of (15), integrability is tested in the sense of existence of integers \(n_{1},n_{2},\)and s. To this issue, two conditions are examined, the balance condition and the consistency condition. We consider the case when \(r=1.\)
The balance condition is found by writing \(U\sim \phi ^{n_{1}}\), \(U^{\prime }\sim \phi ^{n_{1}-1}\phi ^{\prime }\) \(\Rightarrow \;U^{\prime }\sim \phi ^{n_{1}+(s-1)},\;U^{\prime \prime }\sim \phi ^{n_{1}+2(s-1)},...etc.\) We get \(n_{1}=n_{2}=s-1.\) To determine s, we use the consistency condition (CC). We need to calculate the following;
(i)
The number of equations that results when inserting (8) in (6) (or (7)) and by setting the coefficients of \(\phi ^{i}(z),i=0,1,2,...etc.\) equal to zero (which is \((5s-4)).\)
 
(ii)
The number of arbitrary parameters in (8), (which is (\(2s+1)).\)The CC reads \(5s-4-(2s+1)\le m,\) where m is the highest order derivative (\(m=3\)). Finally, we get \(0\le s\le 3.\)
 

2.3.2 Rational solutions

In this case, the solutions of (13) and (14) are written,
$$\begin{aligned} U(z)=\frac{\sum _{j=0}^{j=m}a_{j}\phi (z)^{j}}{\sum _{j=0}^{j=m}s_{j}\phi (z)^{j}},\;V(z)=\frac{\sum _{j=0}^{j=m}b_{j}\phi (z)^{j}}{\sum _{j=0}^{j=m}s_{j}\phi (z)^{j}},(\phi ^{\prime }(z))^{r}=\sum _{j=0}^{j=rs}c_{j}\phi (z)^{j},r=1,2 \end{aligned}$$
(16)
The balance condition is; \(m=s-1,s\ge 2\) and \(m=1\) when \(s=1.\)
It was found that a necessary condition for a complex field equation (cf.(9)) to be integrable is that the real and imaginary parts are linearly dependent. But this condition is not, in general, sufficient (Kodama 1985; Wazwaz et al. 2023).

2.4 Breathers, dromian shape and complex chirped soliton

2.4.1 Breathers

Here, we consider (15), when \(r=2\) and \(s=2,\)the solutions in (15) reduce to,
$$\begin{aligned} U(z) = a_{1}\phi (z)+a_{0},\;V(z) = b_{1}\phi (z)+b_{0},\;b_{0} = \frac{a_{0}b_{1}}{a_{1}}, \end{aligned}$$
(17)
and the AE is,
$$\begin{aligned} \phi '(z) = \sqrt{c_{2}\phi (z)^{2}+c_{1}\phi (z)+c_{0}}\left( m_{1}\phi (z)+m_{0}\right) . \end{aligned}$$
(18)
By plugging (17) and (18) into (13) and (14), and by setting the coefficients of \(\phi ^{i}(z),i=0,1,2,...etc,\) equal to zero gives rise to,
$$\begin{aligned} \begin{array}{l} k = \frac{\left( a_{1}^{2}+b_{1}^{2}\right) (3\mu +2\sigma )}{24c_{2}\delta m_{1}^{2}p^{2}},\;a_{0} = \frac{1}{4}a_{1}\left( \frac{c_{1}}{c_{2}}+\frac{2m_{0}}{m_{1}}\right) ,\;m_{1} {=} \frac{2c_{2}m_{0}}{c_{1}},\\ q = -\frac{1}{6\gamma ^{2}c_{1}^{2}c_{2}^{2}\left( a_{1}^{2}+b_{1}^{2}\right) }p\left( 6b_{1}^{2}c_{1}^{2}c_{2}^{2}\gamma (3\beta \mu +2\beta \sigma -\gamma \nu )\right. \\ \qquad +\gamma ^{2}(3\mu +2\sigma )b_{1}^{4}c_{1}^{2}\left( c_{1}^{2}-4c_{0}c_{2}\right) +2\gamma a_{1}^{2}c_{1}^{2}c_{2}^{2}(3(3\beta \mu +2\beta \sigma -\gamma \nu )\\ \qquad +\gamma (3\mu +2\sigma )\left. \left. b_{1}^{2}\left( c_{1}^{2}-4c_{0}c_{2}\right) \right) +16c_{2}^{5}m_{0}^{2}p^{2}\sigma (3\mu +2\sigma )^{2}\right) ,\\ \alpha = -\frac{1}{192\gamma c_{2}^{5}m_{0}^{2}p^{2}}\left( 5a_{1}^{4}\gamma ^{2}c_{1}^{2}\left( c_{1}^{2}-4c_{0}c_{2}\right) +24\beta b_{1}^{2}\gamma c_{1}^{2}c_{2}^{2}\right. \\ \qquad +5b_{1}^{4}\gamma ^{2}c_{1}^{2}\left( c_{1}^{2}-4c_{0}c_{2}\right) \left. +48c_{2}^{5}m_{0}^{2}p^{2}\left( 3\mu ^{2}+8\mu \sigma +4\sigma ^{2}\right) \right) \\ \qquad +2a_{1}^{2}\gamma c_{1}^{2}\left( 5b_{1}^{2}\gamma \left( c_{1}^{2}-4c_{0}c_{2}\right) +12\beta c_{2}^{2}\right) ,\\ \omega = -\frac{1}{1152\gamma ^{2}c_{1}^{4}c_{2}^{4}\delta }\left( 27a_{1}^{4}\gamma ^{3}\left( c_{1}^{2}-4c_{0}c_{2}\right) {}^{2}c_{1}^{4}\delta +27b_{1}^{4}\gamma ^{3}c_{1}^{4}\delta \right. \\ \qquad \left( c_{1}^{2}-4c_{0}c_{2}\right) {}^{2}-323\mu +2\sigma c_{2}^{5}m_{0}^{2}\left( 6\sqrt{6}\sqrt{-\gamma }c_{1}^{2}\sqrt{\delta }(-3\beta \mu -\right. \\ \qquad 2\beta \sigma +2\gamma \nu )\left. c_{2}m_{0}^{2}+(3\mu +2\sigma )^{2}(3\mu +10\sigma )\right) +8b_{1}^{2}\gamma c_{1}^{2}c_{2}^{2}\\ \qquad \left( c_{1}^{2}-4c_{0}c_{2}\right) \sqrt{\delta }\left( 18\beta \gamma c_{1}^{2}\sqrt{\delta }+\sqrt{6}\sqrt{-\gamma }\left( 27\mu ^{2}+48\mu \sigma +20\sigma ^{2}\right) \right. \\ \qquad \left. c_{2}m_{0}^{2}\right) +2\gamma \sqrt{\delta }a_{1}^{2}c_{1}^{2}c_{1}^{2}-4c_{0}c_{2}\left( 27b_{1}^{2}\gamma ^{2}c_{1}^{2}\left( c_{1}^{2}-4c_{0}c_{2}\right) \sqrt{\delta }\right. \\ \qquad \left. \left. +4c_{2}^{2}\left( 18\beta \gamma c_{1}^{2}\sqrt{\delta }+\sqrt{6}\sqrt{-\gamma }c_{2}m_{0}^{2}\left( 27\mu ^{2}+48\mu \sigma +20\sigma ^{2}\right) \right) \right) \right) ,\\ p = \frac{\root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{1}^{2}+b_{1}^{2}}}{2^{3/4}c_{2}\root 4 \of {\delta }},\gamma <0. \end{array} \end{aligned}$$
(19)
The solutions of (1) and (12) are,
$$\begin{aligned} \begin{array}{l} u(x,\tau )=\frac{a_{1}\sqrt{4c_{0}c_{2}-c_{1}^{2}}\text {sech}\left( \frac{\sqrt{c_{2}}\sqrt{4c_{0}c_{2}-c_{1}^{2}}\left( m_{0}z+c_{1}c_{1}\right) }{c_{1}}\right) }{2c_{2}},\\ v(x,\tau )=\frac{b_{1}u(x,t)}{a_{1}},z=\frac{x\left( \root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{1}^{2}+b_{1}^{2}}\right) }{2^{3/4}c_{2}\root 4 \of {\delta }}-\frac{p\,\tau }{6\gamma ^{2}c_{1}^{2}c_{2}^{2}\left( a_{1}^{2}+b_{1}^{2}\right) }\\ \left( a_{1}^{4}\gamma ^{2}c_{1}^{2}\left( c_{1}^{2}-4c_{0}c_{2}\right) (3\mu +2\sigma )+6b_{1}^{2}\gamma c_{1}^{2}c_{2}^{2}(3\beta \mu +2\beta \sigma -\gamma \nu )\right. \\ b_{1}^{4}+\gamma ^{2}c_{1}^{2}\left( c_{1}^{2}-4c_{0}c_{2}\right) (3\mu +2\sigma )+2\gamma a_{1}^{2}c_{1}^{2}\left( 3c_{2}^{2}(3\beta \mu +2\beta \sigma -\gamma \nu )\right. \\ \left. \left. b_{1}^{2}+\gamma \left( c_{1}^{2}-4c_{0}c_{2}\right) (3\mu +2\sigma )\right) +16c_{2}^{5}m_{0}^{2}p^{2}\sigma (3\mu +2\sigma )^{2}\right) ,\\ \tau =Log\left( _{i}E_{\rho }(t)\right) ,\;i=10. \end{array}, \end{aligned}$$
(20)
By using (20), \(Rew(x,t)\,\)
$$\begin{aligned} Rew(x,t)=u(x,t)(cos(kx-\omega Log({}_{10}E_{\rho }(t)))-\frac{b_{1}}{a_{1}}sin(kx-\omega Log({}_{10}E_{\rho }(t)))), \end{aligned}$$
(21)
is displayed in Fig. 1(i)–(iv). We mention that in all the figures shown the following parameters are fixed, \(\mu = 0.8,\sigma = 0.4,\gamma = -0.3,\delta = 0.8,\nu = 0.3,A = 2,\alpha =0.4,\beta =1.2.\)
Figure 1(i) shows complex rhombus shaped soliton, Fig. 1(ii)–(iv) exhibit hyper chaos.
Figure 1(iii) show fractals that occurs intermediately, when \(t=0.3.\)

2.4.2 Complex chirped soliton

Here, we consider (16), when \(r=2,s=2\) and \(m=1.\)
Here, (16) is reduced to,
$$\begin{aligned} \begin{array}{c} U(z) = \frac{a_{1}\phi (z)+a_{0}}{s_{1}\phi (z)+s_{0}},\;V(z) = \frac{b_{1}\phi (z)+b_{0}}{s_{1}\phi (z)+s_{0}},\;b_{0} = \frac{a_{0}b_{1}}{a_{1}},\end{array} \end{aligned}$$
(22)
and the auxiliary equation (AE) is,
$$\begin{aligned} \phi '(z) = \sqrt{c_{4}\phi (z)^{4}+c_{3}\phi (z)^{3}+c_{2}\phi (z)^{2}+c_{1}\phi (z)+c_{0}} \end{aligned}$$
(23)
By inserting (22) and (23) into (13) and (14) leads to,
$$\begin{aligned} \begin{array}{l} q=\frac{1}{Q}\root 4 \of {2}\root 4 \of {-\gamma }\left( 32\sqrt{2}\sqrt{-\gamma }c_{2}\delta ks_{1}^{2}\sqrt{\delta }+\frac{63\sqrt{3}s_{1}^{3}\left( c_{3}s_{0}+c_{2}s_{1}\right) \left( 4\delta k^{3}-2\alpha k+\nu \right) }{a_{1}^{2}+b_{1}^{2}}\right. \\ \qquad \left. +6\sqrt{2}\sqrt{-\gamma }\delta k\sqrt{16c_{2}^{2}s_{1}^{4}-7m^{2}}\right) ,\\ Q=189\ 3^{3/4}\delta ^{3/4}s_{1}^{7/2}\left( \frac{c_{3}s_{0}+c_{2}s_{1}}{a_{1}^{2}+b_{1}^{2}}\right) {}^{3/2},\;a_{0} = -\frac{a_{1}s_{0}}{3s_{1}},\;c_{4} = \frac{s_{1}^{2}\left( c_{2}s_{0}-2c_{0}c_{1}s_{1}\right) }{s_{0}^{3}},\\ \qquad \omega \text { =}\frac{1}{P}\left( -486b_{1}^{2}\sqrt{\delta }ks_{1}^{4}\left( c_{3}s_{0}+c_{2}s_{1}\right) {}^{2}\left( \delta k^{3}-\alpha k+\nu \right) -4a_{1}^{6}\gamma \sqrt{\delta }\right. \\ \qquad -4b_{1}^{6}\gamma \sqrt{\delta }\left( 3c_{3}^{2}s_{0}^{2}+6c_{2}c_{3}s_{1}s_{0}-c_{2}^{2}s_{1}^{2}\right) +\left( 3c_{3}^{2}s_{0}^{2}+6c_{2}c_{3}s_{1}s_{0}-c_{2}^{2}s_{1}^{2}\right) \\ \qquad +9\sqrt{6}\sqrt{-\gamma }b_{1}^{4}s_{1}^{2}\left( 3c_{3}^{2}s_{0}^{2}+10c_{2}c_{3}s_{1}s_{0}+7c_{2}^{2}s_{1}^{2}\right) \left( \alpha -6\delta k^{2}\right) \\ \qquad -6a_{1}^{2}\left( c_{3}s_{0}+c_{2}s_{1}\right) \left( -3\sqrt{6}b_{1}^{2}\sqrt{-\gamma }c_{2}s_{1}^{2}\left( \alpha -6\delta k^{2}\right) \right. \\ 2b_{1}^{4}\gamma \sqrt{\delta }\left( 3c_{3}s_{0}-c_{2}s_{1}\right) +\left( 24\gamma c_{3}\delta s_{0}+7s_{1}\right) +81\sqrt{\delta }k\left( \delta k^{3}-\alpha k+\nu \right) \\ \qquad \left. s_{1}^{4}\left( c_{3}s_{0}+c_{2}s_{1}\right) \right) -3a_{1}^{4}c_{3}s_{0}+c_{2}s_{1}\left( 4b_{1}^{2}\gamma \sqrt{\delta }\left( 3c_{3}s_{0}-c_{2}s_{1}\right) \right. \\ \qquad \left. \left. -3\sqrt{6}\sqrt{-\gamma }s_{1}^{2}\left( 3c_{3}s_{0}+7c_{2}s_{1}\right) \left( \alpha -6\delta k^{2}\right) \right) \right) ,\\ P=486\sqrt{\delta }s_{1}^{4}\left( a_{1}^{2}+b_{1}^{2}\right) \left( c_{3}s_{0}+c_{2}s_{1}\right) {}^{2},\\ \beta = \frac{\alpha \sqrt{-\gamma }}{\sqrt{6}\sqrt{\delta }}-k\left( \sqrt{6}\sqrt{-\gamma }\sqrt{\delta }k+\mu \right) +\frac{5a_{1}^{2}\gamma \left( 3c_{3}s_{0}+7c_{2}s_{1}\right) }{27s_{1}^{2}\left( c_{3}s_{0}+c_{2}s_{1}\right) }\\ \qquad +\frac{5b_{1}^{2}\gamma \left( 3c_{3}s_{0}+7c_{2}s_{1}\right) }{27s_{1}^{2}\left( c_{3}s_{0}+c_{2}s_{1}\right) },\;c_{0} = \frac{c_{3}s_{0}^{2}+2c_{2}s_{1}s_{0}}{c_{1}s_{1}^{2}}.p = \frac{\root 4 \of {-\frac{1}{3}(2\gamma )}\sqrt{a_{1}^{2}+b_{1}^{2}}}{3\root 4 \of {\delta }\sqrt{\left( c_{3}s_{0}+c_{2}s_{1}\right) s_{1}^{\square }}},\\ k = -\frac{3\sqrt{\delta }\mu +2\sigma }{2\sqrt{6}\sqrt{-\gamma }\sqrt{\delta }},s_{0} = \frac{\sqrt{16c_{2}^{2}s_{1}^{4}-7m^{2}}-11c_{2}s_{1}^{2}}{7c_{3}s_{1}},\gamma <0 \end{array} \end{aligned}$$
(24)
The solutions of (11) and (12) are,
$$\begin{aligned} \begin{array}{l} u(x,\tau )=\frac{P_{1}}{Q_{1}},\;\\ P_{1}=-7a_{1}\left[-2m\text {sn}\left(\frac{(A+z)\sqrt{\left( 30c_{2}^{2}s_{1}^{4}-m^{2}\right) \left( 16c_{2}s_{1}^{2}+7m+3\sqrt{16c_{2}^{2}s_{1}^{4}-7m^{2}}\right) }}{2\sqrt{14}s_{1}},\right. \right. \\ \qquad \times \left. \left. \frac{14m}{16c_{2}s_{1}^{2}+m+3\sqrt{16c_{2}^{2}s_{1}^{4}-7m^{2}}}\right)^{2}\right],\;v(x,\tau )=\frac{b_{1}}{a_{1}}u(x,\tau ),\\ z=\frac{x\left( \root 4 \of {-\frac{1}{3}(2\gamma )}\sqrt{a_{1}^{2}+b_{1}^{2}}\right) }{3\root 4 \of {\delta }\sqrt{s_{1}\left( c_{3}s_{0}+c_{2}s_{1}\right) }}+\frac{1}{H}\tau \left( \root 4 \of {2}\root 4 \of {-\gamma }\left( 32\sqrt{2}\sqrt{-\gamma }c_{2}\delta ks_{1}^{2}\right. \right. \\ \qquad \left. \left. +\sqrt{\delta }\left( \frac{63\sqrt{3}s_{1}^{3}\left( c_{3}s_{0}+c_{2}s_{1}\right) \left( 4\delta k^{3}-2\alpha k+\nu \right) }{a_{1}^{2}+b_{1}^{2}}\right) +6\sqrt{2}\sqrt{-\gamma }\delta k\sqrt{16c_{2}^{2}s_{1}^{4}-7m^{2}}\right) \right) ,\\ \tau =Log\left( _{i}E_{\rho }(t)\right) ,i=10 \end{array} \end{aligned}$$
(25)
The results in (25) are used to display Rew(xt) in Fig. 2(i)–(iv).
Figure 2 (i) shows complex chirped solitons.
Figure 2(ii) and (iii) show hyper chaos. Figure 2(iii) and (iv) exhibit the behavior in space for different values of t and of the fractional order respectively.

2.4.3 Dromian soliton

We consider (22) when the AE is,
$$\begin{aligned} \phi '(z) = \sqrt{c_{2}\phi (z)^{2}+c_{0}}\left( m_{1}\phi (z)+m_{0}\right) . \end{aligned}$$
(26)
From (22) and (26) into (13) and (14) gives rise to,
$$\begin{aligned} \begin{array}{l} m_{1} = \frac{m_{0}s_{1}\left( 3c_{2}s_{0}^{2}+2c_{0}s_{1}^{2}\right) }{4c_{2}s_{0}^{3}+3c_{0}s_{1}^{2}s_{0}},\;a_{0} = \frac{2a_{1}s_{0}}{s_{1}},\;c_{2} = -\frac{c_{0}s_{1}^{2}}{2s_{0}^{2}},\;\delta = -\frac{8\gamma s_{0}^{4}\left( a_{1}^{2}+b_{1}^{2}\right) {}^{2}}{3c_{0}^{2}m_{0}^{4}p^{4}s_{1}^{8}}\\ q = p\left( \frac{a_{1}^{2}(3\mu +2\sigma )}{s_{1}^{2}}-4c_{0}\delta km_{1}^{2}p^{2}+4\delta k^{3}-2\alpha k+\nu \right. \\ \qquad \left. +\frac{3b_{1}^{2}\mu }{s_{1}^{2}}+\frac{2b_{1}^{2}\sigma }{s_{1}^{2}}-\frac{4c_{2}\delta kp^{2}\left( 6m_{1}^{2}s_{0}^{2}-6m_{0}m_{1}s_{1}s_{0}+m_{0}^{2}s_{1}^{2}\right) }{s_{1}^{2}}\right) ,\\ \sigma = -\frac{8a_{1}^{2}\gamma ks_{0}^{2}+8b_{1}^{2}\gamma ks_{0}^{2}+3c_{0}\mu m_{0}^{2}p^{2}s_{1}^{4}}{2c_{0}m_{0}^{2}p^{2}s_{1}^{4}},\;c_{2} = -\frac{c_{0}s_{1}^{2}}{2s_{0}^{2}},\\ \beta = -\frac{1}{12c_{0}m_{0}^{2}p^{2}s_{0}^{2}s_{1}^{4}\left( a_{1}^{2}+b_{1}^{2}\right) }\left( 12b_{1}^{2}c_{0}k\mu m_{0}^{2}p^{2}s_{0}^{2}s_{1}^{4}+3\alpha c_{0}^{2}m_{0}^{4}p^{4}s_{1}^{8}\right. \\ \qquad +4a_{1}^{4}\gamma s_{0}^{2}\left( 5c_{0}m_{0}^{2}p^{2}s_{1}^{2}+12k^{2}s_{0}^{2}\right) +4b_{1}^{4}\gamma s_{0}^{2}\left( 5c_{0}m_{0}^{2}p^{2}s_{1}^{2}+12k^{2}s_{0}^{2}\right) \\ \qquad \left. +4a_{1}^{2}s_{0}^{2}\left( 2b_{1}^{2}\gamma \left( 5c_{0}m_{0}^{2}p^{2}s_{1}^{2}+12k^{2}s_{0}^{2}\right) +3c_{0}k\mu m_{0}^{2}p^{2}s_{1}^{4}\right) \right) ,\\ \omega = \frac{1}{12c_{0}^{2}m_{0}^{4}p^{4}s_{0}^{2}s_{1}^{8}}\left( 3c_{0}^{2}m_{0}^{4}p^{4}s_{1}^{8}\left( \alpha c_{0}m_{0}^{2}p^{2}s_{1}^{2}+4ks_{0}^{2}(\alpha k-\nu )\right) \right. \\ \qquad +2a_{1}^{4}\gamma s_{0}^{2}\left( 24c_{0}k^{2}m_{0}^{2}p^{2}s_{1}^{2}s_{0}^{2}+c_{0}^{2}m_{0}^{4}p^{4}s_{1}^{4}+16k^{4}s_{0}^{4}\right) \\ \qquad +4a_{1}^{2}b_{1}^{2}\gamma s_{0}^{2}\left( 24c_{0}k^{2}m_{0}^{2}p^{2}s_{1}^{2}s_{0}^{2}+c_{0}^{2}m_{0}^{4}p^{4}s_{1}^{4}+16k^{4}s_{0}^{4}\right) \\ \qquad \left. +2b_{1}^{4}\gamma s_{0}^{2}\left( 24c_{0}k^{2}m_{0}^{2}p^{2}s_{1}^{2}s_{0}^{2}+c_{0}^{2}m_{0}^{4}p^{4}s_{1}^{4}+16k^{4}s_{0}^{4}\right) \right) . \end{array} \end{aligned}$$
(27)
The solutions of (11) and (12) are,
$$\begin{aligned} \begin{array}{l} u(x,\tau )=\frac{P}{Q},\;P=\left( a_{1}\left( -2s_{0}s_{1}\text {sech}^{2}(\frac{A}{2}-\frac{\sqrt{-c_{0}}zms_{1}}{2s_{0}})\right. \right. \\ \qquad \left. +\sqrt{2}\sqrt{s_{0}^{2}s_{1}^{2}\tanh ^{2}(\frac{A}{2}-\frac{\sqrt{-c_{0}}zms_{1}}{2s_{0}})\left( 1-\tanh ^{2}(\frac{A}{2}-\frac{\sqrt{-c_{0}}zms_{1}}{2s_{0}})\right) }\right) ,\\ Q=s_{1}\left( s_{0}s_{1}\tanh ^{2}(\frac{A}{2}-\frac{\sqrt{-c_{0}}zms_{1}}{2s_{0}})+\sqrt{2}\sqrt{s_{0}^{2}s_{1}^{2}\tanh ^{2}(\frac{A}{2}-\frac{\sqrt{-c_{0}}zms_{1}}{2s_{0}})}\right) \\ \qquad \sqrt{1-\tanh ^{2}(\frac{A}{2}-\frac{\sqrt{-c_{0}}zms_{1}}{2s_{0}}},\;v(x,\tau )=\frac{b_{1}}{a_{1}}u(x,\tau ),\;z=px-\frac{\tau }{3c_{0}^{2}m_{0}^{4}p^{3}s_{1}^{8}}\\ \qquad \left( -3c_{0}^{2}\right. m_{0}^{4}p^{4}s_{1}^{8}(\nu -2\alpha k)16a_{1}^{2}b_{1}^{2}\gamma ks_{0}^{2}++8a_{1}^{4}\gamma ks_{0}^{2}\left( c_{0}m_{0}^{2}p^{2}s_{1}^{2}+4k^{2}s_{0}^{2}\right) \\ \qquad \left. 8b_{1}^{4}\gamma ks_{0}^{2}\left( c_{0}m_{0}^{2}p^{2}s_{1}^{2}+4k^{2}s_{0}^{2}\right) +\left( c_{0}m_{0}^{2}p^{2}s_{1}^{2}+4k^{2}s_{0}^{2}\right) \right) . \end{array} \end{aligned}$$
(28)
Rew(xt) is displayed in Fig. 3(i)–(iv), by using (28).
Figure 3(i) shows complex dromian pattern soliton, while Fig. 3(ii)–(iv) show oscillatory behavior.

2.5 Geometric chaos

2.5.1 Complex chirped soliton

Here, we employ (22), together with the AE,.
$$\begin{aligned} \phi '(z) = \sqrt{c_{2}\phi (z)^{2}+c_{1}\phi (z)+c_{0}}\sqrt{m_{2}\phi (z)^{2}+m_{1}\phi (z)+m_{0}}. \end{aligned}$$
(29)
From (22) and (29) into (13) and (14) gives rise to,
$$\begin{aligned} \begin{array}{l} k = \frac{\left( a_{1}^{2}+b_{1}^{2}\right) (3\mu +2\sigma )}{24c_{2}\delta m_{2}p^{2}},\;a_{0} = \frac{1}{4}a_{1}\left( \frac{c_{1}}{c_{2}}+\frac{m_{1}}{m_{2}}\right) ,\;c_{1} = -\frac{c_{2}m_{1}}{m_{2}},\;m_{0} = \frac{c_{0}m_{2}}{c_{2}},\\ q = \frac{1}{Q}\sqrt{a_{1}^{2}+b_{1}^{2}}\left( -\left( \left( 6\sqrt{3}\sqrt{-\gamma }\gamma \sqrt{\delta }\nu -6\sqrt{3}\beta \sqrt{-\gamma }\sqrt{\delta }(3\mu +2\sigma )\right. \right. \right. \\ \qquad \left. \left. +\sqrt{2}\sigma (3\mu +2\sigma )^{2}\right) m_{2}^{2}\right) +4\sqrt{3}a_{1}^{2}\sqrt{-\gamma }\gamma \sqrt{\delta }(3\mu +2\sigma )\left( 2m_{2}^{2}n^{2}+m_{1}^{2}\right) \\ \qquad \left. +4\sqrt{3}b_{1}^{2}\sqrt{-\gamma }\gamma \sqrt{\delta }(3\mu +2\sigma )\left( 2m_{2}^{2}n^{2}+m_{1}^{2}\right) \right) ,\\ Q=6\ 6^{3/4}(-\gamma )^{5/4}\sqrt{c_{2}}\delta ^{3/4}m_{2}^{5/2},\;\alpha =\frac{1}{4\sqrt{6}(-\gamma )^{3/2}m_{2}^{2}}(\\ \qquad m_{2}^{2}\left( 24\beta \gamma \sqrt{\delta }+\sqrt{6}\sqrt{-\gamma }\left( 3\mu ^{2}+8\mu \sigma +4\sigma ^{2}\right) \right) \\ \qquad +20a_{1}^{2}\gamma ^{2}\sqrt{\delta }\left( 2m_{2}^{2}n^{2}+m_{1}^{2}\right) +20b_{1}^{2}\gamma ^{2}\sqrt{\delta }\left( 2m_{2}^{2}n^{2}+m_{1}^{2}\right) ,\\ \omega = -\frac{1}{576\gamma ^{2}\delta m_{2}^{4}}\left( -\left( 3\mu +2\sigma \left( 48\sqrt{6}\gamma \sqrt{-\gamma }\sqrt{\delta }\nu +27\mu ^{3}+126\mu ^{2}\sigma \right. \right. \right. \\ \qquad \left. \left. +40\sigma ^{3}-24\sqrt{6}\beta \sqrt{-\gamma }\sqrt{\delta }(3\mu +2\sigma )\right) m_{2}^{4}\right) \\ \qquad +4\gamma \sqrt{\delta }\left( 72\beta \gamma \sqrt{\delta }+\sqrt{6}\sqrt{-\gamma }\left( 27\mu ^{2}+48\mu \sigma +20\sigma ^{2}\right) \right) +72a_{1}^{4}\gamma ^{3}\delta \\ \qquad \left( 8m_{2}^{4}n^{4}+12m_{2}^{2}m_{1}^{2}n^{2}+3m_{1}^{4}\right) +72b_{1}^{4}\gamma ^{3}\delta +b_{1}^{2}m_{2}^{2}\left( 2m_{2}^{2}n^{2}+m_{1}^{2}\right) \\ \qquad 8m_{2}^{4}n^{4}+12m_{2}^{2}m_{1}^{2}n^{2}+3m_{1}^{4}+4a_{1}^{2}\left( \gamma \sqrt{\delta }\left( 72\beta \gamma \sqrt{\delta }+\sqrt{6}\sqrt{-\gamma }\left( 27\mu ^{2}\right. \right. \right. \\ \qquad \left. \left. \left. \left. +48\mu \sigma +20\sigma ^{2}\right) \right) m_{2}^{2}2m_{2}^{2}n^{2}+m_{1}^{2}+36b_{1}^{2}\gamma ^{3}\delta \left( 8m_{2}^{4}n^{4}+12m_{2}^{2}m_{1}^{2}n^{2}+3m_{1}^{4}\right) \right) \right) ,\\ c_{0} = -n^{2}c_{2},\;p = \frac{\root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{1}^{2}+b_{1}^{2}}}{2^{3/4}\sqrt{c_{2}}\root 4 \of {\delta }\sqrt{m_{2}}},\gamma <0. \end{array} \end{aligned}$$
(30)
The solutions of (11) and (12) are,
$$\begin{aligned} \begin{array}{l} u(x,\tau ) = \frac{1}{Q}\left( \text {sn}\left( \sqrt{2}n^{2}(A+z)\sqrt{c_{2}m_{2}^{3}K},\frac{2m_{2}^{2}n^{2}-\sqrt{4m_{2}^{2}m_{1}^{2}n^{2}+m_{1}^{4}}+m_{1}^{2}}{2m_{2}^{2}n^{2}+\sqrt{4m_{2}^{2}m_{1}^{2}n^{2}+m_{1}^{4}}+m_{1}^{2}}\right) \right. \\ \qquad a_{1}(2m_{2}^{4}n^{4}+m_{1}^{2}\left( -\sqrt{4m_{2}^{2}m_{1}^{2}n^{2}+m_{1}^{4}}\right) -2m_{2}^{2}n^{2}\sqrt{4m_{2}^{2}m_{1}^{2}n^{2}+m_{1}^{4}}\\ \qquad +4m_{2}^{2}n^{2}+m_{1}^{4}),\;Q=K\left( 2m_{2}^{2}n^{2}-\sqrt{4m_{2}^{2}m_{1}^{2}n^{2}+m_{1}^{4}}+m_{1}^{2}\right) {}^{2}\\ K=\sqrt{\frac{m_{2}^{2}}{2m_{2}^{2}n^{2}-\sqrt{4m_{2}^{2}m_{1}^{2}n^{2}+m_{1}^{4}}+m_{1}^{2}}},\;v(x,\tau )=\frac{b_{1}}{a_{1}}u(x,\tau ),\\ z=\frac{x\left( \root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{1}^{2}+b_{1}^{2}}\right) }{2^{3/4}\sqrt{c_{2}}\root 4 \of {\delta }\sqrt{m_{2}}}+\frac{\tau }{Q}\left( \sqrt{a_{1}^{2}+b_{1}^{2}}\left( -\left( \left( 6\sqrt{3}\sqrt{-\gamma }\gamma \sqrt{\delta }\nu -6\sqrt{3}\beta \sqrt{-\gamma })\right. \right. \right. \right. \\ \sqrt{\delta }(3\mu +2\sigma )\left. \left. +\sqrt{2}\sigma (3\mu +2\sigma )^{2}\right) m_{2}^{2}\right) +4\sqrt{3}a_{1}^{2}\sqrt{-\gamma }\gamma \sqrt{\delta }(3\mu +2\sigma )\\ \left( 2m_{2}^{2}n^{2}+m_{1}^{2}\right) \left. \left. +4\sqrt{3}b_{1}^{2}\sqrt{-\gamma }\gamma \sqrt{\delta }(3\mu +2\sigma )\left( 2m_{2}^{2}n^{2}+m_{1}^{2}\right) \right) \right) ,\\ Q=6\ 6^{3/4}(-\gamma )^{5/4}\sqrt{c_{2}}\delta ^{3/4}m_{2}^{5/2},\tau =Log\left( _{i}E_{\rho }(t)\right) . \end{array} \end{aligned}$$
(31)
We use (31) to display Rew(xt) in Fig. 4(i) and (ii).
Figure 4(i) shows complex chirped solitons, while Fig. 4(ii) shows geometric chaos.
Case (b). Complex M-shaped soliton
In this case, we write,
$$\begin{aligned} \begin{array}{l} U(z) = a_{2}\phi (z)^{2}+a_{1}\phi (z)+a_{0},\;V(z) = b_{2}\phi (z)^{2}+b_{1}\phi (z)+b_{0},\\ b_{0} = \frac{a_{0}b_{2}}{a_{2}},\;b_{1} = \frac{a_{1}b_{2}}{a_{2}},\;\phi '(z) = c_{3}\phi (z)^{3}+c_{2}\phi (z)^{2}+c_{1}\phi (z)+c_{0}. \end{array} \end{aligned}$$
(32)
By using (32) into (13) and (14), we get,
$$\begin{aligned} \begin{array}{l} a_{1} = \frac{2a_{2}c_{2}}{3c_{3}},\;k = \frac{3\mu +2\sigma }{2\sqrt{6}\sqrt{-\gamma }c_{2}\sqrt{\delta }},\;c_{0} = \frac{9c_{1}c_{2}c_{3}-2c_{2}^{3}}{27c_{3}^{2}},\;a_{0} = -\frac{a_{2}\left( c_{2}^{2}-9c_{1}c_{3}\right) }{18c_{3}^{2}},\\ \alpha = -\frac{1}{36\sqrt{6}(-\gamma )^{3/2}c_{3}^{4}}\left( -9\left( \sqrt{6}\sqrt{-\gamma }\left( 3\mu ^{2}+8\mu \sigma +4\sigma ^{2}\right) \left. +24\beta \gamma c_{2}\sqrt{\delta }\right) c_{3}^{4}\right. \right. \\ \qquad \left. -10a_{2}^{2}\gamma ^{2}c_{2}\left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{2}\sqrt{\delta }-10b_{2}^{2}\gamma ^{2}c_{2}\left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{2}\sqrt{\delta }\right) ,\\ q = -\frac{1}{108\ 2^{3/4}\root 4 \of {3}(-\gamma )^{7/4}c_{2}^{3/2}c_{3}^{5}\delta ^{3/4}}\left( \sqrt{a_{2}^{2}+b_{2}^{2}}\left( 3\left( \sqrt{6}\sqrt{-\gamma }\sigma (3\mu +2\sigma )^{2}\right. \right. \right. \\ \qquad \left. +18\gamma c_{2}\sqrt{\delta }(3\beta \mu +2\beta \sigma -\gamma \nu )\right) c_{3}^{4}+2a_{2}^{2}\gamma ^{2}c_{2}\sqrt{\delta }(3\mu +2\sigma )\\ \qquad \left. \left. +\left( 2a_{2}^{2}\gamma ^{2}c_{2}\sqrt{\delta }(3\mu +2\sigma )+2b_{2}^{2}\gamma ^{2}c_{2}\sqrt{\delta }(3\mu +2\sigma )\right) \right) \right) ,\\ \omega = -\frac{1}{5184\gamma ^{2}c_{2}^{2}c_{3}^{8}\delta }\left( -93\mu +2\sigma \left( (3\mu +2\sigma )^{2}(3\mu +10\sigma )\right. \right. \\ \qquad \left. +24\sqrt{6}\sqrt{-\gamma }c_{2}\sqrt{\delta }(-3\beta \mu -2\beta \sigma +2\gamma \nu )\right) c_{3}^{8}+2\gamma \sqrt{\delta }b_{2}^{2}c_{2}\\ \qquad \left( \sqrt{6}\sqrt{-\gamma }(27\mu ^{2}\right. +48\mu \sigma +20\sigma ^{2})\left. +72\beta \gamma c_{2}\sqrt{\delta }\right) c_{3}^{4}\left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{2}\\ \qquad +4a_{2}^{4}\gamma ^{3}c_{2}^{2}\left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{4}\delta +4b_{2}^{4}\gamma ^{3}c_{2}^{2}\left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{4}\delta \\ \qquad +2a_{2}^{2}\left( \gamma \sqrt{\delta }c_{2}\left( \sqrt{6}\sqrt{-\gamma }\right. \right. \left. 72\beta \gamma c_{2}\sqrt{\delta }+\left( 27\mu ^{2}+48\mu \sigma +20\sigma ^{2}\right) \right) \\ \qquad c_{3}^{4}\left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{2}\left. \left. +4b_{2}^{2}\gamma ^{3}c_{2}^{2}\left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{4}\delta \right) \right) ,\\ p = \frac{\root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{2}^{2}+b_{2}^{2}}}{2\ 2^{3/4}\sqrt{c_{2}}c_{3}\root 4 \of {\delta }},\gamma <0. \end{array} \end{aligned}$$
(33)
The solutions of (11) and (12) are,
$$\begin{aligned} \begin{array}{l} u(x,\tau ) = \frac{a_{2}\left( c_{2}^{2}-3c_{1}c_{3}\right) \left( e^{2c_{1}(A+z)}-e^{\frac{2c_{2}^{2}(A+z)}{3c_{3}}}\right) }{6c_{3}^{2}\left( e^{2c_{1}(A+z)}+e^{\frac{2c_{2}^{2}(A+z)}{3c_{3}}}\right) },v(x,\tau )=\frac{b_{1}}{a_{1}}u(x,\tau ),\\ z=\frac{x\left( \root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{2}^{2}+b_{2}^{2}}\right) }{2\ 2^{3/4}\sqrt{c_{2}}\root 4 \of {\delta }m_{2}}-\frac{\root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{2}^{2}+b_{2}^{2}}\tau }{\left( 2\ 2^{3/4}\sqrt{c_{2}}\root 4 \of {\delta }m_{2}\right) \left( 27\gamma ^{2}c_{3}^{4}\left( a_{2}^{2}+b_{2}^{2}\right) \right) }\\ \qquad \left( 27b_{2}^{2}\gamma c_{3}^{4}(3\beta \mu +2\beta \sigma -\gamma \nu )+72c_{3}^{6}p^{2}\sigma (3\mu +2\sigma )^{2}+a_{2}^{4}\gamma ^{2}\right. \\ \qquad \left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{2}(3\mu +2\sigma )+b_{2}^{4}\gamma ^{2}\left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{2}(3\mu +2\sigma )\\ \qquad \left. a_{2}^{2}+\gamma \left( 2b_{2}^{2}\gamma \left( c_{2}^{2}-3c_{1}c_{3}\right) {}^{2}(3\mu +2\sigma )+27c_{3}^{4}(3\beta \mu +2\beta \sigma -\gamma \nu )\right) \right) ,\\ \tau =Log\left( _{i}E_{\rho }(t)\right) . \end{array} \end{aligned}$$
(34)
In Fig. 5(i) and (ii), Rew(xt) is displayed, by using (34).
Figure 5(i) shows complex undulated M-shaped solitons, while Fig. 4(ii) exhibits geometric chaos.

2.5.2 Breathers-line

Here, we use consider (22) and the AE is taken,
$$\begin{aligned} \phi '(z) = \sqrt{c_{2}\phi (z)^{2}+c_{1}\phi (z)+c_{0}}\sqrt{m_{2}\phi (z)^{2}+m_{1}\phi (z)+m_{0}.} \end{aligned}$$
(35)
From (22) and (35) into (13) and (14) results,
$$\begin{aligned} \begin{array}{l} a_{0} = \frac{a_{1}s_{0}\left( c_{1}s_{0}-2c_{0}s_{1}\right) }{4c_{2}s_{0}^{2}+s_{1}\left( 2c_{0}s_{1}-3c_{1}s_{0}\right) },\;m_{0} = \frac{m_{1}s_{0}}{2s_{1}},\;c_{1} = \frac{c_{2}rs_{0}}{s_{1}},\;m_{1} = \frac{m_{2}rs_{0}}{s_{1}}\\ q = \frac{\root 4 \of {\frac{2}{3}}\root 4 \of {-\gamma }\sqrt{r}\sqrt{a_{1}^{2}+b_{1}^{2}}}{3\root 4 \of {\delta }(r-2)^{2}s_{0}s_{1}^{2}\sqrt{c_{2}m_{2}}}\left( -2\sqrt{6}a_{1}^{2}\sqrt{-\gamma }\sqrt{\delta }k\left( 2r^{2}-4r+1\right) \right. \\ \qquad \left. 3(r-2)s_{1}^{2}\left( 4\delta k^{3}-2\alpha k+\nu \right) -2\sqrt{6}b_{1}^{2}\sqrt{-\gamma }\sqrt{\delta }k\left( 2r^{2}-4r+1\right) \right) ,\\ \omega = \frac{1}{576(-\gamma )^{5/2}\delta (r-2)^{2}s_{1}^{4}}\left( 192a_{1}^{4}(-\gamma )^{5/2}\gamma \delta \left( 2r^{4}-8r^{3}+13r^{2}-16r+11\right) \right. \\ \qquad +192b_{1}^{4}\gamma (-\gamma )^{5/2}\delta \left( 2r^{4}-8r^{3}+13r^{2}-16r+11\right) +24\sqrt{6}\gamma ^{2}\sqrt{\delta }\\ \qquad \left( 2r^{3}-8r^{2}+9r-2\right) b_{1}^{2}s_{1}^{2}\left( 4\alpha \gamma +(r-2)^{2}(3\mu +2\sigma )^{2}\right) -\\ \qquad (r-2)^{3}(3\mu +2\sigma )\left( 27\sqrt{-\gamma }\mu ^{3}(r-2)^{3}+54\sqrt{-\gamma }\mu ^{2}(r-2)^{3}\sigma \right. \\ \qquad +36\sqrt{-\gamma }\mu (r-2)^{3}\sigma ^{2}+24\alpha \sqrt{-\gamma }\gamma (r-2)(3\mu +2\sigma )-\\ \qquad 8\left( 6\sqrt{6}\gamma ^{2}\sqrt{\delta }\nu \right. \left. \left. \sqrt{-\gamma }\left( -(r-2)^{3}\right) \sigma ^{3}\right) \right) s_{1}^{4}+24a_{1}^{2}\left( -16b_{1}^{2}(-\gamma )^{7/2}\delta (2r^{4}\right. \\ \qquad -8r^{3}+13r^{2}-16r+11)+\sqrt{6}2r^{3}-8r^{2}+9r-2\gamma ^{2}\sqrt{\delta }\left( 4\alpha \gamma +(r-2)^{2}\right. \\ \qquad \left. \left. \left. (3\mu +2\sigma )^{2}\right) s_{1}^{2}\right) \right) ,\;\beta = \frac{\gamma }{24(-\gamma )^{3/2}\sqrt{\delta }(r-2)^{2}}\left( \sqrt{6}r-2\left( 4\alpha \gamma +(r-2)^{2}\right. \right. \\ \qquad \left. 3\mu ^{2}+8\mu \sigma +4\sigma ^{2}\right) -\frac{8a_{1}^{2}(-\gamma )^{3/2}\sqrt{\delta }\left( 16r^{2}-44r+23\right) }{s_{1}^{2}}\left. -\frac{8b_{1}^{2}(-\gamma )^{3/2}\sqrt{\delta }\left( 16r^{2}-44r+23\right) }{s_{1}^{2}}\right) ,\\ c_{0} = \frac{c_{2}\left( 3r^{2}-6r+4\right) s_{0}^{2}}{2rs_{1}^{2}},\;k = -\frac{(r-2)(3\mu +2\sigma )}{2\sqrt{6}\sqrt{-\gamma }\sqrt{\delta }},\;p = \frac{\root 4 \of {-\frac{1}{3}(2\gamma )}\sqrt{r}\sqrt{a_{1}^{2}+b_{1}^{2}}}{\root 4 \of {\delta }(r-2)s_{0}\sqrt{c_{2}m_{2}}}.\\ \\ \end{array} \end{aligned}$$
(36)
The solution of (11) and (12) are,
$$\begin{aligned} \begin{array}{l} u(x,\tau ) = \frac{a_{1}\left( -\sqrt{c_{2}}(r-2)s_{0}+\sqrt{\frac{c_{2}(r-2)^{3}s_{0}^{2}}{r}}\text {sn}\left( \frac{\sqrt{(r-2)r}(A+z)\sqrt{c_{2}}\sqrt{m_{2}}s_{0}}{2s_{1}},\frac{(r-2)^{2}}{r^{2}}\right) \right) }{s_{1}\left( \sqrt{\frac{c_{2}(r-2)^{3}s_{0}^{2}}{r}}\text {sn}\left( \frac{\sqrt{(r-2)r}(A+z)\sqrt{c_{2}}\sqrt{m_{2}}s_{0}}{2s_{1}},\frac{(r-2)^{2}}{r^{2}}\right) +\sqrt{c_{2}}(r-2)s_{0}\right) },\\ v(x,\tau )=\frac{b_{1}}{a_{1}}u(x,\tau ),z=\frac{x\left( \root 4 \of {-\frac{1}{3}(2\gamma )}\sqrt{r}\sqrt{a_{1}^{2}+b_{1}^{2}}\right) }{\root 4 \of {\delta }(r-2)s_{0}\sqrt{c_{2}m_{2}}}+\frac{\tau }{3\root 4 \of {\delta }(r-2)^{2}s_{0}s_{1}^{2}\sqrt{c_{2}m_{2}}}\\ \qquad \root 4 \of {\frac{2}{3}}\sqrt{r}\root 4 \of {-\gamma }\sqrt{a_{1}^{2}+b_{1}^{2}}\left( -2\sqrt{6}a_{1}^{2}\sqrt{-\gamma }\sqrt{\delta }k\left( 2r^{2}-4r+1\right) \right. \\ \qquad \left. 3(r-2)s_{1}^{2}\left( 4\delta k^{3}-2\alpha k+\nu \right) -2\sqrt{6}b_{1}^{2}\sqrt{-\gamma }\sqrt{\delta }k\left( 2r^{2}-4r+1\right) \right) ,\tau =\log \left( _{i}E_{\rho }(t)\right) . \end{array} \end{aligned}$$
(37)
The results in (34) is used to display Rew(xt) is displayed in Fig. 6(i) and (ii).
Figure 6(i) shows rogue waves vector- lumps vector interaction with breathers, while Fig. 6(ii) shows geometric chaos. Figure 6(iii) consolidate the chaotic behavior for high time values.

3 M shaped solitons

Here, consider polynomial solutions.

3.1 Case (a)

Here, we consider (17) and the AE is,
$$\begin{aligned} \phi '(z) = c_{2}\phi (z)^{2}+c_{1}\phi (z)+c_{0}. \end{aligned}$$
(38)
From (17) and (38) into (13) and (14) gives rise to,
$$\begin{aligned} \begin{array}{l} a_{0} = \frac{a_{1}c_{1}}{2c_{2}},\;k = \frac{3\mu +2\sigma }{2\sqrt{6}\sqrt{-\gamma }\sqrt{\delta }},\;p = \frac{\root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{1}^{2}+b_{1}^{2}}}{2^{3/4}c_{2}\root 4 \of {\delta }}\\ c_{0} = \frac{1}{40\gamma ^{2}c_{2}\sqrt{\delta }\left( a_{1}^{2}+b_{1}^{2}\right) }\left( 10a_{1}^{2}\gamma ^{2}c_{1}^{2}\sqrt{\delta }+10b_{1}^{2}\gamma ^{2}c_{1}^{2}\sqrt{\delta }+\left( 4\sqrt{6}\alpha \gamma \sqrt{-\gamma }\right. \right. \\ +24\beta \gamma \sqrt{\delta }\left. \left. +\sqrt{6}\sqrt{-\gamma }\left( 3\mu ^{2}+8\mu \sigma +4\sigma ^{2}\right) \right) c_{2}^{2}\right) ,\\ q\text {:=}\frac{1}{15\gamma ^{2}\left( a_{1}^{2}+b_{1}^{2}\right) }p\left( 3a_{1}^{2}\gamma (-3\beta \mu -2\beta \sigma +5\gamma \nu )+3\gamma (-3\beta \mu \right. \\ \left. +5\gamma \nu -2\beta \sigma )b_{1}^{2}+2c_{2}^{2}p^{2}(3\mu +2\sigma )\left( 12\alpha \gamma +9\mu ^{2}+9\mu \sigma +2\sigma ^{2}\right) \right) ,\\ \omega = \frac{1}{14400\gamma ^{2}\delta }(864\alpha ^{2}\gamma ^{2}+3456\beta ^{2}\gamma \delta -72\sqrt{6}\beta \sqrt{-\gamma }\\ \sqrt{\delta }\left( 33\mu ^{2}+28\mu \sigma +4\sigma ^{2}\right) -24\alpha \gamma (12\sqrt{6}\beta \sqrt{-\gamma }\sqrt{\delta }+81\mu ^{2}\\ +96\mu \sigma +28\sigma ^{2})+(3\mu +2\sigma )+(1200\sqrt{6}\gamma \sqrt{-\gamma }\sqrt{\delta }\nu +27\mu ^{3}+\\ \\ 846\mu ^{2}\sigma +900\mu \sigma ^{2}+232\sigma ^{3})). \end{array} \end{aligned}$$
(39)
The solution of (11) and (12) are,
$$\begin{aligned} \begin{array}{l} u(x,\tau ) = -\frac{a_{1}}{2c_{2}\sqrt{10\gamma ^{2}\sqrt{\delta }\left( a_{1}^{2}+b_{1}^{2}\right) }}\sqrt{K}\\ \qquad tanh\left( \frac{(A+z)\sqrt{-\frac{c_{2}^{2}\left( 4\sqrt{6}\alpha \gamma \sqrt{-\gamma }+24\beta \gamma \sqrt{\delta }+\sqrt{6}\sqrt{-\gamma }\left( 3\mu ^{2}+8\mu \sigma +4\sigma ^{2}\right) \right) }{\gamma ^{2}\sqrt{\delta }\left( a_{1}^{2}+b_{1}^{2}\right) }}}{2\sqrt{10}}\right) ,\\ K=-c_{2}^{2}(4\sqrt{6}\alpha \gamma \sqrt{-\gamma }+24\beta \gamma \sqrt{\delta }+\sqrt{6}\sqrt{-\gamma }(3\mu ^{2}\\ \qquad +8\mu \sigma +4\sigma ^{2})),v(x,\tau ) = \frac{b_{1}u(x,\tau )}{a_{1}},\;z = \frac{x\left( \root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{1}^{2}+b_{1}^{2}}\right) }{2^{3/4}c_{2}\root 4 \of {\delta }}\\ \qquad +\frac{\tau }{15\gamma ^{2}\left( a_{1}^{2}+b_{1}^{2}\right) }p\left( 3a_{1}^{2}\gamma (-3\beta \mu -2\beta \sigma +5\gamma \nu )+3\gamma (-3\beta \mu +5\gamma \nu \right. \\ \qquad \left. -2\beta \sigma )b_{1}^{2}+2c_{2}^{2}p^{2}(3\mu +2\sigma )\left( 12\alpha \gamma +9\mu ^{2}+9\mu \sigma +2\sigma ^{2}\right) \right) ,\tau =Log\left( _{i}E_{\rho }(t)\right) . \end{array} \end{aligned}$$
(40)
By using (40), Rew(xt) is displayed in Fig. 7(i) and (ii).
Figure 7(i) shows undulated M-shaped solitons.

3.2 Case (b)

In this case, we write,
$$\begin{aligned} \begin{array}{l} U(z) = a_{2}\phi (z)^{2}+a_{1}\phi (z)+a_{0},\;V(z) = b_{2}\phi (z)^{2}+b_{1}\phi (z)+b_{0},\\ \;b_{0} = \frac{a_{0}b_{2}}{a_{2}},\;b_{1} = \frac{a_{1}b_{2}}{a_{2}},\\ \phi '(z) = \sqrt{c_{2}\phi (z)^{2}+c_{1}\phi (z)+c_{0}}\left( m_{2}\phi (z)^{2}+m_{1}\phi (z)+m_{0}\right) . \end{array} \end{aligned}$$
(41)
From (41) into (13) and (14) leads to,
$$\begin{aligned} \begin{array}{l} k = \frac{\left( a_{2}^{2}+b_{2}^{2}\right) (3\mu +2\sigma )}{96c_{2}\delta m_{2}^{2}p^{2}},\;a_{1} = \frac{1}{3}a_{2}\left( \frac{c_{1}}{c_{2}}+\frac{2m_{1}}{m_{2}}\right) ,\;c_{1} = -\frac{c_{2}m_{1}}{m_{2}},\\ m_{0} = \frac{1}{18}\left( -\frac{5c_{1}^{2}m_{2}}{c_{2}^{2}}+\frac{c_{1}m_{1}}{c_{2}}+\frac{18c_{0}m_{2}}{c_{2}}+\frac{4m_{1}^{2}}{m_{2}}\right) \\ a_{0} = \frac{a_{2}\left( -8c_{2}^{2}\left( m_{1}^{2}-9m_{0}m_{2}\right) +4c_{2}m_{2}\left( 7c_{1}m_{1}+9c_{0}m_{2}\right) -11c_{1}^{2}m_{2}^{2}\right) }{144c_{2}^{2}m_{2}^{2}},\\ \\ q = -\frac{m_{1}}{H}\left( \sqrt{a_{2}^{2}+b_{2}^{2}}\left( 4\sqrt{6}a_{2}^{2}\gamma \sqrt{-\gamma }\sqrt{\delta }m_{1}^{4}(3\mu +2\sigma )\right. \right. \\ \qquad +4\sqrt{6}\gamma \sqrt{-\gamma }b_{2}^{2}\sqrt{\delta }m_{1}^{4}(3\mu +2\sigma )+81\left( 3\sqrt{6}\sqrt{-\gamma }\gamma \sqrt{\delta }\nu -\right. \\ \qquad 3\sqrt{6}\beta \sqrt{-\gamma }\sqrt{\delta }(3\mu +2\sigma )\left. \left. +\sigma (3\mu +2\sigma )^{2}\right) m_{2}^{4}\right) ,\\ H=1944\root 4 \of {2}3^{3/4}(-\gamma )^{5/4}\sqrt{c_{0}}\delta ^{3/4}m_{2}^{6},\;c_{2} = \frac{4c_{0}m_{2}^{2}}{m_{1}^{2}},\\ \alpha = -\frac{-4\sqrt{6}\beta \sqrt{-\gamma }\sqrt{\delta }+3\mu ^{2}+8\mu \sigma +4\sigma ^{2}}{4\gamma },p = \frac{\root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{2}^{2}\qquad +b_{2}^{2}}}{2\ 2^{3/4}\sqrt{c_{2}}\root 4 \of {\delta }m_{2}},\\ \omega = \frac{3\mu +2\sigma }{576\gamma ^{2}\delta }\left( 27\mu ^{3}+48\sqrt{6}\sqrt{-\gamma }\gamma \sqrt{\delta }\nu +126\mu ^{2}\sigma \right. \\ \qquad \left. -24\sqrt{6}\beta \sqrt{-\gamma }\sqrt{\delta }(3\mu +2\sigma )+132\mu \sigma ^{2}+40\sigma ^{3}\right) . \end{array} \end{aligned}$$
(42)
The solutions of (11) and (12) are,
$$\begin{aligned} \begin{array}{c} u(x,\tau ) = -\frac{8a_{2}\left( -1+3e^{\frac{16}{9}\sqrt{2}\sqrt{c_{1}}m_{2}\left( z+36c_{1}m_{2}\right) }\right) }{9+27e^{\frac{16}{9}\sqrt{2}\sqrt{c_{1}}m_{2}\left( z+36c_{1}m_{2}\right) }},\;v(x,\tau ) = \frac{b_{2}u(x,\tau )}{a_{2}},\\ z\text {:=}\frac{x\left( \root 4 \of {-\frac{\gamma }{3}}\sqrt{a_{2}^{2}+b_{2}^{2}}\right) }{2\ 2^{3/4}\sqrt{c_{2}}\root 4 \of {\delta }m_{2}}+q\tau ,\;\tau =Log\left( _{i}E_{\rho }(t)\right) ,\\ \\ \end{array} \end{aligned}$$
(43)
and q is given in (42). The results in (43) are used to display Rew(xt) in Fig. 8(i) and (ii).
Figure 8(i) and (ii) show M-shaped solitons.

4 Modulation instability

The study of modulation instability ( MI) holds for systems governed by complex field equations, which possess normal mode (plane wave) solutions. Indeed Eq. (9) has the solution,
$$\begin{aligned} \bar{w}(x,\tau ) = Ae^{i(Kx-\tau \Omega )},A>0, \end{aligned}$$
(44)
where,
$$\begin{aligned} \Omega = -A^{4}\gamma -A^{2}\beta -A^{2}K\mu -\delta K^{4}+\alpha K^{2}-K\nu . \end{aligned}$$
(45)
The study of MI is based on determining the dominant parameter in the system, which is taken, here, \(\delta .\) We inspect the critical value of \(\delta\), above it MI triggers.
Now we use the perturbation expansion,
$$\begin{aligned} \begin{array}{c} \bar{w}(x,\tau ) = e^{i(Kx-\tau \Omega )}\left( A+e^{\lambda \tau }\left( \varepsilon _{1}\bar{U}(x)+i\varepsilon _{2}\bar{V}(x)\right) +O(\varepsilon _{i}^{2})\right) ,\\ \bar{w}^{*}(x,\tau ) = e^{-i(Kx-\tau \Omega )}\left( A+e^{\lambda \tau }\left( \varepsilon _{1}\bar{U}(x)-i\varepsilon _{2}\bar{V}(x)\right) +O(\varepsilon _{i}^{2})\right) ,\;i=1,2. \end{array} \end{aligned}$$
(46)
From(46) into (9), calculations give rise to,
$$\begin{aligned} \begin{array}{c} A\left( \begin{array}{l} \varepsilon _{1}\\ \varepsilon _{2} \end{array}\right) =0,\quad A=\left( \begin{array}{cc} a_{11} &{} a_{12}\\ a_{21} &{} a_{22} \end{array}\right) ,\\ a_{11}-6\delta K^{2}\bar{U}''+\delta \bar{U}^{(4)}+\alpha \bar{U}''+4A^{4}\gamma \bar{U}\\ +2A^{2}K\mu \bar{U}+2A^{2}\beta \bar{U},\\ a_{12} = A^{2}\mu \bar{V}'+4\delta K^{3}\bar{V}'-4\delta K\bar{V}^{(3)}-2\alpha K\bar{V}'\\ +\nu \bar{V}'-\lambda +\nu \bar{V}'-\lambda \bar{V},\\ a_{21}-3A^{2}\mu \bar{U}'-2A^{2}\sigma \bar{U}'-4\delta K^{3}\bar{U}'+2\alpha K-\nu \bar{U}'+\lambda \bar{U}'\\ -\nu \bar{U}'+\lambda \bar{U},\\ a_{22}=-6\delta K^{2}\bar{V}''+\delta \bar{V}^{(4)}+\alpha \bar{V}''. \end{array} \end{aligned}$$
(47)
Equation (47) solves to.\(detA=0\), which results to the eigenvalue equation,
$$\begin{aligned} \begin{array}{l} -\lambda \bar{V}\bar{U}'\left( A^{2}(3\mu +2\sigma )+4\delta K^{3}-2\alpha K+\nu \right) +\bar{U}'(x)\bar{V}'(x)\left( 4\alpha ^{2}K^{2}\right. \\ -16\alpha \delta K^{4}+8\delta K^{3}\left( A^{2}(2\mu +\sigma )+\nu \right) -4\alpha A^{2}K(2\mu +\sigma )+16\delta ^{2}K^{6}\\ +\left( A^{2}\mu +\nu \right) \left. \left( A^{2}(3\mu +2\sigma )+\nu \right) -4\alpha K\nu \bar{U}'\bar{V}'\right) +\bar{U}''\bar{V}''\left( \alpha -6\delta K^{2}\right) ^{2}\\ \delta \left( \alpha -6\delta K^{2}\right) -4\delta K\bar{V}^{(3)}\bar{U}'\left( A^{2}(3\mu +2\sigma )+4\delta K^{3}-2\alpha K+\nu \right) \\ \bar{U}^{(4)}\bar{V}''+\delta \bar{V}^{(4)}\bar{U}''\left( \alpha -6\delta K^{2}\right) +\delta ^{2}\bar{U}^{(4)}\bar{V}^{(4)}+\bar{U}(x)\left( \lambda ^{2}V(x)\right. \\ -\lambda \left( 4\delta K^{3}-2\alpha K\right. \left. +A^{2}\mu +\nu \right) V'(x)+2A^{2}V''\left( \alpha -6\delta K^{2}\right) \\ \left( 2A^{2}\gamma +\beta +K\mu \right) \left. 2A^{2}\delta \bar{V}^{(4)}\left( 2A^{2}\gamma +\beta +K\mu \right) ++4\delta \lambda K\bar{V}^{(3)}(x)\right) =0. \end{array} \end{aligned}$$
(48)
We solve the eigenvalue problem in (48) subjected to the boundary conditions (BCs) \(\bar{U}(\pm \infty )=0\) and \(\bar{V}(\pm \infty )=0\). Thus, we can take,
$$\begin{aligned} \begin{array}{c} \bar{U}(x)=B_{1}{\left\{ \begin{array}{ll} e^{-hx} &{},x>0,h>0\\ e^{hx} &{} x<0 \end{array}\right. }\\ \bar{V}(x)=B_{2}{\left\{ \begin{array}{ll} e^{-hx} &{},x>0,h>0\\ e^{hx} &{} x<0 \end{array}\right. } \end{array} \end{aligned}$$
(49)
From (49) into (48), we find that,
$$\begin{aligned} \begin{array}{c} \lambda =2\alpha hK+2\delta h^{3}K-4\delta hK^{3}-2A^{2}h\mu -h\nu -A^{2}h\sigma \pm \surd \Delta ,\\ \Delta =-h^{2}(2\alpha A^{2}\beta +4\alpha A^{4}\gamma -12A^{2}\beta \delta K^{2}-24A^{4}\gamma \delta K^{2}+\delta ^{2}h^{6}-\\ A^{4}\mu ^{2}-2A^{4}\mu \sigma -A^{4}\sigma ^{2}-12A^{2}\delta K^{3}\mu +2\alpha A^{2}K\mu +2\delta h^{4}\left( \alpha -8\delta K^{2}\right) \\ +h^{2}+4\alpha K\nu (\alpha ^{2}+2\delta (2A^{4}\gamma +A^{2}(\beta -K(\mu +2\sigma ))+18\delta K^{4})\\ -12\alpha \delta K^{2})-4\alpha h^{2}K\nu ). \end{array} \end{aligned}$$
(50)
From (50) the MI triggers when \(2\alpha hK+2\delta h^{3}K-4\delta hK^{3}-2A^{2}h\mu -h\nu -A^{2}h\sigma >0,\)whatever the sign of \(\Delta .\)Thus, we get,
$$\begin{aligned} 0<h<\sqrt{2}\sqrt{K^{2}},K<0,\delta >\frac{-2A^{2}\mu -A^{2}\sigma +2\alpha K-\nu }{4K^{3}-2h^{2}K}. \end{aligned}$$
(51)
Now, we estimate the gain in the modulated wave is given by \(\sim \lambda (K).\) It is displayed in Fig. 9(i)–(iv).

5 Conclusions

The study carried here is quite complex and fascinating. It involves the proposal of a novel Mittage–leffeler- (M) truncated proportional derivative. It is applied to the perturbed nonlinear Schrödinger equation with fourth order dispersion and quintic nonlinearity. The exact solutions of this equation are derived by implementing the unified method and they are represented graphically. These solutions exhibit various phenomena such as: geometric chaos, complex patterns like chirped solitons, breathers, and dromian patterns. In geometric chaos, undulated M-shaped solitons, complex M-shaped solitons, lump vector, and breathers interaction are visulalized. Also, the modulation instability is studied, and it is established that it triggers when the coefficient of the fourth order dispersion exceeds a critical value. The gain in the modulated wave is estimated and represented graphically. The present work contributes significantly to the understanding the behavior of complex systems.

Declarations

Ethical approval

The author declares that there is n animal studies in this work

Conflict of interest

The author declares that there is no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
Zurück zum Zitat Abdel-Gawad, H.I.: Approximate-analytic optical soliton solutions of a modifed-Gerdjikov-Ivanov equation: modulation instability. Opt. Quant. Elec. 55, (2023) Abdel-Gawad, H.I.: Approximate-analytic optical soliton solutions of a modifed-Gerdjikov-Ivanov equation: modulation instability. Opt. Quant. Elec. 55, (2023)
Zurück zum Zitat Abdel-Gawad, H.I.: Towards a unified method for exact solutions of evolution equations. an application to reaction diffusion equations with finite memory transport. J. Stat. Phys. 147, 506–521 (2012)MathSciNetCrossRefADS Abdel-Gawad, H.I.: Towards a unified method for exact solutions of evolution equations. an application to reaction diffusion equations with finite memory transport. J. Stat. Phys. 147, 506–521 (2012)MathSciNetCrossRefADS
Zurück zum Zitat Abdel-Gawad, H.I.: Self-phase modulation via similariton solutions of the perturbed NLSE Modulation instability and induced self-steepening, 2022 Commun. Theor. Phys. 74, 085005 (2022)ADS Abdel-Gawad, H.I.: Self-phase modulation via similariton solutions of the perturbed NLSE Modulation instability and induced self-steepening, 2022 Commun. Theor. Phys. 74, 085005 (2022)ADS
Zurück zum Zitat Abdel-Gawad, H.I.: Towering and internal rogue waves induced by two-layer interaction in non-uniform fluid. A 2D non-autonomous gCDGKSE. Nonlinear Dyn. 111, 1607–1624 (2023)CrossRef Abdel-Gawad, H.I.: Towering and internal rogue waves induced by two-layer interaction in non-uniform fluid. A 2D non-autonomous gCDGKSE. Nonlinear Dyn. 111, 1607–1624 (2023)CrossRef
Zurück zum Zitat Abdel-Gawad, H.I., Tantawy, M., Abdelwahab, A.M.: A new technique for solving Burger–Kadomtsev–Petviasvili equation wit an external source. Suprssion of wave breaking and shock wave. Alex. Eng. J. 69, 167–176 (2023)CrossRef Abdel-Gawad, H.I., Tantawy, M., Abdelwahab, A.M.: A new technique for solving Burger–Kadomtsev–Petviasvili equation wit an external source. Suprssion of wave breaking and shock wave. Alex. Eng. J. 69, 167–176 (2023)CrossRef
Zurück zum Zitat Abdelhakim, A.A., Machado, J.A.T.: A critical analysis of the conformable derivative. Nonlinear Dyn. 95, 3063–3073 (2019)CrossRef Abdelhakim, A.A., Machado, J.A.T.: A critical analysis of the conformable derivative. Nonlinear Dyn. 95, 3063–3073 (2019)CrossRef
Zurück zum Zitat Alharbi, Y.F., Sohaly, M.A., Abdelrahman, M.A.E.: Fundamental solutions to the stochastic perturbed nonlinear Schrödinger’s equation via gamma distribution. Res. Phys. 25, 104249 (2021) Alharbi, Y.F., Sohaly, M.A., Abdelrahman, M.A.E.: Fundamental solutions to the stochastic perturbed nonlinear Schrödinger’s equation via gamma distribution. Res. Phys. 25, 104249 (2021)
Zurück zum Zitat Aslan, E.C., Inc, M.: Optical soliton solutions of the NLSE with quadratic-cubic-Hamiltonian perturbations and modulation instability analysis. Optik 196, 162661 (2019)CrossRefADS Aslan, E.C., Inc, M.: Optical soliton solutions of the NLSE with quadratic-cubic-Hamiltonian perturbations and modulation instability analysis. Optik 196, 162661 (2019)CrossRefADS
Zurück zum Zitat Benoudina, N., Zhang, Y., Bessaad, N.: A new derivation of (2+1)-dimensional Schrödinger equation with separated real and imaginary parts of the dependent variable and its solitary wave solutions. Nonlinear Dyn. 111, 6711–6726 (2023)CrossRef Benoudina, N., Zhang, Y., Bessaad, N.: A new derivation of (2+1)-dimensional Schrödinger equation with separated real and imaginary parts of the dependent variable and its solitary wave solutions. Nonlinear Dyn. 111, 6711–6726 (2023)CrossRef
Zurück zum Zitat Biswas, A., Fessak, M., Johnson, S., Beatrice, S., Milovic, D., Jovanoski, Z., Kohl, R., Majid, F.: Optical soliton perturbation in non-Kerr law media: traveling wave solution. Opt. Laser Tech. 44(1), 263–268 (2012)CrossRefADS Biswas, A., Fessak, M., Johnson, S., Beatrice, S., Milovic, D., Jovanoski, Z., Kohl, R., Majid, F.: Optical soliton perturbation in non-Kerr law media: traveling wave solution. Opt. Laser Tech. 44(1), 263–268 (2012)CrossRefADS
Zurück zum Zitat Biswas, A., Yıldırım, Y., Yaşar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms. Chin. J. Phys. 56(5), 1990–1998 (2018)MathSciNetCrossRef Biswas, A., Yıldırım, Y., Yaşar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms. Chin. J. Phys. 56(5), 1990–1998 (2018)MathSciNetCrossRef
Zurück zum Zitat Bisws, A., Milivoc, D.A., Savesco, M., Mahmood, M.F., Khan, K.R., Kohl, R.: Ooptical soliton perturbation in nanofiber with improved nonlinear Schrödinger equation by semi-inverse variational principle. J. Nonlinear Opt. Phys. Mater. 21(04), 1250054 (2012)CrossRefADS Bisws, A., Milivoc, D.A., Savesco, M., Mahmood, M.F., Khan, K.R., Kohl, R.: Ooptical soliton perturbation in nanofiber with improved nonlinear Schrödinger equation by semi-inverse variational principle. J. Nonlinear Opt. Phys. Mater. 21(04), 1250054 (2012)CrossRefADS
Zurück zum Zitat Dmitriev, S.V., Semagin, D.A., Sukhorukov, A.A., Shigenari, T.: Chaotic character of two-soliton collisions in the weakly perturbed nonlinear Schrödinger equation. Phys. Rev. E 66, 046609 (2002)MathSciNetCrossRefADS Dmitriev, S.V., Semagin, D.A., Sukhorukov, A.A., Shigenari, T.: Chaotic character of two-soliton collisions in the weakly perturbed nonlinear Schrödinger equation. Phys. Rev. E 66, 046609 (2002)MathSciNetCrossRefADS
Zurück zum Zitat Ghanbari, B., Raza, N.: An analytical method for soliton solutions of perturbed Schrödinger’s equation with quadratic-cubic nonlinearity. Modern Phys. Lett. 33(03), 1950018 (2019)MathSciNetCrossRefADS Ghanbari, B., Raza, N.: An analytical method for soliton solutions of perturbed Schrödinger’s equation with quadratic-cubic nonlinearity. Modern Phys. Lett. 33(03), 1950018 (2019)MathSciNetCrossRefADS
Zurück zum Zitat Gilson, C., Hietarinta, J., Nimmo, J., Ohta, Y.: Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solution. Phys. Rev. E 68, 016614 (2003)MathSciNetCrossRefADS Gilson, C., Hietarinta, J., Nimmo, J., Ohta, Y.: Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solution. Phys. Rev. E 68, 016614 (2003)MathSciNetCrossRefADS
Zurück zum Zitat Guan, X., Wang, H., Liu, W., Liu, X.: Modulation instability, localized wave solutions of the modified Gerdjikov–Ivanov equation with anomalous dispersion. Nonlinear Dyn. 111, 7619–7633 (2023)CrossRef Guan, X., Wang, H., Liu, W., Liu, X.: Modulation instability, localized wave solutions of the modified Gerdjikov–Ivanov equation with anomalous dispersion. Nonlinear Dyn. 111, 7619–7633 (2023)CrossRef
Zurück zum Zitat Hussain, A., Jhangeer, A., Abbas, N., Khan, I., Sherif, El-S. M.: Optical solitons of fractional complex Ginzburg-Landau equation with conformable, beta, and M-truncated derivatives: a comparative study. Adv. Differ. Equ. (2020) Hussain, A., Jhangeer, A., Abbas, N., Khan, I., Sherif, El-S. M.: Optical solitons of fractional complex Ginzburg-Landau equation with conformable, beta, and M-truncated derivatives: a comparative study. Adv. Differ. Equ. (2020)
Zurück zum Zitat Jhangeer, A., Faridi, W.A., Asjad, M.I., Akgül, A.: Analytical study of soliton solutions for an improved perturbed Schrödinger equation with Kerr law non-linearity in non-linear optics by an expansion algorithm. Proc. Differ. Equ. Appl. Math. 4, 100102 (2021) Jhangeer, A., Faridi, W.A., Asjad, M.I., Akgül, A.: Analytical study of soliton solutions for an improved perturbed Schrödinger equation with Kerr law non-linearity in non-linear optics by an expansion algorithm. Proc. Differ. Equ. Appl. Math. 4, 100102 (2021)
Zurück zum Zitat Khalil, E.M., Sulaiman, T.A., Yusuf, A., Inc, M.: The M -fractional improved perturbed nonlinear Schrödinger equation: Optical solitons and modulation instability analysis. Int. J. Mod. Phys. B. 35(08), 2150121 (2021)CrossRefADS Khalil, E.M., Sulaiman, T.A., Yusuf, A., Inc, M.: The M -fractional improved perturbed nonlinear Schrödinger equation: Optical solitons and modulation instability analysis. Int. J. Mod. Phys. B. 35(08), 2150121 (2021)CrossRefADS
Zurück zum Zitat Khalil, R., Horani, A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRef Khalil, R., Horani, A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRef
Zurück zum Zitat Kodama, Y.: Optical solitons is a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)CrossRefADS Kodama, Y.: Optical solitons is a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)CrossRefADS
Zurück zum Zitat Mahak, N., Akram, G.: The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 207, 164467 (2020)CrossRefADS Mahak, N., Akram, G.: The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 207, 164467 (2020)CrossRefADS
Zurück zum Zitat Martínez, H.Y., Pashrashid, A., Gómez-Aguilar, J.F., Akinyemi, L., Rezazadeh, H.: The novel soliton solutions for the conformable perturbed nonlinear Schrödinger equation. Mod Phys. Lett. B 36(08), 2150597 (2022)CrossRef Martínez, H.Y., Pashrashid, A., Gómez-Aguilar, J.F., Akinyemi, L., Rezazadeh, H.: The novel soliton solutions for the conformable perturbed nonlinear Schrödinger equation. Mod Phys. Lett. B 36(08), 2150597 (2022)CrossRef
Zurück zum Zitat Miao, X.-J., Zhang, Z.Y.: The (\(G^{\prime }/G)\)modified -expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Commun. Nonlinear Sci. Number. Simul. 16(11), 4242–59 (2011) Miao, X.-J., Zhang, Z.Y.: The (\(G^{\prime }/G)\)modified -expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Commun. Nonlinear Sci. Number. Simul. 16(11), 4242–59 (2011)
Zurück zum Zitat Mirzazadeh, M., Alqahtani, R.T., Biswas, A.: Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati–Bernoulli sub-ODE method and Kudryashov’s scheme. Optik 145, 74–78 (2017)CrossRefADS Mirzazadeh, M., Alqahtani, R.T., Biswas, A.: Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati–Bernoulli sub-ODE method and Kudryashov’s scheme. Optik 145, 74–78 (2017)CrossRefADS
Zurück zum Zitat Osman, M.S., Almusawa, H., Tariq, K.U., Anwar, S., Kumar, S., Younis, M., Ma, W.-X.: On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. J. Ocean Eng. Sci. 7(5), 431–443 (2022)CrossRef Osman, M.S., Almusawa, H., Tariq, K.U., Anwar, S., Kumar, S., Younis, M., Ma, W.-X.: On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. J. Ocean Eng. Sci. 7(5), 431–443 (2022)CrossRef
Zurück zum Zitat Owyed, S., Abdou, M.A., Abdel-Aty, A., Dutta, H.: Optical solitons solutions for perturbed time fractional nonlinear Schrödinger equation via two strategic algorithms. AIMS Math. 5(3), 2057–2070 (2020)MathSciNetCrossRef Owyed, S., Abdou, M.A., Abdel-Aty, A., Dutta, H.: Optical solitons solutions for perturbed time fractional nonlinear Schrödinger equation via two strategic algorithms. AIMS Math. 5(3), 2057–2070 (2020)MathSciNetCrossRef
Zurück zum Zitat Ozisik, M.: On the optical soliton solution of the dimensional perturbed NLSE in optical nano-fibers. Optik 250 Part 1, 168233 (2022)CrossRefADS Ozisik, M.: On the optical soliton solution of the dimensional perturbed NLSE in optical nano-fibers. Optik 250 Part 1, 168233 (2022)CrossRefADS
Zurück zum Zitat Qiu, D., Zhang, Y.: Novel solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary condition. Nonlinear Dyn. 111, 7657–7670 (2023)CrossRef Qiu, D., Zhang, Y.: Novel solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary condition. Nonlinear Dyn. 111, 7657–7670 (2023)CrossRef
Zurück zum Zitat Quintero, N.R., Mertens, F.G., Bishop, A.R.: Generalized traveling-wave method, variational approach, and modified conserved quantities for the perturbed nonlinear Schrödinger equation. Phys. Rev. E 82, 016606 (2010)MathSciNetCrossRefADS Quintero, N.R., Mertens, F.G., Bishop, A.R.: Generalized traveling-wave method, variational approach, and modified conserved quantities for the perturbed nonlinear Schrödinger equation. Phys. Rev. E 82, 016606 (2010)MathSciNetCrossRefADS
Zurück zum Zitat Ray, S.S., Das, N.: New optical soliton solutions of fractional perturbed nonlinear Schrödinger equation in nanofibers Mod. Phys. Lett. B 36(02), 2150544 (2022) Ray, S.S., Das, N.: New optical soliton solutions of fractional perturbed nonlinear Schrödinger equation in nanofibers Mod. Phys. Lett. B 36(02), 2150544 (2022)
Zurück zum Zitat Rizvi, S.T.R., Ahmad, S., Nadeem, M.F., Awais, M.: Optical dromions for perturbed nonlinear Schrödinger equation with cubic quintic septic media. Optik 226(2), 165955 (2021)CrossRefADS Rizvi, S.T.R., Ahmad, S., Nadeem, M.F., Awais, M.: Optical dromions for perturbed nonlinear Schrödinger equation with cubic quintic septic media. Optik 226(2), 165955 (2021)CrossRefADS
Zurück zum Zitat Rizvi, S.T.R., Seadawy, R., Batool, T., Ashraf, M.A.: Homoclinic breaters, mulitwave, periodic cross-kink and periodic cross-rational solutions for improved perturbed nonlinear Schrödinger’s with quadratic-cubic nonlinearity. Chaos Solitons Fractals 161, 112353 (2022)CrossRef Rizvi, S.T.R., Seadawy, R., Batool, T., Ashraf, M.A.: Homoclinic breaters, mulitwave, periodic cross-kink and periodic cross-rational solutions for improved perturbed nonlinear Schrödinger’s with quadratic-cubic nonlinearity. Chaos Solitons Fractals 161, 112353 (2022)CrossRef
Zurück zum Zitat Shehata, M.S.M.: A new solitary wave solution of the perturbed nonlinear Schrödinger equation using a Riccati–Bernoulli Sub ODE method. Int. J. Phys. Sci. 11(6), 80–84 (2016)CrossRef Shehata, M.S.M.: A new solitary wave solution of the perturbed nonlinear Schrödinger equation using a Riccati–Bernoulli Sub ODE method. Int. J. Phys. Sci. 11(6), 80–84 (2016)CrossRef
Zurück zum Zitat Wazwaz, A.-M.: Bright and dark optical solitons of the (2+1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik 251(20), 168334 (2021) Wazwaz, A.-M.: Bright and dark optical solitons of the (2+1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik 251(20), 168334 (2021)
Zurück zum Zitat Wazwaz, A.-M., Alhejaili, W., AL-Ghamdi, A.O., El-Tantawy, S.A.: Bright and dark modulated optical solitons for a (2+1)-dimensional optical Schrödinger system with third-order dispersion and nonlinearity. Optik 274, 170582 (2023) Wazwaz, A.-M., Alhejaili, W., AL-Ghamdi, A.O., El-Tantawy, S.A.: Bright and dark modulated optical solitons for a (2+1)-dimensional optical Schrödinger system with third-order dispersion and nonlinearity. Optik 274, 170582 (2023)
Zurück zum Zitat Xu, G.Q., Wazwaz, A.M.: A new (n+1)-dimensional generalized Kadomtsev–Petviashvili equation: integrability characteristics and localized solutions. Nonlinear Dyn. 111, 9495–9507 (2023)CrossRef Xu, G.Q., Wazwaz, A.M.: A new (n+1)-dimensional generalized Kadomtsev–Petviashvili equation: integrability characteristics and localized solutions. Nonlinear Dyn. 111, 9495–9507 (2023)CrossRef
Zurück zum Zitat Yusuf, A., Inc, M., Aliyu, A.I., Baleanu, D.: Beta derivative applied to dark and singular optical solitons for the resonance perturbed NLSE. Eur. Phys. J. Plus 134, 433 (2019)CrossRef Yusuf, A., Inc, M., Aliyu, A.I., Baleanu, D.: Beta derivative applied to dark and singular optical solitons for the resonance perturbed NLSE. Eur. Phys. J. Plus 134, 433 (2019)CrossRef
Zurück zum Zitat Zai-Yun, Z., Xiang-Yang, G., De-Min, Y., Ying-Hui, Z.: A Note on Exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr Law nonlinearity. Commun. Theor. Phys. 57, 764 (2012)MathSciNetCrossRefADS Zai-Yun, Z., Xiang-Yang, G., De-Min, Y., Ying-Hui, Z.: A Note on Exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr Law nonlinearity. Commun. Theor. Phys. 57, 764 (2012)MathSciNetCrossRefADS
Zurück zum Zitat Zhang, Z.-Y., Z. -H., Liu, X. -J., Miao, Y. -Z. Chen: New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216(10), 3064–3072 (2010) Zhang, Z.-Y., Z. -H., Liu, X. -J., Miao, Y. -Z. Chen: New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216(10), 3064–3072 (2010)
Zurück zum Zitat Zhang, Z., Wu, J.: Generalized (\(G\prime /G\))-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials. Opt. Quant. Electron. 49, 52 (2017)CrossRef Zhang, Z., Wu, J.: Generalized (\(G\prime /G\))-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials. Opt. Quant. Electron. 49, 52 (2017)CrossRef
Metadaten
Titel
Multiple solitons structures in optical fibers via PNLSE with a novel truncated M-derivative: modulated wave gain
verfasst von
H. I. Abdel-Gawad
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06461-0

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt