Skip to main content
Erschienen in: Multimedia Systems 4/2022

06.01.2021 | Special Issue Paper

Myocardial infarction detection based on deep neural network on imbalanced data

verfasst von: Mohamed Hammad, Monagi H. Alkinani, B. B. Gupta, Ahmed A. Abd El-Latif

Erschienen in: Multimedia Systems | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Myocardial infarction (MI) is an acute interruption of blood flow to the heart, which causes the heart to suffer from a deficiency of blood and ischemia, so the heart muscle is damaged, and cells can die and lose their function. Despite the low incidence of MI in the world, it is still a common disease-causing death. Therefore, detecting the MI signals early can reduce mortality. This paper presented a method based on a deep convolutional neural network (CNN) for the detection of MI automatically. The proposed CNN is an end-to-end model without requiring any stages of machine learning and requires only one stage to detect MI from the input signals. In the case of imbalanced data, we optimize our deep model with a new loss function named the focal loss to deal with this case by constituting the loss indirectly the focus in those difficult classes. The Physikalisch-Technische Bundesanstalt (PTB) dataset was employed in the validation to classify the signals to normal and MI. The performance of our technique alongside state-of-the-art in the area shows an increase in terms of average accuracy and F1 score. Results show that focal loss improves the detection accuracy by 9% for detecting MI signals. In summary, the proposed method achieved an overall accuracy, precision, F1 score, and recall of 98.84%, 98.31%, 97.92%, and 97.63, respectively using focal loss and overall accuracy of 89.72%, a precision of 88.52%, a recall of 81.11% and F1 score of 83.02% without using focal loss. Our method using focal loss is an effective tool to perform a fast and reliable MI diagnosis to assist the cardiologists in detecting MI early.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang, H.: Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans. Biomed. Eng. 58(2), 339–347 (2010)CrossRef Yang, H.: Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans. Biomed. Eng. 58(2), 339–347 (2010)CrossRef
2.
Zurück zum Zitat Vogel, B., Claessen, B.E., Arnold, S.V., Chan, D., Cohen, D.J., Giannitsis, E., et al.: ST-segment elevation myocardial infarction. Nat. Rev. Dis. Prim. 5(1), 1–20 (2019) Vogel, B., Claessen, B.E., Arnold, S.V., Chan, D., Cohen, D.J., Giannitsis, E., et al.: ST-segment elevation myocardial infarction. Nat. Rev. Dis. Prim. 5(1), 1–20 (2019)
3.
Zurück zum Zitat Doig, D., Turner, E.L., Dobson, J., Featherstone, R.L., Lo, R.T.H., Gaines, P.A., et al.: Predictors of stroke, myocardial infarction or death within 30 days of carotid artery stenting: results from the International Carotid Stenting Study. Eur. J. Vasc. Endovasc. Surg. 51(3), 327–334 (2016)CrossRef Doig, D., Turner, E.L., Dobson, J., Featherstone, R.L., Lo, R.T.H., Gaines, P.A., et al.: Predictors of stroke, myocardial infarction or death within 30 days of carotid artery stenting: results from the International Carotid Stenting Study. Eur. J. Vasc. Endovasc. Surg. 51(3), 327–334 (2016)CrossRef
4.
Zurück zum Zitat Das, M.K., Khan, B., Jacob, S., Kumar, A., Mahenthiran, J.: Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation 113(21), 2495–2501 (2006)CrossRef Das, M.K., Khan, B., Jacob, S., Kumar, A., Mahenthiran, J.: Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation 113(21), 2495–2501 (2006)CrossRef
6.
Zurück zum Zitat Wang, H., Li, Z., Li, Y., Gupta, B.B., Choi, C.: Visual saliency guided complex image retrieval. Pattern Recogn. Lett. 130, 64–72 (2020)CrossRef Wang, H., Li, Z., Li, Y., Gupta, B.B., Choi, C.: Visual saliency guided complex image retrieval. Pattern Recogn. Lett. 130, 64–72 (2020)CrossRef
7.
Zurück zum Zitat Zhang, J., Lin, F., Xiong, P., Du, H., Zhang, H., Liu, M., et al.: Automated detection and localization of myocardial infarction with staked sparse autoencoder and treebagger. IEEE Access 7, 70634–70642 (2019)CrossRef Zhang, J., Lin, F., Xiong, P., Du, H., Zhang, H., Liu, M., et al.: Automated detection and localization of myocardial infarction with staked sparse autoencoder and treebagger. IEEE Access 7, 70634–70642 (2019)CrossRef
8.
Zurück zum Zitat Zhang, X., Li, R., Dai, H., Liu, Y., Zhou, B., Wang, Z.: Localization of myocardial infarction with multi-lead bidirectional gated recurrent unit neural network. IEEE Access 7, 161152–161166 (2019)CrossRef Zhang, X., Li, R., Dai, H., Liu, Y., Zhou, B., Wang, Z.: Localization of myocardial infarction with multi-lead bidirectional gated recurrent unit neural network. IEEE Access 7, 161152–161166 (2019)CrossRef
9.
Zurück zum Zitat AlZu’bi, S., Shehab, M., Al-Ayyoub, M., Jararweh, Y., et al.: Parallel implementation for 3d medical volume fuzzy segmentation. Pattern Recogn. Lett. 130, 312–318 (2020)CrossRef AlZu’bi, S., Shehab, M., Al-Ayyoub, M., Jararweh, Y., et al.: Parallel implementation for 3d medical volume fuzzy segmentation. Pattern Recogn. Lett. 130, 312–318 (2020)CrossRef
10.
Zurück zum Zitat Zhang, G., Si, Y., Wang, D., Yang, W., Sun, Y.: Automated detection of myocardial infarction using a gramian angular field and principal component analysis network. IEEE Access 7, 171570–171583 (2019)CrossRef Zhang, G., Si, Y., Wang, D., Yang, W., Sun, Y.: Automated detection of myocardial infarction using a gramian angular field and principal component analysis network. IEEE Access 7, 171570–171583 (2019)CrossRef
11.
Zurück zum Zitat Han, C., Shi, L.: Automated interpretable detection of myocardial infarction fusing energy entropy and morphological features. Comput. Methods Programs Biomed. 175, 9–23 (2019)CrossRef Han, C., Shi, L.: Automated interpretable detection of myocardial infarction fusing energy entropy and morphological features. Comput. Methods Programs Biomed. 175, 9–23 (2019)CrossRef
12.
Zurück zum Zitat Tao, R., Zhang, S., Huang, X., Tao, M., Ma, J., Ma, S., et al.: Magnetocardiography-based ischemic heart disease detection and localization using machine learning methods. IEEE Trans. Biomed. Eng. 66(6), 1658–1667 (2018)CrossRef Tao, R., Zhang, S., Huang, X., Tao, M., Ma, J., Ma, S., et al.: Magnetocardiography-based ischemic heart disease detection and localization using machine learning methods. IEEE Trans. Biomed. Eng. 66(6), 1658–1667 (2018)CrossRef
13.
Zurück zum Zitat Baloglu, U.B., Talo, M., Yildirim, O., San Tan, R., Acharya, U.R.: Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recogn. Lett. 122, 23–30 (2019)CrossRef Baloglu, U.B., Talo, M., Yildirim, O., San Tan, R., Acharya, U.R.: Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recogn. Lett. 122, 23–30 (2019)CrossRef
14.
Zurück zum Zitat Jafarian, K., Vahdat, V., Salehi, S., Mobin, M.: Automating detection and localization of myocardial infarction using shallow and end-to-end deep neural networks. Appl. Soft Comput. 93, 106383 (2020)CrossRef Jafarian, K., Vahdat, V., Salehi, S., Mobin, M.: Automating detection and localization of myocardial infarction using shallow and end-to-end deep neural networks. Appl. Soft Comput. 93, 106383 (2020)CrossRef
15.
Zurück zum Zitat Liu, W., Huang, Q., Chang, S., Wang, H., He, J.: Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomed. Signal Process. Control 45, 22–32 (2018)CrossRef Liu, W., Huang, Q., Chang, S., Wang, H., He, J.: Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomed. Signal Process. Control 45, 22–32 (2018)CrossRef
16.
Zurück zum Zitat Liu, W., Zhang, M., Zhang, Y., Liao, Y., Huang, Q., Chang, S., et al.: Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Inf. 22(5), 1434–1444 (2017)CrossRef Liu, W., Zhang, M., Zhang, Y., Liao, Y., Huang, Q., Chang, S., et al.: Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Inf. 22(5), 1434–1444 (2017)CrossRef
18.
Zurück zum Zitat Feng, K., Pi, X., Liu, H., Sun, K.: Myocardial infarction classification based on convolutional neural network and recurrent neural network. Appl. Sci. 9(9), 1879 (2019)CrossRef Feng, K., Pi, X., Liu, H., Sun, K.: Myocardial infarction classification based on convolutional neural network and recurrent neural network. Appl. Sci. 9(9), 1879 (2019)CrossRef
19.
Zurück zum Zitat Chen, M., Fang, L., Zhuang, Q., Liu, H.: Deep learning assessment of myocardial infarction from MR image sequences. IEEE Access 7, 5438–5446 (2019)CrossRef Chen, M., Fang, L., Zhuang, Q., Liu, H.: Deep learning assessment of myocardial infarction from MR image sequences. IEEE Access 7, 5438–5446 (2019)CrossRef
20.
Zurück zum Zitat Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415, 190–198 (2017)CrossRef Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415, 190–198 (2017)CrossRef
21.
Zurück zum Zitat Iqbal, U., Wah, T.Y., ur Rehman, M.H., Shah, J.H. Prediction analytics of myocardial infarction through model-driven deep deterministic learning. Neural Comput. Appl., 1–20 (2019) Iqbal, U., Wah, T.Y., ur Rehman, M.H., Shah, J.H. Prediction analytics of myocardial infarction through model-driven deep deterministic learning. Neural Comput. Appl., 1–20 (2019)
22.
Zurück zum Zitat Han, C., Shi, L.: ML–ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 185, 105138 (2020)CrossRef Han, C., Shi, L.: ML–ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 185, 105138 (2020)CrossRef
23.
Zurück zum Zitat Fu, L., Lu, B., Nie, B., Peng, Z., Liu, H., Pi, X.: Hybrid network with attention mechanism for detection and location of myocardial infarction based on 12-lead electrocardiogram signals. Sensors 20(4), 1020 (2020)CrossRef Fu, L., Lu, B., Nie, B., Peng, Z., Liu, H., Pi, X.: Hybrid network with attention mechanism for detection and location of myocardial infarction based on 12-lead electrocardiogram signals. Sensors 20(4), 1020 (2020)CrossRef
24.
Zurück zum Zitat Prabhakararao, E., Dandapat, S.: Myocardial infarction severity stages classification from ecg signals using attentional recurrent neural network. IEEE Sens. J. 20(15), 8711–8720 (2020)CrossRef Prabhakararao, E., Dandapat, S.: Myocardial infarction severity stages classification from ecg signals using attentional recurrent neural network. IEEE Sens. J. 20(15), 8711–8720 (2020)CrossRef
25.
Zurück zum Zitat Eckle, K., Schmidt-Hieber, J.: A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Netw. 110, 232–242 (2019)CrossRef Eckle, K., Schmidt-Hieber, J.: A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Netw. 110, 232–242 (2019)CrossRef
26.
Zurück zum Zitat Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv:1502.03167 Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv:​1502.​03167
27.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH
28.
Zurück zum Zitat Dwivedi, R.K., Kumar, R., Buyya, R.: Gaussian distribution-based machine learning scheme for anomaly detection in healthcare sensor cloud. Int. J. Cloud Appl. Comput. 11(1), 52–72 (2020) Dwivedi, R.K., Kumar, R., Buyya, R.: Gaussian distribution-based machine learning scheme for anomaly detection in healthcare sensor cloud. Int. J. Cloud Appl. Comput. 11(1), 52–72 (2020)
29.
Zurück zum Zitat Hammad, M., Zhang, S., Wang, K.: A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication. Future Gener. Comput. Syst. 101, 180–196 (2019)CrossRef Hammad, M., Zhang, S., Wang, K.: A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication. Future Gener. Comput. Syst. 101, 180–196 (2019)CrossRef
30.
Zurück zum Zitat Hammad, M., Liu, Y., Wang, K.: Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint. IEEE Access 7, 26527–26542 (2018)CrossRef Hammad, M., Liu, Y., Wang, K.: Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint. IEEE Access 7, 26527–26542 (2018)CrossRef
32.
Zurück zum Zitat Ortega-Delcampo, D., Conde, C., Palacios-Alonso, D., Cabello, E.: Border control morphing attack detection with a convolutional neural network de-morphing approach. IEEE Access 8, 92301–92313 (2020) Ortega-Delcampo, D., Conde, C., Palacios-Alonso, D., Cabello, E.: Border control morphing attack detection with a convolutional neural network de-morphing approach. IEEE Access 8, 92301–92313 (2020)
33.
Zurück zum Zitat Kumar, A.: Design of secure image fusion technique using cloud for privacy-preserving and copyright protection. Int. J. Cloud Appl. Comput. 9(3), 22–36 (2019) Kumar, A.: Design of secure image fusion technique using cloud for privacy-preserving and copyright protection. Int. J. Cloud Appl. Comput. 9(3), 22–36 (2019)
34.
Zurück zum Zitat Liu, T., Tian, Y., Zhao, S., Huang, X., Wang, Q.: Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis. IEEE Access 8, 82153–82161 (2020)CrossRef Liu, T., Tian, Y., Zhao, S., Huang, X., Wang, Q.: Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis. IEEE Access 8, 82153–82161 (2020)CrossRef
35.
Zurück zum Zitat Li, D., Deng, L., Gupta, B.B., Wang, H., Choi, C.: A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf. Sci. 479, 432–447 (2019)CrossRef Li, D., Deng, L., Gupta, B.B., Wang, H., Choi, C.: A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf. Sci. 479, 432–447 (2019)CrossRef
36.
Zurück zum Zitat He, J., Li, K., Liao, X., Zhang, P., Jiang, N.: Real-time detection of acute cognitive stress using a convolutional neural network from electrocardiographic signal. IEEE Access 7, 42710–42717 (2019)CrossRef He, J., Li, K., Liao, X., Zhang, P., Jiang, N.: Real-time detection of acute cognitive stress using a convolutional neural network from electrocardiographic signal. IEEE Access 7, 42710–42717 (2019)CrossRef
37.
Zurück zum Zitat Liu, H., Chu, W., Wang, H.: Automatic segmentation algorithm of ultrasound heart image based on convolutional neural network and image saliency. IEEE Access (2020) Liu, H., Chu, W., Wang, H.: Automatic segmentation algorithm of ultrasound heart image based on convolutional neural network and image saliency. IEEE Access (2020)
38.
Zurück zum Zitat Sedik, A., Iliyasu, A.M., El-Rahiem, A., Abdel Samea, M.E., Abdel-Raheem, A., Hammad, M., et al.: Deploying machine and deep learning models for efficient data-augmented detection of COVID-19 infections. Viruses 12(7), 769 (2020)CrossRef Sedik, A., Iliyasu, A.M., El-Rahiem, A., Abdel Samea, M.E., Abdel-Raheem, A., Hammad, M., et al.: Deploying machine and deep learning models for efficient data-augmented detection of COVID-19 infections. Viruses 12(7), 769 (2020)CrossRef
39.
Zurück zum Zitat Ramchoun, H., Idrissi, M.A.J., Ghanou, Y., Ettaouil, M.: New modeling of multilayer perceptron architecture optimization with regularization: an application to pattern classification. IAENG Int. J. Comput. Sci. 44(3), 261–269 (2017) Ramchoun, H., Idrissi, M.A.J., Ghanou, Y., Ettaouil, M.: New modeling of multilayer perceptron architecture optimization with regularization: an application to pattern classification. IAENG Int. J. Comput. Sci. 44(3), 261–269 (2017)
40.
Zurück zum Zitat Bousseljot R, Kreiseler D, Schnabel, A.: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomed. Tech. Band 40 Ergänzungsband 1, S317 (1995) Bousseljot R, Kreiseler D, Schnabel, A.: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomed. Tech. Band 40 Ergänzungsband 1, S317 (1995)
41.
Zurück zum Zitat Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P.C., Mark, R., et al.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online] 101(23), e215–e220 (2000) Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P.C., Mark, R., et al.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online] 101(23), e215–e220 (2000)
42.
Zurück zum Zitat Abd Elrahman, S.M., Abraham, A.: A review of class imbalance problem. J. Netw. Innov. Comput. 1(2013), 332–340 (2013) Abd Elrahman, S.M., Abraham, A.: A review of class imbalance problem. J. Netw. Innov. Comput. 1(2013), 332–340 (2013)
43.
Zurück zum Zitat Chen, Z., Lin, T., Xia, X., Xu, H., Ding, S.: A synthetic neighborhood generation based ensemble learning for the imbalanced data classification. Appl. Intell. 48(8), 2441–2457 (2018)CrossRef Chen, Z., Lin, T., Xia, X., Xu, H., Ding, S.: A synthetic neighborhood generation based ensemble learning for the imbalanced data classification. Appl. Intell. 48(8), 2441–2457 (2018)CrossRef
44.
Zurück zum Zitat Koziarski, M., Krawczyk, B., Woźniak, M.: Radial-Based oversampling for noisy imbalanced data classification. Neurocomputing 343, 19–33 (2019)CrossRef Koziarski, M., Krawczyk, B., Woźniak, M.: Radial-Based oversampling for noisy imbalanced data classification. Neurocomputing 343, 19–33 (2019)CrossRef
45.
Zurück zum Zitat Khatami, A., Babaie, M., Khosravi, A., Tizhoosh, H.R., Nahavandi, S.: Parallel deep solutions for image retrieval from imbalanced medical imaging archives. Appl. Soft Comput. 63, 197–205 (2018)CrossRef Khatami, A., Babaie, M., Khosravi, A., Tizhoosh, H.R., Nahavandi, S.: Parallel deep solutions for image retrieval from imbalanced medical imaging archives. Appl. Soft Comput. 63, 197–205 (2018)CrossRef
46.
Zurück zum Zitat Jegierski, H., Saganowski, S.: An “outside the box” solution for imbalanced data classification. IEEE Access 8, 125191–125209 (2020)CrossRef Jegierski, H., Saganowski, S.: An “outside the box” solution for imbalanced data classification. IEEE Access 8, 125191–125209 (2020)CrossRef
47.
Zurück zum Zitat Goyal, P., Kaiming, H.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2999–3007 (2018) Goyal, P., Kaiming, H.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2999–3007 (2018)
49.
Zurück zum Zitat Qiu, S.: Global weighted average pooling bridges pixel-level localization and image-level classification (2018). arXiv:1809.08264 Qiu, S.: Global weighted average pooling bridges pixel-level localization and image-level classification (2018). arXiv:​1809.​08264
51.
Zurück zum Zitat Diamantidis, N.A., Karlis, D., Giakoumakis, E.A.: Unsupervised stratification of cross-validation for accuracy estimation. Artif. Intell. 116(1–2), 1–16 (2000)MathSciNetMATHCrossRef Diamantidis, N.A., Karlis, D., Giakoumakis, E.A.: Unsupervised stratification of cross-validation for accuracy estimation. Artif. Intell. 116(1–2), 1–16 (2000)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Hammad, M., Wang, K.: Fingerprint classification based on a Q-Gaussian multiclass support vector machine. In: Proceedings of the 2017 International Conference on biometrics engineering and application, pp. 39–44 (2017) Hammad, M., Wang, K.: Fingerprint classification based on a Q-Gaussian multiclass support vector machine. In: Proceedings of the 2017 International Conference on biometrics engineering and application, pp. 39–44 (2017)
53.
Zurück zum Zitat Hammad, M., Maher, A., Wang, K., Jiang, F., Amrani, M.: Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 125, 634–644 (2018)CrossRef Hammad, M., Maher, A., Wang, K., Jiang, F., Amrani, M.: Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 125, 634–644 (2018)CrossRef
54.
Zurück zum Zitat Tuncer, T., Dogan, S., Pławiak, P., Acharya, U.R.: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl. Based Syst. 186, 104923 (2019)CrossRef Tuncer, T., Dogan, S., Pławiak, P., Acharya, U.R.: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl. Based Syst. 186, 104923 (2019)CrossRef
55.
Zurück zum Zitat Pławiak, P., Abdar, M.: Novel methodology for cardiac arrhythmias classification based on long-duration ECG signal fragments analysis. In: Biomedical signal processing, pp 225–272. Springer, Singapore Pławiak, P., Abdar, M.: Novel methodology for cardiac arrhythmias classification based on long-duration ECG signal fragments analysis. In: Biomedical signal processing, pp 225–272. Springer, Singapore
56.
Zurück zum Zitat McAllister, B.S., Haghighat, K.: Bone augmentation techniques. J. Periodontol. 78(3), 377–396 (2007)CrossRef McAllister, B.S., Haghighat, K.: Bone augmentation techniques. J. Periodontol. 78(3), 377–396 (2007)CrossRef
57.
Zurück zum Zitat Nakajima, K., Okuda, K., Watanabe, S., Matsuo, S., Kinuya, S., Toth, K., Edenbrandt, L.: Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Ann. Nucl. Med. 32(5), 303–310 (2018)CrossRef Nakajima, K., Okuda, K., Watanabe, S., Matsuo, S., Kinuya, S., Toth, K., Edenbrandt, L.: Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Ann. Nucl. Med. 32(5), 303–310 (2018)CrossRef
58.
Zurück zum Zitat Sharma, M., Patel, S., Acharya, U.R.: Automated detection of abnormal EEG signals using localized wavelet filter banks. Pattern Recogn. Lett. (2020) Sharma, M., Patel, S., Acharya, U.R.: Automated detection of abnormal EEG signals using localized wavelet filter banks. Pattern Recogn. Lett. (2020)
59.
Zurück zum Zitat Ghosh, S.K., Ponnalagu, R.N., Tripathy, R.K., Acharya, U.R.: Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals. Comput. Biol. Med. 118, 103632 (2020)CrossRef Ghosh, S.K., Ponnalagu, R.N., Tripathy, R.K., Acharya, U.R.: Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals. Comput. Biol. Med. 118, 103632 (2020)CrossRef
60.
Zurück zum Zitat Vicnesh, J., Wei, J.K.E., Oh, S.L., Arunkumar, N., Abdulhay, E.W., Ciaccio, E.J., Acharya, U.R.: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals. Int. J. Environ. Res. Public Health 17(3), 971 (2020)CrossRef Vicnesh, J., Wei, J.K.E., Oh, S.L., Arunkumar, N., Abdulhay, E.W., Ciaccio, E.J., Acharya, U.R.: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals. Int. J. Environ. Res. Public Health 17(3), 971 (2020)CrossRef
61.
Zurück zum Zitat Ay, B., Yildirim, O., Talo, M., Baloglu, U.B., Aydin, G., Puthankattil, S.D., Acharya, U.R.: Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43(7), 205 (2019)CrossRef Ay, B., Yildirim, O., Talo, M., Baloglu, U.B., Aydin, G., Puthankattil, S.D., Acharya, U.R.: Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43(7), 205 (2019)CrossRef
62.
Zurück zum Zitat Pławiak, P., Abdar, M., Pławiak, J., Makarenkov, V., Acharya, U.R.: DGHNL: a new deep genetic hierarchical network of learners for prediction of credit scoring. Inf. Sci. 516, 401–418 (2020)CrossRef Pławiak, P., Abdar, M., Pławiak, J., Makarenkov, V., Acharya, U.R.: DGHNL: a new deep genetic hierarchical network of learners for prediction of credit scoring. Inf. Sci. 516, 401–418 (2020)CrossRef
63.
Zurück zum Zitat Pławiak, P., Abdar, M., Acharya, U.R.: Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring. Appl. Soft Comput. 84, 105740 (2019)CrossRef Pławiak, P., Abdar, M., Acharya, U.R.: Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring. Appl. Soft Comput. 84, 105740 (2019)CrossRef
64.
Zurück zum Zitat Pławiak, P., Acharya, U.R.: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Comput. Appl. 32(15), 11137–11161 (2020)CrossRef Pławiak, P., Acharya, U.R.: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Comput. Appl. 32(15), 11137–11161 (2020)CrossRef
65.
Zurück zum Zitat Tuncer, T., Ertam, F., Dogan, S., Aydemir, E., Pławiak, P.: Ensemble residual network-based gender and activity recognition method with signals. J. Supercomput. 76(3), 2119–2138 (2020)CrossRef Tuncer, T., Ertam, F., Dogan, S., Aydemir, E., Pławiak, P.: Ensemble residual network-based gender and activity recognition method with signals. J. Supercomput. 76(3), 2119–2138 (2020)CrossRef
Metadaten
Titel
Myocardial infarction detection based on deep neural network on imbalanced data
verfasst von
Mohamed Hammad
Monagi H. Alkinani
B. B. Gupta
Ahmed A. Abd El-Latif
Publikationsdatum
06.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Multimedia Systems / Ausgabe 4/2022
Print ISSN: 0942-4962
Elektronische ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-020-00728-8

Weitere Artikel der Ausgabe 4/2022

Multimedia Systems 4/2022 Zur Ausgabe

Neuer Inhalt