Skip to main content

2019 | OriginalPaper | Buchkapitel

22. MXenes for Environmental and Water Treatment Applications

verfasst von : Kashif Rasool, Ravi P. Pandey, P. Abdul Rasheed, Golibjon R. Berdiyorov, Khaled A. Mahmoud

Erschienen in: 2D Metal Carbides and Nitrides (MXenes)

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the first discovery of two-dimensional (2D) MXenes, about 30 different structures of this group have been synthesized to date. Owing to their unique mechanical, chemical, and electrical properties, many successful attempts have been focused on using MXenes in water treatment and environmental remediation applications. However, more efforts are still needed to address the stability, biocompatibility, and reusability of MXenes in aqueous media. This chapter discusses the latest research progress in the application of MXenes in pollutants adsorption/remediation, photodegradation, and membrane separation. An overview is given on recent experimental/computational attempts to explore the potential of MXenes in water treatment applications and highlight the challenges and opportunities of these advanced 2D architectures. This chapter highlights new avenues for more innovative developments of MXene materials in environmental applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lei, J.-C., Zhang, X., & Zhou, Z. (2015). Recent advances in MXene: Preparation, properties, and applications. Frontiers of Physics, 10(3), 276–286.CrossRef Lei, J.-C., Zhang, X., & Zhou, Z. (2015). Recent advances in MXene: Preparation, properties, and applications. Frontiers of Physics, 10(3), 276–286.CrossRef
2.
Zurück zum Zitat Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials., 2(12), 1600255-n/a.CrossRef Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials., 2(12), 1600255-n/a.CrossRef
3.
Zurück zum Zitat Ghidiu, M., Naguib, M., Shi, C., Mashtalir, O., Pan, L. M., Zhang, B., et al. (2014). Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chemical Communications, 50(67), 9517–9520.CrossRef Ghidiu, M., Naguib, M., Shi, C., Mashtalir, O., Pan, L. M., Zhang, B., et al. (2014). Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chemical Communications, 50(67), 9517–9520.CrossRef
4.
Zurück zum Zitat Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., et al. (2012). Two-dimensional transition metal carbides. ACS Nano, 6(2), 1322–1331.CrossRef Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., et al. (2012). Two-dimensional transition metal carbides. ACS Nano, 6(2), 1322–1331.CrossRef
5.
Zurück zum Zitat Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P. L., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153), 1502–1505.CrossRef Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P. L., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153), 1502–1505.CrossRef
6.
Zurück zum Zitat Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.CrossRef Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.CrossRef
7.
Zurück zum Zitat Khazaei, M., Arai, M., Sasaki, T., Chung, C.-Y., Venkataramanan, N. S., Estili, M., et al. (2013). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23(17), 2185–2192.CrossRef Khazaei, M., Arai, M., Sasaki, T., Chung, C.-Y., Venkataramanan, N. S., Estili, M., et al. (2013). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23(17), 2185–2192.CrossRef
8.
Zurück zum Zitat Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., et al. (2015). Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9(10), 9507–9516.CrossRef Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., et al. (2015). Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9(10), 9507–9516.CrossRef
9.
Zurück zum Zitat Kurtoglu, M., Naguib, M., Gogotsi, Y., & Barsoum, M. W. (2012). First principles study of two-dimensional early transition metal carbides. MRS Communications., 2(4), 133–137.CrossRef Kurtoglu, M., Naguib, M., Gogotsi, Y., & Barsoum, M. W. (2012). First principles study of two-dimensional early transition metal carbides. MRS Communications., 2(4), 133–137.CrossRef
10.
Zurück zum Zitat Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Physical Chemistry Chemical Physics, 16(17), 7841–7849.CrossRef Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Physical Chemistry Chemical Physics, 16(17), 7841–7849.CrossRef
11.
Zurück zum Zitat Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.CrossRef Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.CrossRef
12.
Zurück zum Zitat Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78.CrossRef Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78.CrossRef
13.
Zurück zum Zitat Alhabeb, M., Maleski, K., Mathis, T. S., Sarycheva, A., Hatter, C. B., Uzun, S., et al. (2018). Selective etching of silicon from Ti3SiC2 (MAX) produces 2D titanium carbide (MXene). Angewandte Chemie International Edition, 57(19), 5444–5448.CrossRef Alhabeb, M., Maleski, K., Mathis, T. S., Sarycheva, A., Hatter, C. B., Uzun, S., et al. (2018). Selective etching of silicon from Ti3SiC2 (MAX) produces 2D titanium carbide (MXene). Angewandte Chemie International Edition, 57(19), 5444–5448.CrossRef
14.
Zurück zum Zitat Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.CrossRef Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.CrossRef
15.
Zurück zum Zitat Sun, Z., Music, D., Ahuja, R., Li, S., & Schneider, J. M. (2004). Bonding and classification of nanolayered ternary carbides. Physical Review B, 70(9), 092102.CrossRef Sun, Z., Music, D., Ahuja, R., Li, S., & Schneider, J. M. (2004). Bonding and classification of nanolayered ternary carbides. Physical Review B, 70(9), 092102.CrossRef
16.
Zurück zum Zitat Xiong, D., Li, X., Bai, Z., & Lu, S. (2018). Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small, 14, 1703419.CrossRef Xiong, D., Li, X., Bai, Z., & Lu, S. (2018). Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small, 14, 1703419.CrossRef
17.
Zurück zum Zitat Jun, B. M., Kim, S., Heo, J., Park, C. M., Her, N., Jang, M., Huang, Y., Han, J., & Yoon, Y. (2019). Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 12, 471–487.CrossRef Jun, B. M., Kim, S., Heo, J., Park, C. M., Her, N., Jang, M., Huang, Y., Han, J., & Yoon, Y. (2019). Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 12, 471–487.CrossRef
18.
Zurück zum Zitat Zhang, X., Zhang, Z., & Zhou, Z. (2018). MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 27, 73–85.CrossRef Zhang, X., Zhang, Z., & Zhou, Z. (2018). MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 27, 73–85.CrossRef
19.
Zurück zum Zitat Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Man Hong, S., Koo, C. M., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.CrossRef Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Man Hong, S., Koo, C. M., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.CrossRef
20.
Zurück zum Zitat Xie, X., Xue, Y., Li, L., Chen, S., Nie, Y., Ding, W., et al. (2014). Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale, 6(19), 11035–11040.CrossRef Xie, X., Xue, Y., Li, L., Chen, S., Nie, Y., Ding, W., et al. (2014). Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale, 6(19), 11035–11040.CrossRef
21.
Zurück zum Zitat Seh, Z. W., Fredrickson, K. D., Anasori, B., Kibsgaard, J., Strickler, A. L., Lukatskaya, M. R., et al. (2016). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 1(3), 589–594.CrossRef Seh, Z. W., Fredrickson, K. D., Anasori, B., Kibsgaard, J., Strickler, A. L., Lukatskaya, M. R., et al. (2016). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 1(3), 589–594.CrossRef
22.
Zurück zum Zitat Lu, C., Tranca, D., Zhang, J., Rodrıguez Hernández, F., Su, Y., Zhuang, X., et al. (2017). Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano, 11(4), 3933–3942.CrossRef Lu, C., Tranca, D., Zhang, J., Rodrıguez Hernández, F., Su, Y., Zhuang, X., et al. (2017). Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano, 11(4), 3933–3942.CrossRef
23.
Zurück zum Zitat Lorencova, L., Bertok, T., Filip, J., Jerigova, M., Velic, D., Kasak, P., et al. (2018). Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors and Actuators B: Chemical, 263, 360–368.CrossRef Lorencova, L., Bertok, T., Filip, J., Jerigova, M., Velic, D., Kasak, P., et al. (2018). Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors and Actuators B: Chemical, 263, 360–368.CrossRef
24.
Zurück zum Zitat Liu, H., Duan, C., Yang, C., Shen, W., Wang, F., & Zhu, Z. (2015). A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors and Actuators B: Chemical, 218, 60–66.CrossRef Liu, H., Duan, C., Yang, C., Shen, W., Wang, F., & Zhu, Z. (2015). A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors and Actuators B: Chemical, 218, 60–66.CrossRef
25.
Zurück zum Zitat Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139(45), 16235–16247.CrossRef Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139(45), 16235–16247.CrossRef
26.
Zurück zum Zitat Han, X., Huang, J., Lin, H., Wang, Z., Li, P., & Chen, Y. (2018). 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 7, 1701394.CrossRef Han, X., Huang, J., Lin, H., Wang, Z., Li, P., & Chen, Y. (2018). 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 7, 1701394.CrossRef
27.
Zurück zum Zitat Liu, G., Zou, J., Tang, Q., Yang, X., Zhang, Y., Zhang, Q., et al. (2017). Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Applied Materials & Interfaces, 9(46), 40077–40086.CrossRef Liu, G., Zou, J., Tang, Q., Yang, X., Zhang, Y., Zhang, Q., et al. (2017). Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Applied Materials & Interfaces, 9(46), 40077–40086.CrossRef
28.
Zurück zum Zitat Yu, X., Cai, X., Cui, H., Lee, S.-W., Yu, X.-F., & Liu, B. (2017). Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 9(45), 17859–17864.CrossRef Yu, X., Cai, X., Cui, H., Lee, S.-W., Yu, X.-F., & Liu, B. (2017). Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 9(45), 17859–17864.CrossRef
29.
Zurück zum Zitat Soundiraraju, B., & George, B. K. (2017). Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano, 11(9), 8892–8900.CrossRef Soundiraraju, B., & George, B. K. (2017). Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano, 11(9), 8892–8900.CrossRef
30.
Zurück zum Zitat Han, R., Ma, X., Xie, Y., Teng, D., & Zhang, S. (2017). Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances, 7(89), 56204–56210.CrossRef Han, R., Ma, X., Xie, Y., Teng, D., & Zhang, S. (2017). Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances, 7(89), 56204–56210.CrossRef
31.
Zurück zum Zitat Pandey, R. P., Rasool, K., Madhavan, V. E., Aissa, B., Gogotsi, Y., & Mahmoud, K. A. (2018). Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. Journal of Materials Chemistry A, 6(8), 3522–3533.CrossRef Pandey, R. P., Rasool, K., Madhavan, V. E., Aissa, B., Gogotsi, Y., & Mahmoud, K. A. (2018). Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. Journal of Materials Chemistry A, 6(8), 3522–3533.CrossRef
32.
Zurück zum Zitat Ren, C. E., Hatzell, K. B., Alhabeb, M., Ling, Z., Mahmoud, K. A., & Gogotsi, Y. (2015). Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. The Journal of Physical Chemistry Letters., 6(20), 4026–4031.CrossRef Ren, C. E., Hatzell, K. B., Alhabeb, M., Ling, Z., Mahmoud, K. A., & Gogotsi, Y. (2015). Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. The Journal of Physical Chemistry Letters., 6(20), 4026–4031.CrossRef
33.
Zurück zum Zitat Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K. A., et al. (2017). Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustainable Chemistry & Engineering, 5(12), 11481–11488.CrossRef Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K. A., et al. (2017). Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustainable Chemistry & Engineering, 5(12), 11481–11488.CrossRef
34.
Zurück zum Zitat Ying, Y., Liu, Y., Wang, X., Mao, Y., Cao, W., Hu, P., et al. (2015). Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Applied Materials & Interfaces, 7(3), 1795–1803.CrossRef Ying, Y., Liu, Y., Wang, X., Mao, Y., Cao, W., Hu, P., et al. (2015). Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Applied Materials & Interfaces, 7(3), 1795–1803.CrossRef
35.
Zurück zum Zitat Srimuk, P., Kaasik, F., Kruner, B., Tolosa, A., Fleischmann, S., Jackel, N., et al. (2016). MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 4(47), 18265–18271.CrossRef Srimuk, P., Kaasik, F., Kruner, B., Tolosa, A., Fleischmann, S., Jackel, N., et al. (2016). MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 4(47), 18265–18271.CrossRef
36.
Zurück zum Zitat Ng, V. M. H., Huang, H., Zhou, K., Lee, P. S., Que, W., Xu, J. Z., et al. (2017). Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications. Journal of Materials Chemistry A, 5(7), 3039–3068.CrossRef Ng, V. M. H., Huang, H., Zhou, K., Lee, P. S., Que, W., Xu, J. Z., et al. (2017). Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications. Journal of Materials Chemistry A, 5(7), 3039–3068.CrossRef
37.
Zurück zum Zitat Mashtalir, O., Cook, K. M., Mochalin, V. N., Crowe, M., Barsoum, M. W., & Gogotsi, Y. (2014). Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. Journal of Materials Chemistry A, 2(35), 14334–14338.CrossRef Mashtalir, O., Cook, K. M., Mochalin, V. N., Crowe, M., Barsoum, M. W., & Gogotsi, Y. (2014). Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. Journal of Materials Chemistry A, 2(35), 14334–14338.CrossRef
38.
Zurück zum Zitat Ghassemi, H., Harlow, W., Mashtalir, O., Beidaghi, M., Lukatskaya, M. R., Gogotsi, Y., et al. (2014). In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. Journal of Materials Chemistry A, 2(35), 14339–14343.CrossRef Ghassemi, H., Harlow, W., Mashtalir, O., Beidaghi, M., Lukatskaya, M. R., Gogotsi, Y., et al. (2014). In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. Journal of Materials Chemistry A, 2(35), 14339–14343.CrossRef
39.
Zurück zum Zitat Mahmoud, K. A., Mansoor, B., Mansour, A., & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356, 208–225.CrossRef Mahmoud, K. A., Mansoor, B., Mansour, A., & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356, 208–225.CrossRef
40.
Zurück zum Zitat Wu, X., Hao, L., Zhang, J., Zhang, X., Wang, J., & Liu, J. (2016). Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 515, 175–188.CrossRef Wu, X., Hao, L., Zhang, J., Zhang, X., Wang, J., & Liu, J. (2016). Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 515, 175–188.CrossRef
41.
Zurück zum Zitat Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., & Wang, H. (2017). A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie, International Edition, 56(7), 1825–1829.CrossRef Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., & Wang, H. (2017). A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie, International Edition, 56(7), 1825–1829.CrossRef
42.
Zurück zum Zitat Liu, G., Shen, J., Liu, Q., Liu, G., Xiong, J., Yang, J., et al. (2018). Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 548, 548–558.CrossRef Liu, G., Shen, J., Liu, Q., Liu, G., Xiong, J., Yang, J., et al. (2018). Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 548, 548–558.CrossRef
43.
Zurück zum Zitat Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Materials Chemistry C, 5(10), 2488–2503.CrossRef Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Materials Chemistry C, 5(10), 2488–2503.CrossRef
44.
Zurück zum Zitat Berdiyorov, G. R., Madjet, M. E., & Mahmoud, K. A. (2016). Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations. Applied Physics Letters, 108(11), 113110.CrossRef Berdiyorov, G. R., Madjet, M. E., & Mahmoud, K. A. (2016). Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations. Applied Physics Letters, 108(11), 113110.CrossRef
45.
Zurück zum Zitat Berdiyorov, G. R., & Mahmoud, K. A. (2017). Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T=F, O and OH) MXene. Applied Surface Science, 416, 725–730.CrossRef Berdiyorov, G. R., & Mahmoud, K. A. (2017). Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T=F, O and OH) MXene. Applied Surface Science, 416, 725–730.CrossRef
46.
Zurück zum Zitat Osti, N. C., Naguib, M., Ostadhossein, A., Xie, Y., Kent, P. R. C., Dyatkin, B., et al. (2016). Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Applied Materials & Interfaces, 8(14), 8859–8863.CrossRef Osti, N. C., Naguib, M., Ostadhossein, A., Xie, Y., Kent, P. R. C., Dyatkin, B., et al. (2016). Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Applied Materials & Interfaces, 8(14), 8859–8863.CrossRef
47.
Zurück zum Zitat Ding, L., Wei, Y., Li, L., Zhang, T., Wang, H., Xue, J., et al. (2018). MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 9(1), 155.CrossRef Ding, L., Wei, Y., Li, L., Zhang, T., Wang, H., Xue, J., et al. (2018). MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 9(1), 155.CrossRef
48.
Zurück zum Zitat Xu, K., Ji, X., Zhang, B., Chen, C., Ruan, Y., Miao, L., et al. (2016). Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study. Electrochimica Acta, 196, 75–83.CrossRef Xu, K., Ji, X., Zhang, B., Chen, C., Ruan, Y., Miao, L., et al. (2016). Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study. Electrochimica Acta, 196, 75–83.CrossRef
49.
Zurück zum Zitat Rasool, K., Helal, M., Ali, A., Ren, C. E., Gogotsi, Y., & Mahmoud, K. A. (2016). Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 10(3), 3674–3684.CrossRef Rasool, K., Helal, M., Ali, A., Ren, C. E., Gogotsi, Y., & Mahmoud, K. A. (2016). Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 10(3), 3674–3684.CrossRef
50.
Zurück zum Zitat Jastrzębska, A., Karwowska, E., Basiak, D., Zawada, A., Ziemkowska, W., Wojciechowski, T., et al. (2017). Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM. International Journal of Electrochemical Science, 12, 2159–2172.CrossRef Jastrzębska, A., Karwowska, E., Basiak, D., Zawada, A., Ziemkowska, W., Wojciechowski, T., et al. (2017). Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM. International Journal of Electrochemical Science, 12, 2159–2172.CrossRef
51.
Zurück zum Zitat Jastrzębska, A. M., Karwowska, E., Wojciechowski, T., Ziemkowska, W., Rozmysłowska, A., Chlubny, L., et al. (2019). The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. Journal of Materials Engineering and Performance, 28(3), 1272–1277.CrossRef Jastrzębska, A. M., Karwowska, E., Wojciechowski, T., Ziemkowska, W., Rozmysłowska, A., Chlubny, L., et al. (2019). The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. Journal of Materials Engineering and Performance, 28(3), 1272–1277.CrossRef
52.
Zurück zum Zitat Rasool, K., Mahmoud, K. A., Johnson, D. J., Helal, M., Berdiyorov, G. R., & Gogotsi, Y. (2017). Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Scientific Reports, 7(1), 1598.CrossRef Rasool, K., Mahmoud, K. A., Johnson, D. J., Helal, M., Berdiyorov, G. R., & Gogotsi, Y. (2017). Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Scientific Reports, 7(1), 1598.CrossRef
53.
Zurück zum Zitat Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., et al. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29(18), 7633–7644.CrossRef Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., et al. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29(18), 7633–7644.CrossRef
54.
Zurück zum Zitat Yang, K., & Ma, Y.-Q. (2010). Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotechnology, 5, 579.CrossRef Yang, K., & Ma, Y.-Q. (2010). Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotechnology, 5, 579.CrossRef
55.
Zurück zum Zitat Zou, X., Zhang, L., Wang, Z., & Luo, Y. (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the American Chemical Society, 138(7), 2064–2077.CrossRef Zou, X., Zhang, L., Wang, Z., & Luo, Y. (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the American Chemical Society, 138(7), 2064–2077.CrossRef
56.
Zurück zum Zitat Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736.CrossRef Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736.CrossRef
57.
Zurück zum Zitat Romero-Vargas Castrillón, S., Perreault, F., de Faria, A. F., & Elimelech, M. (2015). Interaction of graphene oxide with bacterial cell membranes: Insights from force spectroscopy. Environmental Science & Technology Letters, 2(4), 112–117.CrossRef Romero-Vargas Castrillón, S., Perreault, F., de Faria, A. F., & Elimelech, M. (2015). Interaction of graphene oxide with bacterial cell membranes: Insights from force spectroscopy. Environmental Science & Technology Letters, 2(4), 112–117.CrossRef
58.
Zurück zum Zitat Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., et al. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.CrossRef Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., et al. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.CrossRef
59.
Zurück zum Zitat Chen, S., Quan, Y., Yu, Y.-L., & Wang, J.-H. (2017). Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomaterials Science & Engineering, 3(3), 313–321.CrossRef Chen, S., Quan, Y., Yu, Y.-L., & Wang, J.-H. (2017). Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomaterials Science & Engineering, 3(3), 313–321.CrossRef
60.
Zurück zum Zitat Gu, L., Wang, J., Cheng, H., Zhao, Y., Liu, L., & Han, X. (2013). One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Applied Materials & Interfaces, 5(8), 3085–3093.CrossRef Gu, L., Wang, J., Cheng, H., Zhao, Y., Liu, L., & Han, X. (2013). One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Applied Materials & Interfaces, 5(8), 3085–3093.CrossRef
61.
Zurück zum Zitat Tian, T., Shi, X., Cheng, L., Luo, Y., Dong, Z., Gong, H., et al. (2014). Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Applied Materials & Interfaces, 6(11), 8542–8548.CrossRef Tian, T., Shi, X., Cheng, L., Luo, Y., Dong, Z., Gong, H., et al. (2014). Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Applied Materials & Interfaces, 6(11), 8542–8548.CrossRef
62.
Zurück zum Zitat Tang, Q., Zhou, Z., & Shen, P. (2012). Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 134(40), 16909–16916.CrossRef Tang, Q., Zhou, Z., & Shen, P. (2012). Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 134(40), 16909–16916.CrossRef
63.
Zurück zum Zitat Wang, H., Wu, Y., Yuan, X., Zeng, G., Zhou, J., Wang, X., et al. (2018). Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Advanced Materials, 30, 1704561.CrossRef Wang, H., Wu, Y., Yuan, X., Zeng, G., Zhou, J., Wang, X., et al. (2018). Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Advanced Materials, 30, 1704561.CrossRef
64.
Zurück zum Zitat Zhang, H., Yang, G., Zuo, X., Tang, H., Yang, Q., & Li, G. (2016). Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 4(33), 12913–12920.CrossRef Zhang, H., Yang, G., Zuo, X., Tang, H., Yang, Q., & Li, G. (2016). Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 4(33), 12913–12920.CrossRef
65.
Zurück zum Zitat Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4(29), 11446–11452.CrossRef Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4(29), 11446–11452.CrossRef
66.
Zurück zum Zitat Ling, C., Shi, L., Ouyang, Y., & Wang, J. (2016). Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 28(24), 9026–9032.CrossRef Ling, C., Shi, L., Ouyang, Y., & Wang, J. (2016). Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 28(24), 9026–9032.CrossRef
67.
Zurück zum Zitat Xiong, K., Wang, P., Yang, G., Liu, Z., Zhang, H., Jin, S., et al. (2017). Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Scientific Reports, 7(1), 150e95.CrossRef Xiong, K., Wang, P., Yang, G., Liu, Z., Zhang, H., Jin, S., et al. (2017). Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Scientific Reports, 7(1), 150e95.CrossRef
68.
Zurück zum Zitat Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26(7), 2374–2381.CrossRef Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26(7), 2374–2381.CrossRef
69.
Zurück zum Zitat Gao, Y., Wang, L., Zhou, A., Li, Z., Chen, J., Bala, H., et al. (2015). Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Materials Letters, 150, 62–64.CrossRef Gao, Y., Wang, L., Zhou, A., Li, Z., Chen, J., Bala, H., et al. (2015). Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Materials Letters, 150, 62–64.CrossRef
70.
Zurück zum Zitat Wang, H., Peng, R., Hood, Z. D., Naguib, M., Adhikari, S. P., & Wu, Z. (2016). Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 9(12), 1490–1497.CrossRef Wang, H., Peng, R., Hood, Z. D., Naguib, M., Adhikari, S. P., & Wu, Z. (2016). Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 9(12), 1490–1497.CrossRef
71.
Zurück zum Zitat Yang, X. H., Yang, H. G., & Li, C. (2011). Controllable nanocarving of anatase TiO2 single crystals with reactive {001} facets. Chemistry--A European Journal, 17(24), 6615–6619.CrossRef Yang, X. H., Yang, H. G., & Li, C. (2011). Controllable nanocarving of anatase TiO2 single crystals with reactive {001} facets. Chemistry--A European Journal, 17(24), 6615–6619.CrossRef
72.
Zurück zum Zitat Yuan, Y.-J., Ye, Z.-J., Lu, H.-W., Hu, B., Li, Y.-H., Chen, D.-Q., et al. (2016). Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catalysis, 6(2), 532–541.CrossRef Yuan, Y.-J., Ye, Z.-J., Lu, H.-W., Hu, B., Li, Y.-H., Chen, D.-Q., et al. (2016). Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catalysis, 6(2), 532–541.CrossRef
73.
Zurück zum Zitat Peng, C., Yang, X., Li, Y., Yu, H., Wang, H., & Peng, F. (2016). Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 8(9), 6051–6060.CrossRef Peng, C., Yang, X., Li, Y., Yu, H., Wang, H., & Peng, F. (2016). Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 8(9), 6051–6060.CrossRef
74.
Zurück zum Zitat Peng, C., Wang, H., Yu, H., & Peng, F. (2017). (111) TiO2-x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Materials Research Bulletin, 89, 16–25. Peng, C., Wang, H., Yu, H., & Peng, F. (2017). (111) TiO2-x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Materials Research Bulletin, 89, 16–25.
75.
Zurück zum Zitat Ran, J., Gao, G., Li, F.-T., Ma, T.-Y., Du, A., & Qiao, S.-Z. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8, 13907.CrossRef Ran, J., Gao, G., Li, F.-T., Ma, T.-Y., Du, A., & Qiao, S.-Z. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8, 13907.CrossRef
76.
Zurück zum Zitat Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef
77.
Zurück zum Zitat Zhang, Q., Teng, J., Zou, G., Peng, Q., Du, Q., Jiao, T., et al. (2016). Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale, 8(13), 7085–7093.CrossRef Zhang, Q., Teng, J., Zou, G., Peng, Q., Du, Q., Jiao, T., et al. (2016). Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale, 8(13), 7085–7093.CrossRef
78.
Zurück zum Zitat Zhang, Y.-J., Lan, J.-H., Wang, L., Wu, Q.-Y., Wang, C.-Z., Bo, T., et al. (2016). Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 308, 402–410.CrossRef Zhang, Y.-J., Lan, J.-H., Wang, L., Wu, Q.-Y., Wang, C.-Z., Bo, T., et al. (2016). Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 308, 402–410.CrossRef
79.
Zurück zum Zitat Yang, H. G., & Zeng, H. C. (2005). Synthetic architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O, and ZnO/TiO2 nanocomposites. Journal of the American Chemical Society, 127(1), 270–278.CrossRef Yang, H. G., & Zeng, H. C. (2005). Synthetic architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O, and ZnO/TiO2 nanocomposites. Journal of the American Chemical Society, 127(1), 270–278.CrossRef
80.
Zurück zum Zitat Xing, J., Fang, W. Q., Li, Z., & Yang, H. G. (2012). TiO2-coated ultrathin SnO2 nanosheets used as photoanodes for dye-sensitized solar cells with high efficiency. Industrial & Engineering Chemistry Research, 51(11), 4247–4253.CrossRef Xing, J., Fang, W. Q., Li, Z., & Yang, H. G. (2012). TiO2-coated ultrathin SnO2 nanosheets used as photoanodes for dye-sensitized solar cells with high efficiency. Industrial & Engineering Chemistry Research, 51(11), 4247–4253.CrossRef
81.
Zurück zum Zitat Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., et al. (2014). Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society, 136(11), 4113–4116.CrossRef Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., et al. (2014). Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society, 136(11), 4113–4116.CrossRef
82.
Zurück zum Zitat Guo, J., Peng, Q., Fu, H., Zou, G., & Zhang, Q. (2015). Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. The Journal of Physical Chemistry C., 119(36), 20923–20930.CrossRef Guo, J., Peng, Q., Fu, H., Zou, G., & Zhang, Q. (2015). Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. The Journal of Physical Chemistry C., 119(36), 20923–20930.CrossRef
83.
Zurück zum Zitat Zhang, Q., Du, Q., Hua, M., Jiao, T., Gao, F., & Pan, B. (2013). Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites. Environmental Science & Technology, 47(12), 6536–6544.CrossRef Zhang, Q., Du, Q., Hua, M., Jiao, T., Gao, F., & Pan, B. (2013). Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites. Environmental Science & Technology, 47(12), 6536–6544.CrossRef
84.
Zurück zum Zitat Wang, H., Wu, Y., Zhang, J., Li, G., Huang, H., Zhang, X., et al. (2015). Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Materials Letters, 160, 537–540.CrossRef Wang, H., Wu, Y., Zhang, J., Li, G., Huang, H., Zhang, X., et al. (2015). Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Materials Letters, 160, 537–540.CrossRef
85.
Zurück zum Zitat Guo, J., Fu, H., Zou, G., Zhang, Q., Zhang, Z., & Peng, Q. (2016). Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. Journal of Alloys and Compounds, 684, 504–509.CrossRef Guo, J., Fu, H., Zou, G., Zhang, Q., Zhang, Z., & Peng, Q. (2016). Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. Journal of Alloys and Compounds, 684, 504–509.CrossRef
86.
Zurück zum Zitat Guo, X., Zhang, X., Zhao, S., Huang, Q., & Xue, J. (2016). High adsorption capacity of heavy metals on two-dimensional MXenes: An ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(1), 228–233.CrossRef Guo, X., Zhang, X., Zhao, S., Huang, Q., & Xue, J. (2016). High adsorption capacity of heavy metals on two-dimensional MXenes: An ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(1), 228–233.CrossRef
87.
Zurück zum Zitat Zhang, Z., Li, H., Zou, G., Fernandez, C., Liu, B., Zhang, Q., et al. (2016). Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustainable Chemistry & Engineering, 4(12), 6763–6771.CrossRef Zhang, Z., Li, H., Zou, G., Fernandez, C., Liu, B., Zhang, Q., et al. (2016). Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustainable Chemistry & Engineering, 4(12), 6763–6771.CrossRef
88.
Zurück zum Zitat Zou, G., Guo, J., Peng, Q., Zhou, A., Zhang, Q., & Liu, B. (2016). Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. Journal of Materials Chemistry A, 4(2), 489–499.CrossRef Zou, G., Guo, J., Peng, Q., Zhou, A., Zhang, Q., & Liu, B. (2016). Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. Journal of Materials Chemistry A, 4(2), 489–499.CrossRef
89.
Zurück zum Zitat Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K. A., et al. (2018). Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. Journal of Hazardous Materials, 344, 811–818.CrossRef Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K. A., et al. (2018). Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. Journal of Hazardous Materials, 344, 811–818.CrossRef
90.
Zurück zum Zitat Zhang, Y.-J., Zhou, Z.-J., Lan, J.-H., Ge, C.-C., Chai, Z.-F., Zhang, P., et al. (2017). Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 426, 572–578.CrossRef Zhang, Y.-J., Zhou, Z.-J., Lan, J.-H., Ge, C.-C., Chai, Z.-F., Zhang, P., et al. (2017). Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 426, 572–578.CrossRef
91.
Zurück zum Zitat Wang, L., Yuan, L., Chen, K., Zhang, Y., Deng, Q., Du, S., et al. (2016). Loading actinides in multilayered structures for nuclear waste treatment: The first case study of uranium capture with vanadium carbide MXene. ACS Applied Materials & Interfaces, 8(25), 16396–16403.CrossRef Wang, L., Yuan, L., Chen, K., Zhang, Y., Deng, Q., Du, S., et al. (2016). Loading actinides in multilayered structures for nuclear waste treatment: The first case study of uranium capture with vanadium carbide MXene. ACS Applied Materials & Interfaces, 8(25), 16396–16403.CrossRef
92.
Zurück zum Zitat Wang, L., Tao, W., Yuan, L., Liu, Z., Huang, Q., Chai, Z., et al. (2017). Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 53(89), 12084–12087.CrossRef Wang, L., Tao, W., Yuan, L., Liu, Z., Huang, Q., Chai, Z., et al. (2017). Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 53(89), 12084–12087.CrossRef
93.
Zurück zum Zitat Kulkarni, S., Misra, C. S., Gupta, A., Ballal, A., & Apte, S. K. (2016). Interaction of uranium with bacterial cell surfaces: Inferences from phosphatase-mediated uranium precipitation. Applied and Environmental Microbiology, 82(16), 4965–4974.CrossRef Kulkarni, S., Misra, C. S., Gupta, A., Ballal, A., & Apte, S. K. (2016). Interaction of uranium with bacterial cell surfaces: Inferences from phosphatase-mediated uranium precipitation. Applied and Environmental Microbiology, 82(16), 4965–4974.CrossRef
Metadaten
Titel
MXenes for Environmental and Water Treatment Applications
verfasst von
Kashif Rasool
Ravi P. Pandey
P. Abdul Rasheed
Golibjon R. Berdiyorov
Khaled A. Mahmoud
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_22