Skip to main content
Erschienen in: Journal of Materials Science 23/2019

28.08.2019 | Energy materials

N,O-codoped 3D graphene fibers with densely arranged sharp edges as highly efficient electrocatalyst for oxygen reduction reaction

verfasst von: Jie Zeng, Yongbiao Mu, Xixi Ji, Zijia Lin, Yanhong Lin, Yihui Ma, Zhongxing Zhang, Shuguang Wang, Zhonghua Ren, Jie Yu

Erschienen in: Journal of Materials Science | Ausgabe 23/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To replace the noble-metal Pt catalysts for oxygen reduction reaction (ORR), developing efficient and earth-abundant electrocatalysts is of great importance. Both the morphology and composition engineering of graphene could effectively modify the electronic structure to optimize its electrocatalytic performance for ORR. Here, we report an effective method to dope carbon materials with N, by which the N doping concentration and form could be well controlled. We first grow 3D graphene fibers (3DGFs) by thermal chemical vapor deposition, which are then treated with acid or heated in air and heated in NH3 in succession, obtaining N,O-codoped 3DGFs. The codoped 3DGFs exhibit outstanding electrocatalytic performance toward ORR with onset potential of 1.01 V, half-wave potential of 0.883 V, long-term operation stability with 90% current retention after 50 h, and a good methanol tolerance in alkaline solutions, which are superior to 20 wt% Pt/C catalyst and other reported advanced metal-free catalysts. The excellent catalytic performance of the 3DGFs probably arises from the synergic effect of the morphology and composition engineering, e.g., the edges and doping, especially the pyridine N. The present work is expected to open up new approach to design outstanding metal-free carbon-based electrocatalysts for ORR.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Qu LT, Liu Y, Baek JB, Dai LM (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326CrossRef Qu LT, Liu Y, Baek JB, Dai LM (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326CrossRef
2.
Zurück zum Zitat Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764CrossRef Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764CrossRef
3.
Zurück zum Zitat Shen AL, Zou YQ, Wang Q, Dryfe RAW, Huang XB, Dou S, Dai LM, Wang SY (2014) Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew Chem Int Edit 53(40):10804–10808CrossRef Shen AL, Zou YQ, Wang Q, Dryfe RAW, Huang XB, Dou S, Dai LM, Wang SY (2014) Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew Chem Int Edit 53(40):10804–10808CrossRef
4.
Zurück zum Zitat Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134(1):15–18CrossRef Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134(1):15–18CrossRef
5.
Zurück zum Zitat Duan JJ, Chen S, Jaroniec M, Qiao SZ (2015) Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal 5(9):5207–5234CrossRef Duan JJ, Chen S, Jaroniec M, Qiao SZ (2015) Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal 5(9):5207–5234CrossRef
6.
Zurück zum Zitat Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang WM, Zhu ZH, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc 133(50):20116–20119CrossRef Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang WM, Zhu ZH, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc 133(50):20116–20119CrossRef
7.
Zurück zum Zitat Tao L, Wang Q, Dou S, Ma ZL, Huo J, Wang SY, Dai LM (2016) Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem Commun 52(13):2764–2767CrossRef Tao L, Wang Q, Dou S, Ma ZL, Huo J, Wang SY, Dai LM (2016) Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem Commun 52(13):2764–2767CrossRef
8.
Zurück zum Zitat Li YG, Zhou W, Wang HL, Xie LM, Liang YY, Wei F, Idrobo JC, Pennycook SJ, Dai HJ (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7(6):394–400CrossRef Li YG, Zhou W, Wang HL, Xie LM, Liang YY, Wei F, Idrobo JC, Pennycook SJ, Dai HJ (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7(6):394–400CrossRef
9.
Zurück zum Zitat Wang HB, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794CrossRef Wang HB, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794CrossRef
10.
Zurück zum Zitat Zheng Y, Jiao Y, Jaroniec M, Jin YG, Qiao SZ (2012) Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 8(23):3550–3566CrossRef Zheng Y, Jiao Y, Jaroniec M, Jin YG, Qiao SZ (2012) Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 8(23):3550–3566CrossRef
11.
Zurück zum Zitat Dai LM, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166CrossRef Dai LM, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166CrossRef
12.
Zurück zum Zitat Yu DS, Nagelli E, Du F, Dai LM (2010) Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J Phys Chem Lett 1(14):2165–2173CrossRef Yu DS, Nagelli E, Du F, Dai LM (2010) Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J Phys Chem Lett 1(14):2165–2173CrossRef
13.
Zurück zum Zitat Qiu YJ, Yu J, Shi TN, Zhou XS, Bai XD, Huang JY (2011) Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J Power Sources 196(23):9862–9867CrossRef Qiu YJ, Yu J, Shi TN, Zhou XS, Bai XD, Huang JY (2011) Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J Power Sources 196(23):9862–9867CrossRef
14.
Zurück zum Zitat Liu DD, Tao L, Yan DF, Zou YQ, Wang SY (2018) Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. Chemelectrochem 5(14):1775–1785CrossRef Liu DD, Tao L, Yan DF, Zou YQ, Wang SY (2018) Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. Chemelectrochem 5(14):1775–1785CrossRef
15.
Zurück zum Zitat Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng H-M (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRef Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng H-M (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRef
16.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef
17.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef
18.
Zurück zum Zitat Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2014) Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadnnap to achieve the best performance. J Am Chem Soc 136(11):4394–4403CrossRef Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2014) Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadnnap to achieve the best performance. J Am Chem Soc 136(11):4394–4403CrossRef
19.
Zurück zum Zitat Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22(2):390–395CrossRef Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22(2):390–395CrossRef
20.
Zurück zum Zitat Zhang LP, Xia ZH (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115(22):11170–11176CrossRef Zhang LP, Xia ZH (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115(22):11170–11176CrossRef
21.
Zurück zum Zitat Wang X, Li XY, Ouyang CB, Li Z, Dou S, Ma ZL, Tao L, Huo J, Wang SY (2016) Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. J Mater Chem A 4(24):9370–9374CrossRef Wang X, Li XY, Ouyang CB, Li Z, Dou S, Ma ZL, Tao L, Huo J, Wang SY (2016) Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. J Mater Chem A 4(24):9370–9374CrossRef
22.
Zurück zum Zitat Jia Y, Zhang LZ, Du AJ, Gao GP, Chen J, Yan XC, Brown CL, Yao XD (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28(43):9532–9538CrossRef Jia Y, Zhang LZ, Du AJ, Gao GP, Chen J, Yan XC, Brown CL, Yao XD (2016) Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 28(43):9532–9538CrossRef
23.
Zurück zum Zitat Jiang YF, Yang LJ, Sun T, Zhao J, Lyu ZY, Zhuo O, Wang XZ, Wu Q, Ma J, Hu Z (2015) Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal 5(11):6707–6712CrossRef Jiang YF, Yang LJ, Sun T, Zhao J, Lyu ZY, Zhuo O, Wang XZ, Wu Q, Ma J, Hu Z (2015) Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal 5(11):6707–6712CrossRef
24.
Zurück zum Zitat Stamatin SN, Hussainova I, Ivanov R, Colavita PE (2016) Quantifying graphitic edge exposure in graphene-based materials and its role in oxygen reduction reactions. ACS Catal 6(8):5215–5221CrossRef Stamatin SN, Hussainova I, Ivanov R, Colavita PE (2016) Quantifying graphitic edge exposure in graphene-based materials and its role in oxygen reduction reactions. ACS Catal 6(8):5215–5221CrossRef
25.
Zurück zum Zitat Tang C, Zhang Q (2017) Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv Mater 29(13):1604103CrossRef Tang C, Zhang Q (2017) Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv Mater 29(13):1604103CrossRef
26.
Zurück zum Zitat Wang YQ, Tao L, Xiao ZH, Chen R, Jiang ZQ, Wang SY (2018) 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv Funct Mater 28(11):1705356CrossRef Wang YQ, Tao L, Xiao ZH, Chen R, Jiang ZQ, Wang SY (2018) 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv Funct Mater 28(11):1705356CrossRef
27.
Zurück zum Zitat Yang DF, Guo L, Xie C, Wang YY, Li YX, Li H, Wang SY (2018) N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Sci China Mater 61(5):679–685CrossRef Yang DF, Guo L, Xie C, Wang YY, Li YX, Li H, Wang SY (2018) N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Sci China Mater 61(5):679–685CrossRef
28.
Zurück zum Zitat McClure JP, Thornton JD, Jiang R, Chu D, Cuomo JJ, Fedkiw PS (2012) Oxygen reduction on metal-free nitrogen-doped carbon nanowall electrodes. J Electrochem Soc 159(11):F733–F742CrossRef McClure JP, Thornton JD, Jiang R, Chu D, Cuomo JJ, Fedkiw PS (2012) Oxygen reduction on metal-free nitrogen-doped carbon nanowall electrodes. J Electrochem Soc 159(11):F733–F742CrossRef
29.
Zurück zum Zitat Chi YW, Hu CC, Shen HH, Huang KP (2016) New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett 16(9):5719–5727CrossRef Chi YW, Hu CC, Shen HH, Huang KP (2016) New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett 16(9):5719–5727CrossRef
30.
Zurück zum Zitat Zeng J, Ji XX, Ma YH, Zhang ZX, Wang SG, Ren ZH, Zhi CY, Yu J (2018) 3D graphene fibers grown by thermal chemical vapor deposition. Adv Mater 30(12):1705380CrossRef Zeng J, Ji XX, Ma YH, Zhang ZX, Wang SG, Ren ZH, Zhi CY, Yu J (2018) 3D graphene fibers grown by thermal chemical vapor deposition. Adv Mater 30(12):1705380CrossRef
31.
Zurück zum Zitat Wu Y, Qiao P, Chong T, Shen Z (2002) Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv Mater 14(1):64–67CrossRef Wu Y, Qiao P, Chong T, Shen Z (2002) Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv Mater 14(1):64–67CrossRef
32.
Zurück zum Zitat Subramanian NP, Li XG, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee JW, Popov BN (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188(1):38–44CrossRef Subramanian NP, Li XG, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee JW, Popov BN (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188(1):38–44CrossRef
33.
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef
34.
Zurück zum Zitat Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef
35.
Zurück zum Zitat Pei ZX, Li HF, Huang Y, Xue Q, Huang Y, Zhu MS, Wang ZF, Zhi CY (2017) Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy Environ Sci 10(3):742–749CrossRef Pei ZX, Li HF, Huang Y, Xue Q, Huang Y, Zhu MS, Wang ZF, Zhi CY (2017) Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy Environ Sci 10(3):742–749CrossRef
36.
Zurück zum Zitat Yao Y, Chen Z, Zhang A, Zhu J, Wei X, Guo J, Wu WD, Chen XD, Wu Z (2017) Surface-coating synthesis of nitrogen-doped inverse opal carbon materials with ultrathin micro/mesoporous graphene-like walls for oxygen reduction and supercapacitors. J Mater Chem A 5(48):25237–25248CrossRef Yao Y, Chen Z, Zhang A, Zhu J, Wei X, Guo J, Wu WD, Chen XD, Wu Z (2017) Surface-coating synthesis of nitrogen-doped inverse opal carbon materials with ultrathin micro/mesoporous graphene-like walls for oxygen reduction and supercapacitors. J Mater Chem A 5(48):25237–25248CrossRef
37.
Zurück zum Zitat Huang J, Han J, Gao T, Zhang X, Li J, Li Z, Xu P, Song B (2017) Metal-free nitrogen-doped carbon nanoribbons as highly efficient electrocatalysts for oxygen reduction reaction. Carbon 124:34–41CrossRef Huang J, Han J, Gao T, Zhang X, Li J, Li Z, Xu P, Song B (2017) Metal-free nitrogen-doped carbon nanoribbons as highly efficient electrocatalysts for oxygen reduction reaction. Carbon 124:34–41CrossRef
38.
Zurück zum Zitat Mulyadi A, Zhang Z, Dutzer M, Liu W, Deng Y (2017) Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution. Nano Energy 32:336–346CrossRef Mulyadi A, Zhang Z, Dutzer M, Liu W, Deng Y (2017) Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution. Nano Energy 32:336–346CrossRef
39.
Zurück zum Zitat Xiang Q, Yin W, Liu Y, Yu D, Wang X, Li S, Chen C (2017) A study of defect-rich carbon spheres as a metal-free electrocatalyst for an efficient oxygen reduction reaction. J Mater Chem A 5(46):24314–24320CrossRef Xiang Q, Yin W, Liu Y, Yu D, Wang X, Li S, Chen C (2017) A study of defect-rich carbon spheres as a metal-free electrocatalyst for an efficient oxygen reduction reaction. J Mater Chem A 5(46):24314–24320CrossRef
40.
Zurück zum Zitat Pampel J, Fellinger TP (2016) Opening of bottleneck pores for the improvement of nitrogen doped carbon electrocatalysts. Adv Energy Mater 6(8):1502389CrossRef Pampel J, Fellinger TP (2016) Opening of bottleneck pores for the improvement of nitrogen doped carbon electrocatalysts. Adv Energy Mater 6(8):1502389CrossRef
41.
Zurück zum Zitat Yu HJ, Shang L, Bian T, Shi R, Waterhouse GIN, Zhao YF, Zhou C, Wu LZ, Tung CH, Zhang TR (2016) Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv Mater 28(25):5080–5086CrossRef Yu HJ, Shang L, Bian T, Shi R, Waterhouse GIN, Zhao YF, Zhou C, Wu LZ, Tung CH, Zhang TR (2016) Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv Mater 28(25):5080–5086CrossRef
42.
Zurück zum Zitat Liu Q, Wang Y, Dai L, Yao J (2016) Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn–Air batteries. Adv Mater 28(15):3000–3006CrossRef Liu Q, Wang Y, Dai L, Yao J (2016) Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn–Air batteries. Adv Mater 28(15):3000–3006CrossRef
43.
Zurück zum Zitat Yang HB, Miao J, Hung S-F, Chen J, Tao HB, Wang X, Zhang L, Chen R, Gao J, Chen HM (2016) Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv 2(4):e1501122CrossRef Yang HB, Miao J, Hung S-F, Chen J, Tao HB, Wang X, Zhang L, Chen R, Gao J, Chen HM (2016) Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv 2(4):e1501122CrossRef
44.
Zurück zum Zitat Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang B, Zhang Q, Titirici MM, Wei F (2016) Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater 28(32):6845–6851CrossRef Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang B, Zhang Q, Titirici MM, Wei F (2016) Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater 28(32):6845–6851CrossRef
45.
Zurück zum Zitat Liu RL, Wu DQ, Feng XL, Mullen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Edit 49(14):2565–2569CrossRef Liu RL, Wu DQ, Feng XL, Mullen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Edit 49(14):2565–2569CrossRef
46.
Zurück zum Zitat Aijaz A, Fujiwara N, Xu Q (2014) From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J Am Chem Soc 136(19):6790–6793CrossRef Aijaz A, Fujiwara N, Xu Q (2014) From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J Am Chem Soc 136(19):6790–6793CrossRef
47.
Zurück zum Zitat Dou S, Shen AL, Tao L, Wang SY (2014) Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction. Chem Commun 50(73):10672–10675CrossRef Dou S, Shen AL, Tao L, Wang SY (2014) Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction. Chem Commun 50(73):10672–10675CrossRef
48.
Zurück zum Zitat Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5(1):26–41CrossRef Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5(1):26–41CrossRef
49.
Zurück zum Zitat Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271):361–365CrossRef Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271):361–365CrossRef
Metadaten
Titel
N,O-codoped 3D graphene fibers with densely arranged sharp edges as highly efficient electrocatalyst for oxygen reduction reaction
verfasst von
Jie Zeng
Yongbiao Mu
Xixi Ji
Zijia Lin
Yanhong Lin
Yihui Ma
Zhongxing Zhang
Shuguang Wang
Zhonghua Ren
Jie Yu
Publikationsdatum
28.08.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03743-x

Weitere Artikel der Ausgabe 23/2019

Journal of Materials Science 23/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.