Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Multistage Skarn-Related Tourmalines from the Galinge Deposit: A Significant Indicator for Varying Fluid Composition

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Galinge skarn deposit, the largest iron polymetallic skarn deposit in the Qiman Tagh metallogenic belt (western China), was formed via multi-stage fluid-rock interactions. It is divided into six ore domains from east to the west. Skarn-related tourmaline is ubiquitous in the V ore domain of the Galinge deposit, occurring both in the altered basaltic andesite (Tour-I) and in the sandstone (Tour-II). The tourmaline composition in both rock types is within the dravite–uvite solid solution. Some Tour-I crystals show compositional growth zoning in which the early stage uvite cores (Gen-1) are overgrown by second-stage dravite rims (Gen-2). Some Tour-I crystals also show overgrowth rims and fracture-infilled textures (Gen-3). Some other Tour-1 tourmalines without clear growth zoning (Others) show an intermediate composition between Gen-2 and Gen-3.The varying composition of the zoned tourmalines records important information about the evolving hydrothermal fluids and host rocks. Gen-1 and Gen-2, displaying a narrow and high range of Fe2+/(Fe2+ + Mg) ratios, are much more equilibrated with mafic host rocks. The alkaline (K + Na) content of tourmalines is associated with the salinities of the ore-forming fluids. The lowest Na t K content of Gen-3 indicates that it may have been equilibrated with a low-salinity fluid environment in which the concentration of metal-chlorite complexes decreased. The Gen-3 stage is considered to be the main ore-forming event. Tour-II have similar Ca/(K + Na + Ca) ratios with Gen-1 and Gen-2 ratios, which indicates that they are contemporarily formed by the same fluid as Tour-I. Through compositional comparison of the tourmalines with those from other hydrothermal deposit types, the Galinge skarn-related tourmalines are overwhelmingly controlled by the MgFe-1 substitution mechanism. This is different from the compositions of tourmalines in porphyry, VMS, and vein-greisen type deposits, which are, respectively, controlled by the Fe3+Al-1, (Ca Mg)(Na Al)–1 and (Na Mg)(□Al)-1, and (Fe2+Fe3+)(MgAl)-1 substitution mechanisms. Different tourmaline compositions and substitution mechanisms could be used as guides for mineral exploration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bačík P, Uher P, Sýkora M, Lipka J (2008) Low-Al tourmalines of the schorl–dravite–povondraite series in redeposited tourmalinites from the Western Carpathians. Slovakia. Can Mineral 46(5):1117–1129CrossRef Bačík P, Uher P, Sýkora M, Lipka J (2008) Low-Al tourmalines of the schorl–dravite–povondraite series in redeposited tourmalinites from the Western Carpathians. Slovakia. Can Mineral 46(5):1117–1129CrossRef
2.
Zurück zum Zitat Baksheev IA, Tikhomirov PL, Yapaskurt VO, Vigasina MF, Prokof Ev VY, Ustinov VI (2009) Tourmaline of the Mramorny Tin Cluster, Chukotka Peninsula. Russia. Can Mineral 47(5):1177–1194CrossRef Baksheev IA, Tikhomirov PL, Yapaskurt VO, Vigasina MF, Prokof Ev VY, Ustinov VI (2009) Tourmaline of the Mramorny Tin Cluster, Chukotka Peninsula. Russia. Can Mineral 47(5):1177–1194CrossRef
3.
Zurück zum Zitat Baksheev IA, Chitalin AF, Yapaskurt VO, Vigasina MF, Bryzgalov IA, Ustinov VI (2010) Tourmaline in the Vetka porphyry copper-molybdenum deposit of the Chukchi Peninsula of Russia. Mosc Univ Geol Bull 65(1):27–38CrossRef Baksheev IA, Chitalin AF, Yapaskurt VO, Vigasina MF, Bryzgalov IA, Ustinov VI (2010) Tourmaline in the Vetka porphyry copper-molybdenum deposit of the Chukchi Peninsula of Russia. Mosc Univ Geol Bull 65(1):27–38CrossRef
4.
Zurück zum Zitat Baksheev IA, Prokof Ev VY, Yapaskurt VO, Vigasina MF, Zorina LD, Solov Ev VN (2011) Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia. Russia. Can Mineral 49(1):263–276CrossRef Baksheev IA, Prokof Ev VY, Yapaskurt VO, Vigasina MF, Zorina LD, Solov Ev VN (2011) Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia. Russia. Can Mineral 49(1):263–276CrossRef
5.
Zurück zum Zitat Baksheev IA, Prokof’Ev VY, Zaraisky GP et al (2012) Tourmaline as a prospecting guide for the porphyry-style deposits. Eur J Mineral 24(6):957–979CrossRef Baksheev IA, Prokof’Ev VY, Zaraisky GP et al (2012) Tourmaline as a prospecting guide for the porphyry-style deposits. Eur J Mineral 24(6):957–979CrossRef
6.
Zurück zum Zitat Bandyopadhyay BK, Slack JF, Palmer MR et al (1993) Tourmalinites associated with stratabound massive sulphide deposits in the Proterozoic Sakoli Group, Nagpur district, central India. In: Proceedings of Eight Quad IAGOD Symposium, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 867–885 Bandyopadhyay BK, Slack JF, Palmer MR et al (1993) Tourmalinites associated with stratabound massive sulphide deposits in the Proterozoic Sakoli Group, Nagpur district, central India. In: Proceedings of Eight Quad IAGOD Symposium, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 867–885
7.
Zurück zum Zitat Bone Y (1988) The geological setting of tourmalinite at Rum Jungle, NT, Australia—genetic and economic implications. Min Depos 23(1):34–41 Bone Y (1988) The geological setting of tourmalinite at Rum Jungle, NT, Australia—genetic and economic implications. Min Depos 23(1):34–41
8.
Zurück zum Zitat Cavarretta G, Puxeddu M (1990) Schorl-dravite-ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of the Larderello geothermal field, Italy. Econ Geol 85(6):1236–1251CrossRef Cavarretta G, Puxeddu M (1990) Schorl-dravite-ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of the Larderello geothermal field, Italy. Econ Geol 85(6):1236–1251CrossRef
9.
Zurück zum Zitat Clarke DB, Readon NC, Chatterjee AK, Gregoire DC (1989) Tourmaline composition as a guide tomineral exploration; a reconnaissance study from NovaScotia using discriminant function analysis. Econ Geol 84:1921–1935CrossRef Clarke DB, Readon NC, Chatterjee AK, Gregoire DC (1989) Tourmaline composition as a guide tomineral exploration; a reconnaissance study from NovaScotia using discriminant function analysis. Econ Geol 84:1921–1935CrossRef
10.
Zurück zum Zitat Cleland JM, Morey GB, McSwiggen PL (1996) Significance of tourmaline-rich rocks in the North Range Group of the Cuyuna Iron Range, east-central Minnesota. Econ Geol 91(7):1282–1291CrossRef Cleland JM, Morey GB, McSwiggen PL (1996) Significance of tourmaline-rich rocks in the North Range Group of the Cuyuna Iron Range, east-central Minnesota. Econ Geol 91(7):1282–1291CrossRef
11.
Zurück zum Zitat Deb M, Tiwary A, Palmer MR (1997) Tourmaline in Proterozoic massive sulfide deposits from Rajasthan. India. Min Depos 32(1):94–99CrossRef Deb M, Tiwary A, Palmer MR (1997) Tourmaline in Proterozoic massive sulfide deposits from Rajasthan. India. Min Depos 32(1):94–99CrossRef
12.
Zurück zum Zitat Dobson DC (1982) Geology and alteration of the Lost River tin-tungsten-fluorine deposit, Alaska. Econ Geol 77(4):1033–1052CrossRef Dobson DC (1982) Geology and alteration of the Lost River tin-tungsten-fluorine deposit, Alaska. Econ Geol 77(4):1033–1052CrossRef
13.
Zurück zum Zitat Dube B, Guha J (1993) Factors controlling the occurrence of ferro-axinite within Archean gold-copper-rich quartz veins; Cooke Mine, Chibougamau area, Abitibi greenstone belt. Can Mineral 31(4):905–916 Dube B, Guha J (1993) Factors controlling the occurrence of ferro-axinite within Archean gold-copper-rich quartz veins; Cooke Mine, Chibougamau area, Abitibi greenstone belt. Can Mineral 31(4):905–916
14.
Zurück zum Zitat Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7:301–306CrossRef Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7:301–306CrossRef
15.
Zurück zum Zitat Ethier VG, Campbell FA (1977) Tourmaline concentrations in Proterozoic sediments of the southern Cordillera of Canada and their economic significance. Can J Earth Sci 14(10):2348–2363CrossRef Ethier VG, Campbell FA (1977) Tourmaline concentrations in Proterozoic sediments of the southern Cordillera of Canada and their economic significance. Can J Earth Sci 14(10):2348–2363CrossRef
16.
Zurück zum Zitat Garba I (1996) Tourmalinization related to Late Proterozoic-Early Palaeozoic lode gold mineralization in the Bin Yauri area, Nigeria. Miner Depos 31(3):201–209CrossRef Garba I (1996) Tourmalinization related to Late Proterozoic-Early Palaeozoic lode gold mineralization in the Bin Yauri area, Nigeria. Miner Depos 31(3):201–209CrossRef
17.
Zurück zum Zitat Grew ES (1996) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. Rev Mineral Geochem 33(1):387–502 Grew ES (1996) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. Rev Mineral Geochem 33(1):387–502
18.
Zurück zum Zitat Grew ES, Anovitz LM (1996) Boron: mineralogy, petrology and geochemistry. Mineral Soc Am, Washington DC Grew ES, Anovitz LM (1996) Boron: mineralogy, petrology and geochemistry. Mineral Soc Am, Washington DC
19.
Zurück zum Zitat Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11(2):201–215CrossRef Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11(2):201–215CrossRef
20.
Zurück zum Zitat Hellingwerf RH, Gatedal K, Gallagher V, Baker JH (1994) Tourmaline in the central Swedish ore district. Min Depos 29(2):189–205 Hellingwerf RH, Gatedal K, Gallagher V, Baker JH (1994) Tourmaline in the central Swedish ore district. Min Depos 29(2):189–205
21.
Zurück zum Zitat Henry DJ, Dutrow BL (1990) Ca substitution in Li poor aluminous tourmaline. Can Mineral 28:111–124 Henry DJ, Dutrow BL (1990) Ca substitution in Li poor aluminous tourmaline. Can Mineral 28:111–124
22.
Zurück zum Zitat Henry DJ, Dutrow BL (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib Mineral Petrol 112(2–3):203–218CrossRef Henry DJ, Dutrow BL (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib Mineral Petrol 112(2–3):203–218CrossRef
23.
Zurück zum Zitat Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. Rev Mineral Geochem 33(1):503–557 Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. Rev Mineral Geochem 33(1):503–557
24.
Zurück zum Zitat Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral- An example from the staurolite-grade metapelites of NW Maine. Am Mineral 70(1–2):1–15 Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral- An example from the staurolite-grade metapelites of NW Maine. Am Mineral 70(1–2):1–15
25.
Zurück zum Zitat Henry DJ, Novák M, Hawthorne FC et al (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96(5–6):895–913CrossRef Henry DJ, Novák M, Hawthorne FC et al (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96(5–6):895–913CrossRef
26.
Zurück zum Zitat Ito O, Plimer IR (1987) The significance of tourmaline in the stratiform Dome Rock deposit. Australia. Min Geol 37(206):403–418 Ito O, Plimer IR (1987) The significance of tourmaline in the stratiform Dome Rock deposit. Australia. Min Geol 37(206):403–418
27.
Zurück zum Zitat Jiang SY, Palmer MR, Li YH et al (1995) Chemical compositions of tourmaline in the Yindongzi-Tongmugou Pb-Zn deposits, Qinling, China: implications for hydrothermal ore-forming processes. Miner Depos 30(3–4):225–234CrossRef Jiang SY, Palmer MR, Li YH et al (1995) Chemical compositions of tourmaline in the Yindongzi-Tongmugou Pb-Zn deposits, Qinling, China: implications for hydrothermal ore-forming processes. Miner Depos 30(3–4):225–234CrossRef
28.
Zurück zum Zitat Jiang SY, Palmer MR, Slack JF et al (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Econ Geol 93(1):47–67CrossRef Jiang SY, Palmer MR, Slack JF et al (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Econ Geol 93(1):47–67CrossRef
29.
Zurück zum Zitat Jiang SY, Palmer MR, Yeats CJ (2002) Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton. Western Australia. Chem Geol 188(3):229–247 Jiang SY, Palmer MR, Yeats CJ (2002) Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton. Western Australia. Chem Geol 188(3):229–247
30.
Zurück zum Zitat King RW, Kerrich R (1989) Chromian dravite associated with ultramafic-rock-hosted Archean lode gold deposits, Timmins-Porcupine District, Ontario. Can Mineral 27:419–426 King RW, Kerrich R (1989) Chromian dravite associated with ultramafic-rock-hosted Archean lode gold deposits, Timmins-Porcupine District, Ontario. Can Mineral 27:419–426
31.
Zurück zum Zitat Koval PV, Zorina LD, Kitajev NA, Spiridonov AM, Ariunbileg S (1991) The use of tourmaline in geochemical prospecting for gold and copper mineralization. J Geochem Explor 40:349–360CrossRef Koval PV, Zorina LD, Kitajev NA, Spiridonov AM, Ariunbileg S (1991) The use of tourmaline in geochemical prospecting for gold and copper mineralization. J Geochem Explor 40:349–360CrossRef
32.
Zurück zum Zitat Kwak TA (2012) W-Sn skarn deposits: and related metamorphic skarns and granitoids. Elsevier, Netherland, pp 1–449 Kwak TA (2012) W-Sn skarn deposits: and related metamorphic skarns and granitoids. Elsevier, Netherland, pp 1–449
33.
Zurück zum Zitat Layne GD, Spooner E (1991) The JC tin skarn deposit, southern Yukon Territory; I, Geology, paragenesis, and fluid inclusion microthermometry. Econ Geol 86(1):29–47CrossRef Layne GD, Spooner E (1991) The JC tin skarn deposit, southern Yukon Territory; I, Geology, paragenesis, and fluid inclusion microthermometry. Econ Geol 86(1):29–47CrossRef
34.
Zurück zum Zitat London D (2011) Experimental synthesis and stability of tourmaline: a historical overview. Can Mineral 49(1):117–136CrossRef London D (2011) Experimental synthesis and stability of tourmaline: a historical overview. Can Mineral 49(1):117–136CrossRef
35.
Zurück zum Zitat Lynch G, Ortega J (1997) Hydrothermal alteration and tourmaline-albite equilibria at the Coxheath porphyry Cu-Mo-Au deposit. Nova Scotia. Can Mineral 35(1):79–94 Lynch G, Ortega J (1997) Hydrothermal alteration and tourmaline-albite equilibria at the Coxheath porphyry Cu-Mo-Au deposit. Nova Scotia. Can Mineral 35(1):79–94
36.
Zurück zum Zitat Mao J (1995) Tourmalinite from northern Guangxi, China. Miner Deposita 30(3–4):235–245 Mao J (1995) Tourmalinite from northern Guangxi, China. Miner Deposita 30(3–4):235–245
37.
Zurück zum Zitat Mao JW, Wang PA, Wang DH, Bi CS (1993) The trace of tourmaline for rock-forming and metallogenic environments and its applied conditions. Geol Rev 39(6):497–507 Mao JW, Wang PA, Wang DH, Bi CS (1993) The trace of tourmaline for rock-forming and metallogenic environments and its applied conditions. Geol Rev 39(6):497–507
38.
Zurück zum Zitat Morgan GB, London D (1989) Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks. Contrib Miner Petr 102(3):281–297CrossRef Morgan GB, London D (1989) Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks. Contrib Miner Petr 102(3):281–297CrossRef
39.
Zurück zum Zitat Nie FJ, Zhang HT, Sun H, Fun JT (1990) Discovery of tourmalinites in the Bieluwuto copper metallogenic district, Nei Mongol, and their geological significance. Geol Rev 36(5):467–472 Nie FJ, Zhang HT, Sun H, Fun JT (1990) Discovery of tourmalinites in the Bieluwuto copper metallogenic district, Nei Mongol, and their geological significance. Geol Rev 36(5):467–472
40.
Zurück zum Zitat Ozaki M (1972) Chemical composition and occurrence of axinite. Kumamoto J Sci Geol 9(2):1–34 Ozaki M (1972) Chemical composition and occurrence of axinite. Kumamoto J Sci Geol 9(2):1–34
41.
Zurück zum Zitat Pal DC, Trumbull RB, Wiedenbeck M (2010) Chemical and boron isotope compositions of tourmaline from the Jaduguda U (–Cu–Fe) deposit, Singhbhum shear zone, India: Implications for the sources and evolution of mineralizing fluids. Chem Geol 277(3):245–260CrossRef Pal DC, Trumbull RB, Wiedenbeck M (2010) Chemical and boron isotope compositions of tourmaline from the Jaduguda U (–Cu–Fe) deposit, Singhbhum shear zone, India: Implications for the sources and evolution of mineralizing fluids. Chem Geol 277(3):245–260CrossRef
42.
Zurück zum Zitat Pertsev NN (1971) Parageneses of boron minerals in magnesian skarns. Nauka, Moscow Pertsev NN (1971) Parageneses of boron minerals in magnesian skarns. Nauka, Moscow
43.
Zurück zum Zitat Pirajno F (2008) Hydrothermal processes and mineralsystems. Springer, Netherlands Pirajno F (2008) Hydrothermal processes and mineralsystems. Springer, Netherlands
44.
Zurück zum Zitat Pirajno F, Smithies RH (1992) The FeO/(FeOt+MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J Geochem Explor 42:371–381CrossRef Pirajno F, Smithies RH (1992) The FeO/(FeOt+MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J Geochem Explor 42:371–381CrossRef
45.
Zurück zum Zitat Plimer IR (1986) Tourmalinites from the Golden Dyke dome, northern Australia. Min Depos 21(4):263–270 Plimer IR (1986) Tourmalinites from the Golden Dyke dome, northern Australia. Min Depos 21(4):263–270
46.
Zurück zum Zitat Robinson GD (1989) Stream sediment tourmaline geochemistry in massive sulfide exploration: an example from Virginia. USA. J Geochem Explor 34(2):173–188CrossRef Robinson GD (1989) Stream sediment tourmaline geochemistry in massive sulfide exploration: an example from Virginia. USA. J Geochem Explor 34(2):173–188CrossRef
47.
Zurück zum Zitat Rozendaal A, Bruwer L (1995) Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn-(W) mineralization in the Cape Granite Suite. South Africa. J Afr Earth Sci 21(1):141–155CrossRef Rozendaal A, Bruwer L (1995) Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn-(W) mineralization in the Cape Granite Suite. South Africa. J Afr Earth Sci 21(1):141–155CrossRef
48.
Zurück zum Zitat Sanyal A, Nugent M, Reeder RJ et al (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta 64(9):1551–1555CrossRef Sanyal A, Nugent M, Reeder RJ et al (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta 64(9):1551–1555CrossRef
49.
Zurück zum Zitat Shibue Y (1984) Chemical compositions of tourmaline in the vein-type tungsten deposits of the Kaneuchi mine. Japan. Min Depos 19(4):298–303 Shibue Y (1984) Chemical compositions of tourmaline in the vein-type tungsten deposits of the Kaneuchi mine. Japan. Min Depos 19(4):298–303
50.
Zurück zum Zitat Skewes MA, Holmgren C, Stern CR (2003) The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids. Min Depos 38(1):2–21CrossRef Skewes MA, Holmgren C, Stern CR (2003) The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids. Min Depos 38(1):2–21CrossRef
51.
Zurück zum Zitat Słaby E, Kozłowski A (2005) Composition of tourmalines from tin-tungsten-bearing country rock of the Variscan Karkonosze granitoid-a record of the wall rock and hydrothermal fluid interaction. Neues Jahrbuch für Mineralogie-Abhandlungen. J Mineral Geochem 181(3):245–263 Słaby E, Kozłowski A (2005) Composition of tourmalines from tin-tungsten-bearing country rock of the Variscan Karkonosze granitoid-a record of the wall rock and hydrothermal fluid interaction. Neues Jahrbuch für Mineralogie-Abhandlungen. J Mineral Geochem 181(3):245–263
52.
Zurück zum Zitat Slack JF (1982) Tourmaline in Appalachian-Caledonian massive sulphide deposits and its exploration significance. Trans Inst Min Metall, Sect B: Appl Earth Sci 91(May):81–89 Slack JF (1982) Tourmaline in Appalachian-Caledonian massive sulphide deposits and its exploration significance. Trans Inst Min Metall, Sect B: Appl Earth Sci 91(May):81–89
53.
Zurück zum Zitat Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. Rev Mineral Geochem 33(1):559–643 Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. Rev Mineral Geochem 33(1):559–643
54.
Zurück zum Zitat Slack JF, Coad PR (1989) Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites. Can J Earth Sci 26(4):694–715CrossRef Slack JF, Coad PR (1989) Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites. Can J Earth Sci 26(4):694–715CrossRef
55.
Zurück zum Zitat Slack JF, Palmer MR, Stevens BP et al (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88(3):505–541CrossRef Slack JF, Palmer MR, Stevens BP et al (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88(3):505–541CrossRef
56.
Zurück zum Zitat Slack JF, Shaw DR, Leitch C et al (2000) Tourmalinites and coticules from the Sullivan Pb-Zn-Ag deposit and vicinity, British Columbia: Geology, geochemistry, and genesis. Geol Environ Sullivan Depos Br C: Geol Assoc Can Miner Depos Div Spec Publ 1:736–767 Slack JF, Shaw DR, Leitch C et al (2000) Tourmalinites and coticules from the Sullivan Pb-Zn-Ag deposit and vicinity, British Columbia: Geology, geochemistry, and genesis. Geol Environ Sullivan Depos Br C: Geol Assoc Can Miner Depos Div Spec Publ 1:736–767
57.
Zurück zum Zitat Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326CrossRef Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326CrossRef
58.
Zurück zum Zitat Sun HT, Ge CH (1989) Discovery of Banded Tourmalinite and Mineralized Tourmaline-Rich Chemical Sedimentary-Rocks from Stratabound and Stratiform Copper-Deposits in Zhongtiaoshan District. Shanxi Province. Chin Sci Bull 34(10):846–851 Sun HT, Ge CH (1989) Discovery of Banded Tourmalinite and Mineralized Tourmaline-Rich Chemical Sedimentary-Rocks from Stratabound and Stratiform Copper-Deposits in Zhongtiaoshan District. Shanxi Province. Chin Sci Bull 34(10):846–851
59.
Zurück zum Zitat Taylor BE, Slack JF (1984) Tourmalines from Appalachian-Caledonian massive sulfide deposits; textural, chemical, and isotopic relationships. Econ Geol 79(7):1703–1726CrossRef Taylor BE, Slack JF (1984) Tourmalines from Appalachian-Caledonian massive sulfide deposits; textural, chemical, and isotopic relationships. Econ Geol 79(7):1703–1726CrossRef
60.
Zurück zum Zitat van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16CrossRef van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16CrossRef
61.
Zurück zum Zitat Yauvz F, Ali I, Jiang SY (1999) Tourmaline compositions from the Salikvan porphyry Cu-Mo deposit and vicinity, northeastern Turkey. Can Mineral 37:1007–1023 Yauvz F, Ali I, Jiang SY (1999) Tourmaline compositions from the Salikvan porphyry Cu-Mo deposit and vicinity, northeastern Turkey. Can Mineral 37:1007–1023
62.
Zurück zum Zitat Yu JM, Jiang SY (2003) Chemical composition of tourmaline from the Yunlong tin deposit, Yunnan, China: implications for ore genesis and mineral exploration. Min Pet 77(1–2):67–84CrossRef Yu JM, Jiang SY (2003) Chemical composition of tourmaline from the Yunlong tin deposit, Yunnan, China: implications for ore genesis and mineral exploration. Min Pet 77(1–2):67–84CrossRef
63.
Zurück zum Zitat Zheng Z, Chen YJ, Deng XH, Yue SW, Chen HJ (2016) Muscovite 40Ar/39Ar dating of the Baiganhu W-Sn orefield, Qimantag, East Kunlun Mountains, and its geological implications. Geol China 43(4):1341–1352 Zheng Z, Chen YJ, Deng XH, Yue SW, Chen HJ (2016) Muscovite 40Ar/39Ar dating of the Baiganhu W-Sn orefield, Qimantag, East Kunlun Mountains, and its geological implications. Geol China 43(4):1341–1352
Metadaten
Titel
Multistage Skarn-Related Tourmalines from the Galinge Deposit: A Significant Indicator for Varying Fluid Composition
verfasst von
Dr. Miao Yu
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7907-8_4