Skip to main content
Erschienen in: Quantum Information Processing 6/2015

Open Access 01.06.2015

Mutually unbiased maximally entangled bases in \(\mathbb {C}^d\otimes \mathbb {C}^{kd}\)

verfasst von: Yuan-Hong Tao, Hua Nan, Jun Zhang, Shao-Ming Fei

Erschienen in: Quantum Information Processing | Ausgabe 6/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study maximally entangled bases in bipartite systems \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\), which are mutually unbiased. By systematically constructing maximally entangled bases, we present an approach in constructing mutually unbiased maximally entangled bases. In particular, five maximally entangled bases in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) and three maximally entangled bases in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\) that are mutually unbiased are presented.
Hinweise
This work is supported by Natural Science Foundation of China under numbers 11361065 and 11275131; the Natural Science Foundation of Jilin Province under number 201215239.

1 Introduction

Quantum entanglement is central in quantum information processing and quantum computation [112]. In particular, maximally entangled states play vital role in quantum information processing tasks such as perfect teleportation [519]. It has been proved that mixed maximally entangled states also exist when the two individual dimensions of a bipartite system are not equal [13]. A pure state \(|\psi \rangle \) is said to be a \(d\otimes d'\ (d'>d)\) maximally entangled state if and only if for an arbitrary given orthonormal complete basis \(\{|i_A\rangle \}\) of subsystem \(A\), there exists an orthonormal basis \(\{|i_B\rangle \}\) of subsystem \(B\) such that \(|\psi \rangle \) can be written as \(|\psi \rangle =\frac{1}{\sqrt{d}}\sum _{i=0}^{d-1}|i_A\rangle \otimes |i_B\rangle \) [14]. There are many references for the bases of entangled states [1518].
Mutually unbiased bases (MUBs) play central roles in quantum kinematics [19], quantum state tomography [20, 21] and in quantifying wave–particle duality in multipath interferometers [22]. Moreover, the importance of the mutually unbiased bases has been demonstrated in various tasks in quantum information processing, such as quantum key distribution [23], cryptographic protocols [23, 24], mean king problem [25], quantum teleportation and superdense coding [2628].
Two orthogonal bases \(\mathcal {B}_1 =\{|\phi _i\rangle \}_{i=1}^d\) and \(\mathcal {B}_2 =\{|\psi _i\rangle \}_{i=1}^d\) of \(\mathbb {C}^d\) are said to be mutually unbiased if
$$\begin{aligned} |\langle \phi _i |\psi _j \rangle |=\frac{1}{\sqrt{d}}, \quad i,j=1,2,\ldots , d. \end{aligned}$$
A set of orthonormal bases \(\mathcal {B}_1, \mathcal {B}_2, \ldots , \mathcal {B}_m\) in \(\mathbb {C}^d\) is said to be a set of mutually unbiased bases if every pair of the bases in the set is mutually unbiased.
Recent years, there are many interesting topics combining mutually unbiased bases with other bases, such as product basis (PB) [29], unextendible product basis (UPB) [30] and unextendible maximally entangled basis (UMEB) [31, 32]. The UPB is a set of incomplete orthogonal product states in \(\mathbb {C}^d \otimes \mathbb {C}^{d}\) such that whose complementary space has no product states. The UMEB is a set of less than \(d^2\) orthogonal maximally entangled states in \(\mathbb {C}^d \otimes \mathbb {C}^{d}\) such that whose complementary space has no maximally entangled vectors that are othogonal to all of them. In [32], two complete UMEBs that are mutually unbiased in \(\mathbb {C}^2 \otimes \mathbb {C}^{3}\) have been presented.
Ever since the introduction of mutually unbiased bases, considerable theoretical results with useful applications have been obtained. One main concern is about the maximal number of MUBs for given dimension \(d\). It has been shown that the maximum number \(N(d)\) of MUBs in \(\mathbb {C}^d\) is no more than \(d+1\) [21] and \(N(d)=d+1\) if \(d\) is a prime power. Different constructions of MUBs, especially for prime power and qubits systems, have been presented in [3340]. Whereas \(d\) is a composite number, \(N(d)\) is still unknown. Since the dimension of \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\) is \(kd^2\), it is still a challenging problem to study \(N(kd^2)\) and construct MUBs in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\).
In this paper, we first study the maximally entangled bases in arbitrary bipartite system \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\). We provide a systematic way of constructing maximally entangled bases in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\). Moreover, we present explicit constructions of mutually unbiased maximally entangled bases in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) and \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\).

2 Maximally entangled basis in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\)

Let us first consider maximally entangled basis(MEB) in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\). Let \(\{|0\rangle , |1\rangle \}\) and \(\{|0'\rangle , |1'\rangle , |2'\rangle , |3'\rangle \}\) be the orthonormal bases in \(\mathbb {C}^2\) and \(\mathbb {C}^{4}\), respectively. We consider the following orthogonal basis in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\):
$$\begin{aligned} |\phi _{i}^{j}\rangle = \frac{1}{\sqrt{2}}(\sigma _{i}\otimes I_{4})(|0\rangle |(2j)'\rangle +|1\rangle |(2j+1)'\rangle ), \quad i=0,1,2,3; \quad j=0,1, \end{aligned}$$
(1)
where \(\{\sigma _{i}\}_{i=1}^{3}\) are the Pauli matrices and \(\sigma _{0}=I_{2}\) is the \(2\times 2\) identity matrix.
It can be easily checked that the above eight states in (1) are orthogonal maximally entangled states, which constitute a MEB in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\).
Now we generalize the above construction of MEB to the case of \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\). Let \(\{|j\rangle \}_{j=0}^{d-1}\) and \(\{|i'\rangle \}_{i=0}^{kd-1}\) denote the orthonormal bases of \(\mathbb {C}^d\) and \(\mathbb {C}^{kd}\), respectively. Consider a set of unitary matrices
$$\begin{aligned} U_{n,m}=\sum _{\ell =0}^{d-1}\omega _d^{n\ell }|\ell \oplus m\rangle \langle \ell |,\quad n,m=0,1,\ldots ,d-1, \end{aligned}$$
(2)
where \(\omega _d = e^{\frac{2\pi \sqrt{-1}}{d}}\), and \(\ell \oplus m\) denotes \((\ell +m) \mod d\). These matrices \(\{U_{n,m}\}_{n,m=0}^{d-1}\) form a basis of the operator space on \(\mathbb {C}^d\) and satisfy
$$\begin{aligned} Tr(U_{n',m'}^{\dagger } U_{n,m})=\hbox {d} \delta _{n',n}\delta _{m',m}. \end{aligned}$$
(3)
The above \(d^2\) operators defined in (2) accurately corresponds to the Weyl–Heisenberg group.
Let us consider \(k\) maximally entangled states in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\):
$$\begin{aligned} |\phi ^j \rangle =\frac{1}{\sqrt{d}}\sum _{p=0}^{d-1}|p\rangle |(p+dj)'\rangle ,\quad j=0,1,\ldots , k-1. \end{aligned}$$
(4)
Applying the unitary matrices (2) to the first space of the maximally entangled states in (4), we get \(kd^{2}\) orthogonal maximally entangled states:
$$\begin{aligned} |\phi _{n,m}^{(j)}\rangle =(U_{n,m}\otimes I_{kd})|\phi ^{j}\rangle ,\quad j=0,1,\ldots , k-1;\quad n,m=0,1,\ldots , d-1. \end{aligned}$$
(5)
Hence the above \(kd^{2}\) orthogonal maximally entangled states (5) give rise to a MEB in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\).
Substituting (2) into (5), we can simplify the above MEB (5) as follows:
$$\begin{aligned} |\phi _{n,m}^{(j)}\rangle= & {} \frac{1}{\sqrt{d}}\sum _{p=0}^{d-1}\omega _d^{np}|p\oplus m\rangle |(p+dj)'\rangle ,\quad j=0,1,\ldots , k-1;\quad \nonumber \\&n,m=0,1,\ldots , d-1. \end{aligned}$$
(6)
Let \(\{|a_{i}'\rangle \}_{i=0}^{kd-1}\) be another orthonormal basis in \(\mathbb {C}^{kd}\), which is different with \(\{|i'\rangle \}_{i=0}^{kd}\). Similar to the above discussion, we can get another MEB in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\):
$$\begin{aligned} |\psi _{n,m}^{(j)}\rangle= & {} \frac{1}{\sqrt{d}}\sum _{p=0}^{d-1}\omega _d^{np}|p\oplus m\rangle |{a_{p+dj}'}\rangle ,\quad j=0,1,\ldots , k-1;\quad \nonumber \\&n,m=0,1,\ldots , d-1. \end{aligned}$$
(7)
Equations(6) and (7) will be useful in the next section to construct mutually unbiased maximally entangled bases in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\).

3 Mutually unbiased maximally entangled bases in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\)

In this section, we investigate special MUBs comprised of only MEBs in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\), namely we establish a method to construct mutually unbiased maximally entangled bases(MUMEBs) in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\).
It is easy to show that the two MEBs (6) and (7) in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\) are MUBs if they satisfy the following property
$$\begin{aligned} |\langle \phi _{n,m}^{(i)} |\psi _{x,y}^{(j)}\rangle |\!=\!\frac{1}{\sqrt{kd^{2}}},\quad i,j\!=\!0,1,\ldots , k\!-\!1;\quad n,m,x,y\!=\!0,1,\ldots , d\!-\!1.\quad \end{aligned}$$
(8)
Let \(A\) denote the transition matrix from the basis \(\{|i'\rangle \}_{i=0}^{kd-1}\) to the basis \(\{|a_{i}'\rangle \}_{i=0}^{kd-1}\) in \(\mathbb {C}^{kd}\), that is
$$\begin{aligned} \left( \begin{array}{c} |a_{0}'\rangle \\ |a_{1}'\rangle \\ \vdots \\ |a_{(kd-1)}'\rangle \\ \end{array} \right) =A\left( \begin{array}{c} |0'\rangle \\ |1'\rangle \\ \vdots \\ |(kd-1)'\rangle \\ \end{array} \right) , \end{aligned}$$
(9)
i.e. \(|a_{i}'\rangle =\sum _{j=0}^{kd-1} A_{ij}|j'\rangle , A_{ij}\) are entries of the matrix \(A\).
Then conditions (8) are valid if and only if \(A\) satisfies the following relations:
$$\begin{aligned} \left| \sum _{p=0}^{d-1}\omega _d^{\ell p}A_{p+dj, p\oplus q+di}\right| =\frac{1}{\sqrt{k}}, \quad i,j=0,1,\ldots , k-1;\quad \ell , q=0,1,\ldots , d-1,\nonumber \\ \end{aligned}$$
(10)
Obviously, the above conditions (8) imply that the unitary matrix \(A\) is a kind of complex Hadamard matrix [41].
Let \(B\) be the transition matrix from the basis \(\{|a_{i}'\rangle \}_{i=0}^{kd-1}\) to the third basis\(\{|b_{i}'\rangle \}_{i=0}^{kd-1}\), i.e., \(|b_{i}'\rangle =\sum _{j=0}^{kd-1} B_{ij}|a_{j}'\rangle \). Then the following MEB
$$\begin{aligned} |\lambda _{n,m}^{(j)}\rangle \!=\!\frac{1}{\sqrt{d}}\sum _{p=0}^{d-1}\omega _d^{np}|p\oplus m\rangle |{b_{p+dj}'}\rangle ,\quad j\!=\!0,1,\ldots , k\!-\!1;\quad n,m\!=\!0,1,\ldots , d\!-\!1.\nonumber \\ \end{aligned}$$
(11)
in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\) is mutually unbiased with (6) and (7), if and only if the matrices \(A\) and \(B\) satisfy the following relations:
$$\begin{aligned} \left| \sum _{p=0}^{d-1}\omega _d^{\ell p}B_{p+dj,p\oplus q+di}\right| =\frac{1}{\sqrt{k}},\quad \left| \sum _{p=0}^{d-1}\omega _d^{\ell p}(BA)_{p+dj,p\oplus q+di}\right| =\frac{1}{\sqrt{k}}, \end{aligned}$$
(12)
where \(i,j=0,1,\ldots , k-1;\quad \ell , q=0,1,\ldots , d-1.\)
By inductive method, more mutually unbiased MEBs can be constructed and so on. For a detailed construction of MUMEBs, we first consider the case of \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\). In the following for simplicity we denote
$$\begin{aligned} \left( |x'\rangle \right) = \left( \begin{array}{c} |x_{0}'\rangle \\ |x_{1}'\rangle \\ |x_{2}'\rangle \\ |x_{3}'\rangle \end{array} \right) \end{aligned}$$
for \(x=a,b,c,d,e\), with \(|e_{i}'\rangle =|i'\rangle \) for \(i=0,1,2,3\).
By using (1) we have the first MEB in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\). Taking the second basis \(\{|a_{i}'\rangle \}_{i=0}^{3}\) in \(\mathbb {C}^{4}\) as
$$\begin{aligned} \left( |a'\rangle \right) =A \left( |e'\rangle \right) , \end{aligned}$$
(13)
where
$$\begin{aligned} A =\frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 1 &{} 1 &{} 1 &{} 1 \\ i &{} i &{} -i &{} -i \\ i &{} -i &{} i &{} -i \\ 1 &{} -1 &{} -1 &{} 1 \\ \end{array} \right) , \end{aligned}$$
with \(i=\sqrt{-1}\). Then the second MEB in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) is as follows:
$$\begin{aligned} |\psi _{i}^{j}\rangle = \frac{1}{\sqrt{2}}(\sigma _{i}\otimes I_{4})(|0\rangle |a_{2j}'\rangle +|1\rangle |a_{2j+1}'\rangle ),\quad \ i=0,1,2,3;\quad j=0,1. \end{aligned}$$
(14)
It is direct to verify that the transformation matrix \(A\) satisfies the relation (10), and then the two MEBs (1) and (14) in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) are mutually unbiased.
The third orthonomal basis \(\{|b_{i}'\rangle \}_{i=0}^{3}\) in \(\mathbb {C}^{4}\) can be obtained by
$$\begin{aligned} \left( |b'\rangle \right) =B \left( |a'\rangle \right) , \end{aligned}$$
(15)
where
$$\begin{aligned} B =\frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 1 &{} 1 &{} -i &{} -i \\ i &{} i &{} -1 &{} -1 \\ i &{} -i &{} -1 &{} 1 \\ 1 &{} -1 &{} -i &{} i \\ \end{array} \right) \end{aligned}$$
Hence, the third MEB in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) can be constructed by
$$\begin{aligned} |\lambda _{i}^{j}\rangle = \frac{1}{\sqrt{2}}(\sigma _{i}\otimes I_{4})(|0\rangle |b_{2j}'\rangle +|1\rangle |b_{2j+1}'\rangle ),\quad i=0,1,2,3;\quad j=0,1. \end{aligned}$$
(16)
One can directly check that \(A\) and \(B\) satisfy the relations in (12). Hence the above three MEBs (1) , (14) and (16) are mutually unbiased.
The fourth and fifth MEBs in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) can be similarly constructed from the following orthonomal bases \(\{|c_{i}'\rangle \}_{i=0}^{3}\) and \(\{|d_{i}'\rangle \}_{i=0}^{3}\) in \( \mathbb {C}^{4}\):
$$\begin{aligned} \left( |c'\rangle \right) =C \left( |b'\rangle \right) ,~~~ \left( |d'\rangle \right) =D \left( |c'\rangle \right) , \end{aligned}$$
(17)
where
$$\begin{aligned} C =\frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 1 &{} i &{} -1 &{} -i \\ -1 &{} i &{} 1 &{} -i \\ 1 &{} i &{} 1 &{} i \\ 1 &{} -i &{} 1 &{} - i \\ \end{array} \right) ;\ \ \ \ \ D =\frac{1}{2} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} -i &{} -1 &{} -1 &{} -i \\ - i &{} -1 &{} 1 &{} i \\ 1 &{} i &{} i &{} 1 \\ 1 &{} i &{} -i &{} -1 \\ \end{array} \right) . \end{aligned}$$
The corresponding MEBs in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) are given by
$$\begin{aligned} |\mu _{i}^{j}\rangle= & {} \frac{1}{\sqrt{2}}(\sigma _{i}\otimes I_{4})(|0\rangle |c_{2j}'\rangle +|1\rangle |c_{2j+1}'\rangle ),\quad i=0,1,2,3;\quad j=0,1;\end{aligned}$$
(18)
$$\begin{aligned} |\nu _{i}^{j}\rangle= & {} \frac{1}{\sqrt{2}}(\sigma _{i}\otimes I_{4})(|0\rangle |d_{2j}'\rangle +|1\rangle |d_{2j+1}'\rangle ),\quad i=0,1,2,3;\quad j=0,1. \end{aligned}$$
(19)
one can directly check that any two matrices of \(A,B,C,D\) satisfy the relations in (10) and (12); hence, the five complete MEBs (1), (14), (16), (18) and (19) are mutually unbiased.
Thus, by suitably choosing the bases in \(\mathbb {C}^{4}\), we have presented an approach in constructing maximally entangled states that are mutually unbiased in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\).
Remark In [17], the authors showed that a complete set of MUBs of a bipartite system contains a fixed amount of entanglement, independent on the choice of the complete set. Moreover, in [36] Klimov showed that there are four structures of MUBs in \(\mathbb {C}^2 \otimes \mathbb {C}^{2}\otimes \mathbb {C}^{2}\): (2,3,4), (3,0,6), (0,9,0) and (1,6,2), where the three numbers in a bracket represents the number of triseparable, biseparable and nonseparable bases, respectively. We do not know whether our 5 MUMEBs are extendible to 9 since we can not construct the sixth maximally entangled basis. Recently, based on different constructions, in [42] the authors presented a set of 5 MUBs in dimension 8. These MUBs are not necessary maximally entangled. But the set of these 5 MUBs is found to be unextendible. It is possible that the set of our 5 maximally entangled MUBs is also unextendible.
Nevertheless, our approach is more general than the case of multi-qubit systems. Next, to give an example which is not included in \(\mathbb {C}^d \otimes \mathbb {C}^{d} \otimes ...\otimes \mathbb {C}^{d}\) systems, we present a detailed construction of MUMEBs in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\), which is absolutely different from qubits systems.
In the following, for simplicity we denote \(\left( |y'\rangle \right) =\left( |y_{0}'\rangle ,|y_{1}'\rangle ,|y_{2}'\rangle ,|y_{3}'\rangle ,|y_{4}'\rangle ,|y_{5}'\rangle \right) ^t\) for \(y=f,g,h\) with \(|f_{j}'\rangle =|j'\rangle \) for \(j=0,1,2,3,4,5\), where \(t\) stands for transpose.
According to (6), we have the first MEB in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\):
$$\begin{aligned} |\phi _{n,m}^{(j)}\rangle =\frac{1}{\sqrt{2}}\sum _{p=0}^{1}\omega _2^{np}|p\oplus m\rangle |(p+2j)'\rangle , \quad j=0,1,2;\quad n,m=0,1. \end{aligned}$$
(20)
where \(\omega _2 = e^{\frac{2\pi \sqrt{-1}}{2}}\), and \(p\oplus m\) denotes \((p+m)\mod 2\).
For the second MEB in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\), we take the basis \(\{|g_j'\rangle \}_{j=0}^{5}\) in \(\mathbb {C}^{6}\) as
$$\begin{aligned} \left( |g'\rangle \right) =X \left( |f'\rangle \right) , \end{aligned}$$
(21)
where
$$\begin{aligned} X =\frac{1}{\sqrt{6}} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} iv^{*} &{} -iv^{*} &{} iv^{*} &{} -iv^{*} &{} iv^{*} &{} -iv^{*}\\ v^{*} &{} v^{*} &{} v^{*}&{} v^{*} &{} v^{*}&{} v^{*}\\ i &{} -i &{} iv &{} -iv &{} iv^{*} &{} -iv^{*} \\ 1 &{} 1 &{} v &{} v &{} v^{*} &{} v^{*}\\ i &{} -i &{} iv^{*} &{} -iv^{*} &{} iv &{} -iv\\ 1 &{} 1 &{} v^{*} &{} v^{*} &{} v &{} v\\ \end{array} \right) , \end{aligned}$$
with \(v=-\frac{1}{2}+\frac{\sqrt{3}i}{2}, *\) denotes conjugate. Then the second MEB in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\) has the form:
$$\begin{aligned} |\psi _{n,m}^{(j)}\rangle =\frac{1}{\sqrt{2}}\sum _{p=0}^{1}\omega _2^{np}|p\oplus m\rangle |g_{p+2j}'\rangle , \quad j=0,1,2;\quad n,m=0,1. \end{aligned}$$
(22)
It is direct to verify that the transformation matrix \(X\) satisfies the relation (10), and then the two MEBs (20) and (22) in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\) are mutually unbiased.
The third orthonomal basis \(\{|h_{j}'\rangle \}_{j=0}^{5}\) in \(\mathbb {C}^{6}\) can be obtained by
$$\begin{aligned} \left( |h'\rangle \right) =Y \left( |g'\rangle \right) , \end{aligned}$$
(23)
where
$$\begin{aligned} Y =\frac{1}{\sqrt{6}} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1\\ i &{} -i &{} i &{} -i &{} i &{} -i\\ 1 &{} 1 &{} v &{} v &{} v^{*} &{} v^{*} \\ i &{} -i &{} iv &{} -iv &{} iv^{*} &{} -iv^{*}\\ 1 &{} 1 &{} v^{*} &{} v^{*} &{} v &{} v\\ i &{} -i &{} iv^{*} &{} -iv^{*} &{} iv &{} -iv\\ \end{array} \right) . \end{aligned}$$
Then the third MEB in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\) can be constructed by
$$\begin{aligned} |\lambda _{n,m}^{(j)}\rangle =\frac{1}{\sqrt{2}}\sum _{p=0}^{1}\omega _2^{np}|p\oplus m\rangle |h_{p+2j}'\rangle ,\quad j=0,1,2;\quad n,m=0,1. \end{aligned}$$
(24)
One can directly check that \(X\) and \(Y\) satisfy the relations in (12). Therefore the above three MEBs (20), (22) and (24) in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\) are mutually unbiased.
It would be interesting to mention that no more than 3 MUBs are known in dimension 12 (despite 13 is the upper bound), and then our construction of three MUMEBs (20), (22) and (24) in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\) are exactly a breakthrough, which is also different from those in qubits systems. In fact, our approach applies to general bipartite systems \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\). Such constructions of orthonormal bases of MEBS by applying local unitaries (Weyl-Heisenberg group) have been adopted in [18], corresponding to the case \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\) with \(k=1\).

4 Conclusion and discussion

We have provided an explicit construction of maximally entangled basis in arbitrary bipartite spaces \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\). Based on such bases, we have established a method to construct mutually unbiased maximally entangled bases in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\). As detailed examples, we have constructed five mutually unbiased maximally entangled bases in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) and three mutually unbiased maximally entangled bases in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\).
The problem we have investigated about maximally entangled basis is different from that of unextendible maximally entangled basis. There are still many open problems related to maximally entangled basis and mutually unbiased maximally entangled bases, such as the construction of mutually unbiased bases that are comprised of one maximally entangled basis and one unextendible maximally entangled basis in \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\) or \(\mathbb {C}^d \otimes \mathbb {C}^{d'}(d\ne d')\), as well as to the roles played by such bases in information processing.

Acknowledgments

The authors would like to appreciate the anonymous reviewers for their extremely insightful comments and suggestions.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
Zurück zum Zitat Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)ADSMATHMathSciNet Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)ADSMATHMathSciNet
2.
Zurück zum Zitat Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1–51 (2007)MATHMathSciNet Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1–51 (2007)MATHMathSciNet
3.
Zurück zum Zitat Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMATHMathSciNet Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMATHMathSciNet
4.
Zurück zum Zitat Benhelm, J., Kirchmair, G., Roos, C.F., Blatt, R.: Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463–480 (2008) Benhelm, J., Kirchmair, G., Roos, C.F., Blatt, R.: Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463–480 (2008)
5.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMATHMathSciNet Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMATHMathSciNet
6.
Zurück zum Zitat Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Radio-frequency dressed state potential for manipulation neutral atoms. Nat. Phys. 2, 678–682 (2006) Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Radio-frequency dressed state potential for manipulation neutral atoms. Nat. Phys. 2, 678–682 (2006)
7.
Zurück zum Zitat Modlawska, J., Grudka, A.: Nonmaximally entangled states can be better for multiple linear optical teleportation. Phys. Rev. Lett. 100, 110503-1–110503-4 (2008)ADSMathSciNet Modlawska, J., Grudka, A.: Nonmaximally entangled states can be better for multiple linear optical teleportation. Phys. Rev. Lett. 100, 110503-1–110503-4 (2008)ADSMathSciNet
8.
Zurück zum Zitat Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79, 042306-1–042306-13 (2009) Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79, 042306-1–042306-13 (2009)
9.
Zurück zum Zitat Noh, C., Chia, A., Nha, H., Collett, M.J., Carmichael, H.J.: Quantum teleportation of the temporal fluctuations of light. Phys. Rev. Lett. 102, 230501-1–230501-4 (2009)ADS Noh, C., Chia, A., Nha, H., Collett, M.J., Carmichael, H.J.: Quantum teleportation of the temporal fluctuations of light. Phys. Rev. Lett. 102, 230501-1–230501-4 (2009)ADS
10.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMATHMathSciNet Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMATHMathSciNet
11.
Zurück zum Zitat Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008) Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008)
12.
Zurück zum Zitat Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)CrossRefADS Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)CrossRefADS
13.
Zurück zum Zitat Li, Z.G., Zhao, M.J., Fei, S.M., Fan, H., Liu, W.M.: Mixed maximally entangled states. Quant. Inf. Comput. 12(1–2), 0063–0073 (2012)MathSciNet Li, Z.G., Zhao, M.J., Fei, S.M., Fan, H., Liu, W.M.: Mixed maximally entangled states. Quant. Inf. Comput. 12(1–2), 0063–0073 (2012)MathSciNet
14.
Zurück zum Zitat Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1995)MATH Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1995)MATH
15.
Zurück zum Zitat Karimipour, V., Memarzadeh, L.: Equientangled bases in arbitrary dimensions. Phys. Rev. A 73, 012329-1–012329-5 (2006)ADSMathSciNet Karimipour, V., Memarzadeh, L.: Equientangled bases in arbitrary dimensions. Phys. Rev. A 73, 012329-1–012329-5 (2006)ADSMathSciNet
16.
Zurück zum Zitat Gheorghiu, V., Looi, S.Y.: Construction of equally entangled bases in arbitrary dimensions via quadratic Gauss sums and graph states. Phys. Rev. A 81, 062341-1–062341-7 (2010)ADS Gheorghiu, V., Looi, S.Y.: Construction of equally entangled bases in arbitrary dimensions via quadratic Gauss sums and graph states. Phys. Rev. A 81, 062341-1–062341-7 (2010)ADS
17.
Zurück zum Zitat Wiesniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New J. Phys. 13, 053047-1–053047-25 (2011)ADSMathSciNet Wiesniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New J. Phys. 13, 053047-1–053047-25 (2011)ADSMathSciNet
18.
Zurück zum Zitat Fan, H.: Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905-1–177905-4 (2004)ADS Fan, H.: Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905-1–177905-4 (2004)ADS
19.
Zurück zum Zitat Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quant. Inf. 8, 535–640 (2010)MATH Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quant. Inf. 8, 535–640 (2010)MATH
20.
Zurück zum Zitat Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3245 (1981)ADSMathSciNet Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3245 (1981)ADSMathSciNet
21.
Zurück zum Zitat Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)ADSMathSciNet Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)ADSMathSciNet
22.
Zurück zum Zitat Englert, B.-G., Kaszlikowski, D., Kwek, L.C., Chee, W.H.: Wave–particle duality in multi-path interferometers: general concepts and three-path interferometers. Int. J. Quant. Inf. 6, 129–157 (2008)MATH Englert, B.-G., Kaszlikowski, D., Kwek, L.C., Chee, W.H.: Wave–particle duality in multi-path interferometers: general concepts and three-path interferometers. Int. J. Quant. Inf. 6, 129–157 (2008)MATH
23.
Zurück zum Zitat Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902-1–127902-4 (2002)ADS Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902-1–127902-4 (2002)ADS
25.
Zurück zum Zitat Aharonov, Y., Englert, B.-G., Naturforsch, Z.: The mean king’s problem: spin 1. Section A–A. J. Phys. Sci. 56(1–2), 16–19 (2001) Aharonov, Y., Englert, B.-G., Naturforsch, Z.: The mean king’s problem: spin 1. Section A–A. J. Phys. Sci. 56(1–2), 16–19 (2001)
26.
Zurück zum Zitat Durt, T.: If 1 = 2 \(\oplus \) 3, then 1 = 2 \(\odot \) 3: Bell states, finite groups, and mutually unbiased bases, a unifying approach. arXiv:quant-ph/0401046 Durt, T.: If 1 = 2 \(\oplus \) 3, then 1 = 2 \(\odot \) 3: Bell states, finite groups, and mutually unbiased bases, a unifying approach. arXiv:​quant-ph/​0401046
27.
Zurück zum Zitat Klimov, A.B., Sych, D., Sánchez-Soto, L.L., Leuchs, G.: Continuum percolation of isotropically oriented circular cylinders. Phys. Rev. A 79, 052101-1–052101-4 (2009)ADS Klimov, A.B., Sych, D., Sánchez-Soto, L.L., Leuchs, G.: Continuum percolation of isotropically oriented circular cylinders. Phys. Rev. A 79, 052101-1–052101-4 (2009)ADS
28.
Zurück zum Zitat Revzen, M.: Maximally entangled states via mutual unbiased collective bases. Phys. Rev. A 81, 012113-1–012113-7 (2010)ADS Revzen, M.: Maximally entangled states via mutual unbiased collective bases. Phys. Rev. A 81, 012113-1–012113-7 (2010)ADS
29.
Zurück zum Zitat McNulty, D., Weigert, S.: The limited role of mutually unbiased product bases in dimension 6. J. Phys. A Math. Theor. 45, 102001-1–102001-6 (2012)ADS McNulty, D., Weigert, S.: The limited role of mutually unbiased product bases in dimension 6. J. Phys. A Math. Theor. 45, 102001-1–102001-6 (2012)ADS
30.
Zurück zum Zitat Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)ADSMathSciNet Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)ADSMathSciNet
31.
Zurück zum Zitat Bravyi, S., Smolin, J.A.: Unextendible maximally entangled bases. Phys. Rev. A 84, 042306-1–042306-3 (2011)ADS Bravyi, S., Smolin, J.A.: Unextendible maximally entangled bases. Phys. Rev. A 84, 042306-1–042306-3 (2011)ADS
32.
Zurück zum Zitat Chen, B., Fei, S.M.: Unextendible maximally entangled bases and mutually unbiased bases. Phys. Rev. A 88, 034301-1–034301-4 (2013)ADS Chen, B., Fei, S.M.: Unextendible maximally entangled bases and mutually unbiased bases. Phys. Rev. A 88, 034301-1–034301-4 (2013)ADS
33.
Zurück zum Zitat Wootters, W.K.: Picturing qubits in phase space. IBM J. Res. Dev. 48, 99–110 (2004) Wootters, W.K.: Picturing qubits in phase space. IBM J. Res. Dev. 48, 99–110 (2004)
34.
Zurück zum Zitat Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite fields. Phys. Rev. A 70, 062101-1–062101-23 (2004)ADSMathSciNet Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite fields. Phys. Rev. A 70, 062101-1–062101-23 (2004)ADSMathSciNet
35.
Zurück zum Zitat Klimov, A.B., Romero, J.L., Björk, G., Sánchez-Soto, L.L.: Geometrical approach to mutually unbiased bases. J. Phys. A Math. Theor. 40, 3987–3998 (2007)ADSMATH Klimov, A.B., Romero, J.L., Björk, G., Sánchez-Soto, L.L.: Geometrical approach to mutually unbiased bases. J. Phys. A Math. Theor. 40, 3987–3998 (2007)ADSMATH
36.
Zurück zum Zitat Lawrence, J., Brukner, Č., Zeilinger, A.: Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 65, 032320-1–032320-5 (2002)ADS Lawrence, J., Brukner, Č., Zeilinger, A.: Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 65, 032320-1–032320-5 (2002)ADS
37.
Zurück zum Zitat Romero, J.L., Björk, G., Klimov, A.B., Sánchez-Soto, L.L.: Structure of the sets of mutually unbiased bases for N qubits. Phys. Rev. A 72, 062310-1–062310-8 (2005)ADS Romero, J.L., Björk, G., Klimov, A.B., Sánchez-Soto, L.L.: Structure of the sets of mutually unbiased bases for N qubits. Phys. Rev. A 72, 062310-1–062310-8 (2005)ADS
38.
Zurück zum Zitat Björk, G., Romero, J.L., Klimov, A.B., Sánchez-Soto, L.L.: Mutually unbiased bases and discrete Wigner functions. J. Opt. Soc. Am. B 24, 371–378 (2007)ADS Björk, G., Romero, J.L., Klimov, A.B., Sánchez-Soto, L.L.: Mutually unbiased bases and discrete Wigner functions. J. Opt. Soc. Am. B 24, 371–378 (2007)ADS
39.
Zurück zum Zitat Ghiu, I.: A new method of construction of all sets of mutually unbiased bases for two-qubit systems. J. Phys. Conf. Ser. 338, 012008-1–012008-7 (2012)ADS Ghiu, I.: A new method of construction of all sets of mutually unbiased bases for two-qubit systems. J. Phys. Conf. Ser. 338, 012008-1–012008-7 (2012)ADS
40.
Zurück zum Zitat Ghiu, I.: Generation of all sets of mutually unbiased bases for three-qubit systems. Phys. Scr. T153, 014027-1–014027-6 (2013)ADS Ghiu, I.: Generation of all sets of mutually unbiased bases for three-qubit systems. Phys. Scr. T153, 014027-1–014027-6 (2013)ADS
41.
Zurück zum Zitat Tadej, W., Zyczkowski, K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13, 133–177 (2006)MATHMathSciNet Tadej, W., Zyczkowski, K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13, 133–177 (2006)MATHMathSciNet
42.
Zurück zum Zitat Mandayam, P., Bandyopadhyay, S., Grassl, M., Wootters, W.K.: Unextendible mutually unbiased bases from Pauli classes. Quant. Inf. Comput. 14(9–10), 823–844 (2014)MathSciNet Mandayam, P., Bandyopadhyay, S., Grassl, M., Wootters, W.K.: Unextendible mutually unbiased bases from Pauli classes. Quant. Inf. Comput. 14(9–10), 823–844 (2014)MathSciNet
Metadaten
Titel
Mutually unbiased maximally entangled bases in
verfasst von
Yuan-Hong Tao
Hua Nan
Jun Zhang
Shao-Ming Fei
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 6/2015
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-015-0980-6

Weitere Artikel der Ausgabe 6/2015

Quantum Information Processing 6/2015 Zur Ausgabe

Neuer Inhalt