Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Ausgabe 6/2015 Open Access

Quantum Information Processing 6/2015

Mutually unbiased maximally entangled bases in \(\mathbb {C}^d\otimes \mathbb {C}^{kd}\)

Quantum Information Processing > Ausgabe 6/2015
Yuan-Hong Tao, Hua Nan, Jun Zhang, Shao-Ming Fei
Wichtige Hinweise
This work is supported by Natural Science Foundation of China under numbers 11361065 and 11275131; the Natural Science Foundation of Jilin Province under number 201215239.


We study maximally entangled bases in bipartite systems \(\mathbb {C}^d \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\), which are mutually unbiased. By systematically constructing maximally entangled bases, we present an approach in constructing mutually unbiased maximally entangled bases. In particular, five maximally entangled bases in \(\mathbb {C}^2 \otimes \mathbb {C}^{4}\) and three maximally entangled bases in \(\mathbb {C}^2 \otimes \mathbb {C}^{6}\) that are mutually unbiased are presented.
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2015

Quantum Information Processing 6/2015 Zur Ausgabe