Skip to main content

2019 | OriginalPaper | Buchkapitel

N7 Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher

verfasst von : Ludger Josef Fischer

Erschienen in: VDI-Wärmeatlas

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Processes. Taylor & Francis, Washington (1993) Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Processes. Taylor & Francis, Washington (1993)
2.
Zurück zum Zitat Hauer, A., Hiebler, S., Reuß, M.: Wärmespeicher, 5., Vollst. BINE Informationsdienst. Fraunhofer IRB Verlag, Stuttgart (2010) Hauer, A., Hiebler, S., Reuß, M.: Wärmespeicher, 5., Vollst. BINE Informationsdienst. Fraunhofer IRB Verlag, Stuttgart (2010)
3.
Zurück zum Zitat Beckmann, W. (Hrsg.): Crystallization. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2013) Beckmann, W. (Hrsg.): Crystallization. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2013)
4.
Zurück zum Zitat Dincer, I., Rosen, M.A.: Thermal Energy Storage: Systems and Applications, 2. Aufl. Laserwords Private Limited, Chennai (2002) Dincer, I., Rosen, M.A.: Thermal Energy Storage: Systems and Applications, 2. Aufl. Laserwords Private Limited, Chennai (2002)
5.
Zurück zum Zitat Pielichowska, K., Pielichowski, K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67–123 (2014) Pielichowska, K., Pielichowski, K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67–123 (2014)
6.
Zurück zum Zitat Abhat, A.: Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 30(4), 313–332 (1983) Abhat, A.: Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 30(4), 313–332 (1983)
7.
Zurück zum Zitat Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM. Springer, Berlin (2008) Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM. Springer, Berlin (2008)
8.
Zurück zum Zitat VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl. Springer, Berlin/Heidelberg/New York (2013) VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl. Springer, Berlin/Heidelberg/New York (2013)
9.
Zurück zum Zitat Hirman, S., Suwono, A., Mansoori, G.A.: Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sources 16(1), 117–128 (1994) Hirman, S., Suwono, A., Mansoori, G.A.: Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sources 16(1), 117–128 (1994)
10.
Zurück zum Zitat Yaws, C.L.: Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. McGraw-Hill Education LLC, New York (1999) Yaws, C.L.: Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. McGraw-Hill Education LLC, New York (1999)
11.
Zurück zum Zitat Tanaka, Y., Itani, Y., Kubota, H., Makita, T.: Thermal conductivity of five normal alkanes in the temperature range 283–373K at pressures up to 250MPa. Int. J. Thermophys. 9(3), 331–350 (1988) Tanaka, Y., Itani, Y., Kubota, H., Makita, T.: Thermal conductivity of five normal alkanes in the temperature range 283–373K at pressures up to 250MPa. Int. J. Thermophys. 9(3), 331–350 (1988)
12.
Zurück zum Zitat Griesbaum, K., Behr, A., Biedenkapp, H., Voges, D., Garbe, H.-W., Paetz, D., Collin, C., Mayer, G., Höke, D.: Hydrocarbons. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York (2000) Griesbaum, K., Behr, A., Biedenkapp, H., Voges, D., Garbe, H.-W., Paetz, D., Collin, C., Mayer, G., Höke, D.: Hydrocarbons. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York (2000)
13.
Zurück zum Zitat Bo, H., Gustafsson, E.M., Setterwall, F.: Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy 24(12), 1015–1028 (1999) Bo, H., Gustafsson, E.M., Setterwall, F.: Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy 24(12), 1015–1028 (1999)
14.
Zurück zum Zitat Vélez, C., Ortiz De Zarate, J.M., Khayet, M.: Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int. J. Therm. Sci. 94, 139–146 (2015) Vélez, C., Ortiz De Zarate, J.M., Khayet, M.: Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int. J. Therm. Sci. 94, 139–146 (2015)
15.
Zurück zum Zitat Knothe, G., Steidley, K.R.: Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9), 1059–1065 (2005) Knothe, G., Steidley, K.R.: Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9), 1059–1065 (2005)
16.
Zurück zum Zitat Vélez, C., Khayet, M., Ortiz De Zarate, J.M.: Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: N-Hexadecane, n-octadecane and n-eicosane. Appl. Energy 143, 383–394 (2015) Vélez, C., Khayet, M., Ortiz De Zarate, J.M.: Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: N-Hexadecane, n-octadecane and n-eicosane. Appl. Energy 143, 383–394 (2015)
17.
Zurück zum Zitat Caudwell, D.R., Trusler, J.P.M., Vesovic, V., Wakeham, W.A.: The viscosity and density of n-dodecane and n-octadecane at pressures up to 200 MPa and temperatures up to 473 K. Int. J. Thermophys. 25(5), 1339–1352 (2004) Caudwell, D.R., Trusler, J.P.M., Vesovic, V., Wakeham, W.A.: The viscosity and density of n-dodecane and n-octadecane at pressures up to 200 MPa and temperatures up to 473 K. Int. J. Thermophys. 25(5), 1339–1352 (2004)
18.
Zurück zum Zitat Chu, L.T., Sindilariu, C., Freilich, A., Fried, V.: Some physical properties of long chain hydrocarbons. Can. J. Chem. 64, 1–3 (1986) Chu, L.T., Sindilariu, C., Freilich, A., Fried, V.: Some physical properties of long chain hydrocarbons. Can. J. Chem. 64, 1–3 (1986)
19.
Zurück zum Zitat Queimada, A.J., Quinones-Cisneros, S.E., Marrucho, I.M., Coutinho, J.A.P., Stenby, E.H.: Hydrocarbon mixtures 1. Int. J. Thermophys. 24(5), 1221–1239 (2003) Queimada, A.J., Quinones-Cisneros, S.E., Marrucho, I.M., Coutinho, J.A.P., Stenby, E.H.: Hydrocarbon mixtures 1. Int. J. Thermophys. 24(5), 1221–1239 (2003)
20.
Zurück zum Zitat Paris, J., Falardeau, M., Villeneuve, C.: Thermal storage by Latent heat: A viable option for energy conservation in buildings. Energy Sources 15(1), 85–93 (1993) Paris, J., Falardeau, M., Villeneuve, C.: Thermal storage by Latent heat: A viable option for energy conservation in buildings. Energy Sources 15(1), 85–93 (1993)
21.
Zurück zum Zitat Vargaftik, N.B., Filippov, L.P., Taryimanov, A.A., Totskii, E.E.: Handbook of Thermal Conductivity of Liquid and Gases. Energoatomizdat Publishing House, Moscow (1994) Vargaftik, N.B., Filippov, L.P., Taryimanov, A.A., Totskii, E.E.: Handbook of Thermal Conductivity of Liquid and Gases. Energoatomizdat Publishing House, Moscow (1994)
22.
Zurück zum Zitat Jin, Y., Wunderlich, B.: Heat capacities of paraffins and polyethylene. J. Phys. Chem. 95(22), 9000–9007 (1991) Jin, Y., Wunderlich, B.: Heat capacities of paraffins and polyethylene. J. Phys. Chem. 95(22), 9000–9007 (1991)
23.
Zurück zum Zitat Anneken, D.J., Both, S., Chistoph, R., Fieg, G., Steinberger, U., Westfechtel, A.: Fatty acids. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572. (2012) Anneken, D.J., Both, S., Chistoph, R., Fieg, G., Steinberger, U., Westfechtel, A.: Fatty acids. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572. (2012)
24.
Zurück zum Zitat Putnam, W.E., McEachern, D.M., Kilpatrick, J.E.: Entropy and related thermodynamic properties of acetonitrile (methyl cyanide). J. Chem. Phys. 42(2), 749–755 (1965) Putnam, W.E., McEachern, D.M., Kilpatrick, J.E.: Entropy and related thermodynamic properties of acetonitrile (methyl cyanide). J. Chem. Phys. 42(2), 749–755 (1965)
25.
Zurück zum Zitat D. Velzen van, R. L. Cardozo, and H. Langenkamp, „A liquid viscosity-temperature-chemical constitution relation for organic compounds.“ Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972) D. Velzen van, R. L. Cardozo, and H. Langenkamp, „A liquid viscosity-temperature-chemical constitution relation for organic compounds.“ Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972)
26.
Zurück zum Zitat Mackay, D., Shiu, W.Y., Ma, K., Lee, S.C.: Properties and Environmental Fate Second Edition Introduction and Hydrocarbons vol. III, no. 14 (2006) Mackay, D., Shiu, W.Y., Ma, K., Lee, S.C.: Properties and Environmental Fate Second Edition Introduction and Hydrocarbons vol. III, no. 14 (2006)
27.
Zurück zum Zitat Wolfram, J.: Messungen der Wärmeleitfähigkeit von organischen, aliphatischen Flüssigkeiten und von Gasen nach einem instationären Absolutverfahren (1964) Wolfram, J.: Messungen der Wärmeleitfähigkeit von organischen, aliphatischen Flüssigkeiten und von Gasen nach einem instationären Absolutverfahren (1964)
28.
Zurück zum Zitat Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook, 7 Aufl., Bd. 27 (1997) Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook, 7 Aufl., Bd. 27 (1997)
29.
Zurück zum Zitat Ahluwalia, R., Wanchoo, R.K., Sharma, S.K., Vashisht, J.L.: Density, viscosity, and surface tension of binary liquid systems: Ethanoic acid, propanoic acid, and butanoic acid with nitrobenzene. J. Solut. Chem. 25(9), 905–917 (1996) Ahluwalia, R., Wanchoo, R.K., Sharma, S.K., Vashisht, J.L.: Density, viscosity, and surface tension of binary liquid systems: Ethanoic acid, propanoic acid, and butanoic acid with nitrobenzene. J. Solut. Chem. 25(9), 905–917 (1996)
30.
Zurück zum Zitat Lane, G.A.: Low temperature heat storage with phase change materials. Int. J. Ambient Energy 1(3), 155–168 (1980) Lane, G.A.: Low temperature heat storage with phase change materials. Int. J. Ambient Energy 1(3), 155–168 (1980)
31.
Zurück zum Zitat Lutton, E.S.: Fatty Acids: Their Chemistry, Properties, Production and Uses. Interscience, New York (1967) Lutton, E.S.: Fatty Acids: Their Chemistry, Properties, Production and Uses. Interscience, New York (1967)
32.
Zurück zum Zitat Desgrosseilliers, L., Whitman, C.A., Groulx, D., White, M.A.: Dodecanoic acid as a promising phase-change material for thermal energy storage. Appl. Therm. Eng. 53(1), 37–41 (2013) Desgrosseilliers, L., Whitman, C.A., Groulx, D., White, M.A.: Dodecanoic acid as a promising phase-change material for thermal energy storage. Appl. Therm. Eng. 53(1), 37–41 (2013)
33.
Zurück zum Zitat Karaipekli, A., Sari, A., Kaygusuz, K.: Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew. Energy 32(13), 2201–2210 (2007) Karaipekli, A., Sari, A., Kaygusuz, K.: Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew. Energy 32(13), 2201–2210 (2007)
34.
Zurück zum Zitat Nunes, V.M.B., Queirós, C.S., Lourenço, M.J.V., Santos, F.J.V., Nieto de Castro, C.A.: Molten salts as engineering fluids – a review: Part I. Molten alkali nitrates. Appl. Energy 183, 603–611 (2016) Nunes, V.M.B., Queirós, C.S., Lourenço, M.J.V., Santos, F.J.V., Nieto de Castro, C.A.: Molten salts as engineering fluids – a review: Part I. Molten alkali nitrates. Appl. Energy 183, 603–611 (2016)
35.
Zurück zum Zitat Stamatiou, A., Obermeyer, M., Fischer, L.J., Schuetz, P., Worlitschek, J.: Investigation of unbranched, saturated, carboxylic esters as phase change materials. Renew. Energy 108, 401–409 (2017) Stamatiou, A., Obermeyer, M., Fischer, L.J., Schuetz, P., Worlitschek, J.: Investigation of unbranched, saturated, carboxylic esters as phase change materials. Renew. Energy 108, 401–409 (2017)
36.
Zurück zum Zitat Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, A.S., Coutinho, J.A.P.: Densities and viscosities of fatty acid methyl and ethyl esters. J. Chem. Eng. Data 55(9), 3983–3990 (2010) Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, A.S., Coutinho, J.A.P.: Densities and viscosities of fatty acid methyl and ethyl esters. J. Chem. Eng. Data 55(9), 3983–3990 (2010)
37.
Zurück zum Zitat Babich, M.W., Hwang, S.W., Mounts, R.D.: The thermal analysis of energy storage materials by differential scanning calorimetry. Thermochim. Acta. 210, 77–82 (1992) Babich, M.W., Hwang, S.W., Mounts, R.D.: The thermal analysis of energy storage materials by differential scanning calorimetry. Thermochim. Acta. 210, 77–82 (1992)
38.
Zurück zum Zitat Suppes, G.J., Goff, M.J., Lopes, S.: Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 58(9), 1751–1763 (2003) Suppes, G.J., Goff, M.J., Lopes, S.: Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 58(9), 1751–1763 (2003)
39.
Zurück zum Zitat Wirth, E., Droege, J.W., Wood, H.: Low Temperature Heat Capacity of Palmitic Acid and Methyl Palmitate, 60(6), 917–918 (1956) Wirth, E., Droege, J.W., Wood, H.: Low Temperature Heat Capacity of Palmitic Acid and Methyl Palmitate, 60(6), 917–918 (1956)
40.
Zurück zum Zitat Aydin, A.A., Okutan, H.: High-chain fatty acid esters of myristyl alcohol with odd carbon number: Novel organic phase change materials for thermal energy storage – 2. Sol. Energy Mater. Sol. Cells 95(8), 2417–2423 (2011) Aydin, A.A., Okutan, H.: High-chain fatty acid esters of myristyl alcohol with odd carbon number: Novel organic phase change materials for thermal energy storage – 2. Sol. Energy Mater. Sol. Cells 95(8), 2417–2423 (2011)
41.
Zurück zum Zitat Aydin, A.A.: High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters’ homologous series. Sol. Energy Mater. Sol. Cells 113, 44–51 (2013) Aydin, A.A.: High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters’ homologous series. Sol. Energy Mater. Sol. Cells 113, 44–51 (2013)
42.
Zurück zum Zitat Peter, K., Vollhardt, C., Schore, N.E.: Organische Chemie. VCH Verlagsgesellschaft, Weinheim (1990) Peter, K., Vollhardt, C., Schore, N.E.: Organische Chemie. VCH Verlagsgesellschaft, Weinheim (1990)
43.
Zurück zum Zitat Noweck, K., Grafahrend, W.: Fatty alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572 (2012) Noweck, K., Grafahrend, W.: Fatty alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572 (2012)
44.
Zurück zum Zitat Van Miltenburg, J.C., Gabrielová, H., Růžička, K.: Heat capacities and derived thermodynamic functions of 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol between 5 K and 390 K. J. Chem. Eng. Data 48(5), 1323–1331 (2003) Van Miltenburg, J.C., Gabrielová, H., Růžička, K.: Heat capacities and derived thermodynamic functions of 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol between 5 K and 390 K. J. Chem. Eng. Data 48(5), 1323–1331 (2003)
45.
Zurück zum Zitat Yaws, C.L.: Handbook of Thermal Conductivity, Volume 3: Organic Compounds C8 to C28. Gulf Publishing, Houston (1995) Yaws, C.L.: Handbook of Thermal Conductivity, Volume 3: Organic Compounds C8 to C28. Gulf Publishing, Houston (1995)
46.
Zurück zum Zitat Al-Jimaz, A.S., Al-Kandary, J.A., Abdul-Latif, A.H.M.: Densities and viscosities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures. Fluid Phase Equilib. 218(2), 247–260 (2004) Al-Jimaz, A.S., Al-Kandary, J.A., Abdul-Latif, A.H.M.: Densities and viscosities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures. Fluid Phase Equilib. 218(2), 247–260 (2004)
47.
Zurück zum Zitat Nichols, G. et al.: Evaluation of the Vaporization , Fusion , and Sublimation Enthalpies of the 298.15 K by Correlation Gas Chromatography, J. Chem. Eng. Data, 475–482 (2006) Nichols, G. et al.: Evaluation of the Vaporization , Fusion , and Sublimation Enthalpies of the 298.15 K by Correlation Gas Chromatography, J. Chem. Eng. Data, 475–482 (2006)
48.
Zurück zum Zitat Khasanshin, T.S., Zykova, T.B.: Specific heat of saturated monatomic alcohols. J. Eng. Phys. 56(6), 698–700 (1989) Khasanshin, T.S., Zykova, T.B.: Specific heat of saturated monatomic alcohols. J. Eng. Phys. 56(6), 698–700 (1989)
49.
Zurück zum Zitat Shan, Z., Asfour, A.-F.A.: Viscosities and densities of nine binary 1-alkanol systems at 293,15 K and 298,15 K. J. Chem. Eng. Data 44(1), 118–123 (1999) Shan, Z., Asfour, A.-F.A.: Viscosities and densities of nine binary 1-alkanol systems at 293,15 K and 298,15 K. J. Chem. Eng. Data 44(1), 118–123 (1999)
50.
Zurück zum Zitat Acree William, J., Chickos, J.S.: Phase transition enthalpy measurementsof organic and organometallic compounds. Sublimation, vaporizationand fusion enthalpies from 1880 to 2010. J. Phys. Chem. Ref. Data 39(4), 43101 (2010) Acree William, J., Chickos, J.S.: Phase transition enthalpy measurementsof organic and organometallic compounds. Sublimation, vaporizationand fusion enthalpies from 1880 to 2010. J. Phys. Chem. Ref. Data 39(4), 43101 (2010)
51.
Zurück zum Zitat Matsuo, S., Makita, T.: Viscosities of six 1-Alkanols at temperatures in the range 298–348 K and pressures up to 200 MPa. Int. J. Thermophys. 10(4), 833–843 (1989) Matsuo, S., Makita, T.: Viscosities of six 1-Alkanols at temperatures in the range 298–348 K and pressures up to 200 MPa. Int. J. Thermophys. 10(4), 833–843 (1989)
52.
Zurück zum Zitat Mosselman, C., Mourik, J., Dekker, H.: Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism. J. Chem. Thermodyn. 6(5), 477–487 (1974) Mosselman, C., Mourik, J., Dekker, H.: Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism. J. Chem. Thermodyn. 6(5), 477–487 (1974)
53.
Zurück zum Zitat Mosselman, C., Dekker, H.: Enthalpies of formation of nitroalkanes, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 417–424 (1973) Mosselman, C., Dekker, H.: Enthalpies of formation of nitroalkanes, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 417–424 (1973)
54.
Zurück zum Zitat Ventola, L., et al.: Melting behaviour in the n-alkanol family. Enthalpy-entropy compensation. Phys. Chem. Chem. Phys. 6(8), 1786–1791 (2004) Ventola, L., et al.: Melting behaviour in the n-alkanol family. Enthalpy-entropy compensation. Phys. Chem. Chem. Phys. 6(8), 1786–1791 (2004)
55.
Zurück zum Zitat Xing, J., Tan, Z.C., Shi, Q., Tong, B., Wang, S.X., Li, Y.S.: Heat capacity and thermodynamic properties of 1-hexadecanol. J. Therm. Anal. Calorim. 92(2), 375–380 (2008) Xing, J., Tan, Z.C., Shi, Q., Tong, B., Wang, S.X., Li, Y.S.: Heat capacity and thermodynamic properties of 1-hexadecanol. J. Therm. Anal. Calorim. 92(2), 375–380 (2008)
56.
Zurück zum Zitat Van Miltenburg, J.C., Oonk, H.A.J., Ventola, L.: Heat capacities and derived thermodynamic functions of 1-octadecanol, 1-nonadecanol, 1-eicosanol, and 1-docosanol between 10 K and 370 K. J. Chem. Eng. Data 46(1), 90–97 (2001) Van Miltenburg, J.C., Oonk, H.A.J., Ventola, L.: Heat capacities and derived thermodynamic functions of 1-octadecanol, 1-nonadecanol, 1-eicosanol, and 1-docosanol between 10 K and 370 K. J. Chem. Eng. Data 46(1), 90–97 (2001)
57.
Zurück zum Zitat Schiweck, H. et al.: Sugar alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, S. 2–32 (2012) Schiweck, H. et al.: Sugar alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, S. 2–32 (2012)
58.
Zurück zum Zitat Kaizawa, A., et al.: Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat Mass Transf. 44(7), 763–769 (2008) Kaizawa, A., et al.: Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat Mass Transf. 44(7), 763–769 (2008)
59.
Zurück zum Zitat Barone, G., Della Gatta, G., Ferro, D., Piacente, V.: Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols. J. Chem. Soc. Faraday Trans. 86(1), 75 (1990) Barone, G., Della Gatta, G., Ferro, D., Piacente, V.: Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols. J. Chem. Soc. Faraday Trans. 86(1), 75 (1990)
60.
Zurück zum Zitat Höhlein, S., König-Haagen, A., Brüggemann, D.: Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES). Materials (Basel) 10(4), 444 (2017) Höhlein, S., König-Haagen, A., Brüggemann, D.: Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES). Materials (Basel) 10(4), 444 (2017)
61.
Zurück zum Zitat Parks, G.S., Huffman, M.: Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulctitol, Therm. Data Org. Compd. 48(1925), 2788–2793 (1926) Parks, G.S., Huffman, M.: Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulctitol, Therm. Data Org. Compd. 48(1925), 2788–2793 (1926)
62.
Zurück zum Zitat Zhu, C., Ma, Y., Zhou, C.: Densities and viscosities of sugar alcohol aqueous solutions. J. Chem. Eng. Data. 55(9), 3882–3885 (2010) Zhu, C., Ma, Y., Zhou, C.: Densities and viscosities of sugar alcohol aqueous solutions. J. Chem. Eng. Data. 55(9), 3882–3885 (2010)
63.
Zurück zum Zitat Lebrun, N., Van Miltenburg, J.C.: Calorimetric study of maltitol: Correlation between fragility and thermodynamic properties. J. Alloys Compd. 320(2), 320–325 (2001) Lebrun, N., Van Miltenburg, J.C.: Calorimetric study of maltitol: Correlation between fragility and thermodynamic properties. J. Alloys Compd. 320(2), 320–325 (2001)
64.
Zurück zum Zitat Kumaresan, G., Velraj, R., Iniyan, S.: Thermal analysis of D-mannitol for use as phase change material for latent heat storage. J. Appl. Sci. 11(16), 3044–3048 (2011) Kumaresan, G., Velraj, R., Iniyan, S.: Thermal analysis of D-mannitol for use as phase change material for latent heat storage. J. Appl. Sci. 11(16), 3044–3048 (2011)
65.
Zurück zum Zitat Gawron, K., Schröder, J.: Properties of some salt hydrates for latent heat storage. Int. J. Energy Res. 1(4), 351–363 (1977) Gawron, K., Schröder, J.: Properties of some salt hydrates for latent heat storage. Int. J. Energy Res. 1(4), 351–363 (1977)
66.
Zurück zum Zitat Eva, G., Mehling, H., Werner, M.: Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J. Phys. D Apppl. Phys. 40, 4636–4641 (2007) Eva, G., Mehling, H., Werner, M.: Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J. Phys. D Apppl. Phys. 40, 4636–4641 (2007)
67.
Zurück zum Zitat Shamberger, P.J., Reid, T.: Thermophysical properties of potassium fluoride tetrahydrate from (243 to 348) K. J. Chem. Eng. Data 58(2), 294–300 (2013) Shamberger, P.J., Reid, T.: Thermophysical properties of potassium fluoride tetrahydrate from (243 to 348) K. J. Chem. Eng. Data 58(2), 294–300 (2013)
68.
Zurück zum Zitat Nagano, K., Mochida, T., Takeda, S., Domański, R., Rebow, M.: Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 23(2), 229–241 (2003) Nagano, K., Mochida, T., Takeda, S., Domański, R., Rebow, M.: Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 23(2), 229–241 (2003)
69.
Zurück zum Zitat Shamberger, P.J., Reid, T.: Thermophysical properties of lithium nitrate trihydrate from (253 to 353) K. J. Chem. Eng. Data 57(5), 1404–1411 (2012) Shamberger, P.J., Reid, T.: Thermophysical properties of lithium nitrate trihydrate from (253 to 353) K. J. Chem. Eng. Data 57(5), 1404–1411 (2012)
70.
Zurück zum Zitat Hale, B.D.V. et al.: Phase Change Materials Handbook. Nasa Contractor Report Nasa Cr-51363 (1971) Hale, B.D.V. et al.: Phase Change Materials Handbook. Nasa Contractor Report Nasa Cr-51363 (1971)
71.
Zurück zum Zitat Patnaik, P.: Handbook of Inorganic Chemicals. McGraw-Hill, New York (2003) Patnaik, P.: Handbook of Inorganic Chemicals. McGraw-Hill, New York (2003)
72.
Zurück zum Zitat Ruben, H.W., Olovsson, I., Templeton, D.H., Rosenstein, R.D.: Crystal structure and entropy of sodium sulfate decahydrate. J. Am. Chem. Soc. 83(4), 820–824 (1961) Ruben, H.W., Olovsson, I., Templeton, D.H., Rosenstein, R.D.: Crystal structure and entropy of sodium sulfate decahydrate. J. Am. Chem. Soc. 83(4), 820–824 (1961)
73.
Zurück zum Zitat Kobe, K.A., Anderson, C.H.: The heat capacity of saturated sodium sulfate solution. J. Phys. Chem. 40(4), 429–433 (1935) Kobe, K.A., Anderson, C.H.: The heat capacity of saturated sodium sulfate solution. J. Phys. Chem. 40(4), 429–433 (1935)
74.
Zurück zum Zitat Sharma, S.K., Jotshi, C.K., Singh, A.: Viscosity of molten sodium salt hydrates. J. Chem. Eng. Data 29(2), 245–246 (1984) Sharma, S.K., Jotshi, C.K., Singh, A.: Viscosity of molten sodium salt hydrates. J. Chem. Eng. Data 29(2), 245–246 (1984)
75.
Zurück zum Zitat Vanderzee, E.: J. Chem. Thermodyn. 14(3), 219–238 (1982) Vanderzee, E.: J. Chem. Thermodyn. 14(3), 219–238 (1982)
76.
Zurück zum Zitat Grönvold, F., Meisingset, K.K.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. J. Chem. Thermodyn. 14(11), 1083–1098 (1982) Grönvold, F., Meisingset, K.K.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. J. Chem. Thermodyn. 14(11), 1083–1098 (1982)
77.
Zurück zum Zitat Glasser, L.: Thermodynamics of inorganic hydration and of humidity control, with an extensive database of salt hydrate pairs. J. Chem. Eng. Data 59(2), 526–530 (2014) Glasser, L.: Thermodynamics of inorganic hydration and of humidity control, with an extensive database of salt hydrate pairs. J. Chem. Eng. Data 59(2), 526–530 (2014)
78.
Zurück zum Zitat Naumann, R., Emons, H.H.: Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J. Therm. Anal. 35(3), 1009–1031 (1989) Naumann, R., Emons, H.H.: Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J. Therm. Anal. 35(3), 1009–1031 (1989)
79.
Zurück zum Zitat Lorsch, H.G., Kauffman, K.W., Denton, J.C.: Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers 15(1–2), 1–8 (1975) Lorsch, H.G., Kauffman, K.W., Denton, J.C.: Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers 15(1–2), 1–8 (1975)
80.
Zurück zum Zitat Yinping, Z., Yi, J., Yi, J.: A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 10(3), 201–205 (1999) Yinping, Z., Yi, J., Yi, J.: A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 10(3), 201–205 (1999)
81.
Zurück zum Zitat Meisingset, K.K., Gronvold, F.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K III. CH3CO2Na 3H2O, CH3CO2Li 2H2O, and (CH3CO2)2Mg 4H2O. J. Chem. Thermodyn. 16(6), 523–536 (1984) Meisingset, K.K., Gronvold, F.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K III. CH3CO2Na 3H2O, CH3CO2Li 2H2O, and (CH3CO2)2Mg 4H2O. J. Chem. Thermodyn. 16(6), 523–536 (1984)
82.
Zurück zum Zitat Larranaga, M.D., Lewis, R.J., Lewis, R.A.: Hawley’s Condensed Chemical Dictionary, 16. Aufl. Wiley, Hoboken (2016) Larranaga, M.D., Lewis, R.J., Lewis, R.A.: Hawley’s Condensed Chemical Dictionary, 16. Aufl. Wiley, Hoboken (2016)
83.
Zurück zum Zitat Pielichowski, K., Flejtuch, K.: Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 13, 690–696 (2002) Pielichowski, K., Flejtuch, K.: Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 13, 690–696 (2002)
84.
Zurück zum Zitat Tyagi, O.S., Bisht, H.S., Chatterjee, A.K.: Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. J. Phys. Chem. B. 108(9), 3010–3016 (2004) Tyagi, O.S., Bisht, H.S., Chatterjee, A.K.: Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. J. Phys. Chem. B. 108(9), 3010–3016 (2004)
85.
Zurück zum Zitat Oyama, H., et al.: Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilib. 234(1–2), 131–135 (2005) Oyama, H., et al.: Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilib. 234(1–2), 131–135 (2005)
86.
Zurück zum Zitat Belandria, V., Mohammadi, A.H., Dominique, R.: Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations (TBAB). J. Chem. Thermodyn. 41, 1382–1386 (2009) Belandria, V., Mohammadi, A.H., Dominique, R.: Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations (TBAB). J. Chem. Thermodyn. 41, 1382–1386 (2009)
87.
Zurück zum Zitat Nagatomi, T.: Thermal conductivity measurement of TBAB hydrate by the transient hot-wire using parylene-coated probe. (2013) Nagatomi, T.: Thermal conductivity measurement of TBAB hydrate by the transient hot-wire using parylene-coated probe. (2013)
88.
Zurück zum Zitat BASF The Chemical Company: Technisches Merkblatt AdBlue. (2006) BASF The Chemical Company: Technisches Merkblatt AdBlue. (2006)
89.
Zurück zum Zitat Wei, G. et al.: Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 0–1 (2017) Wei, G. et al.: Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 0–1 (2017)
90.
Zurück zum Zitat Raud, R., Cholette, M.E., Riahi, S., Bruno, F., Saman, W.: Design optimization method for tube and fin latent heat thermal energy storage systems. Energy 134, 585–594 (2017) Raud, R., Cholette, M.E., Riahi, S., Bruno, F., Saman, W.: Design optimization method for tube and fin latent heat thermal energy storage systems. Energy 134, 585–594 (2017)
91.
Zurück zum Zitat Dinker, A., Agarwal, M., Agarwal, G.D.: Heat storage materials, geometry and applications: A review. J. Energy Inst. 90(1), 1–11 (2017) Dinker, A., Agarwal, M., Agarwal, G.D.: Heat storage materials, geometry and applications: A review. J. Energy Inst. 90(1), 1–11 (2017)
92.
Zurück zum Zitat Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J.M.: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 203, 219–239 (2017) Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J.M.: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 203, 219–239 (2017)
93.
Zurück zum Zitat Fleischer, A.S.: Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications. Springer, Villanova (2015) Fleischer, A.S.: Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications. Springer, Villanova (2015)
94.
Zurück zum Zitat Kaizawa, A., et al.: Thermal and flow behaviors in heat transportation container using phase change material. Energy Convers. Manag. 49(4), 698–706 (2008) Kaizawa, A., et al.: Thermal and flow behaviors in heat transportation container using phase change material. Energy Convers. Manag. 49(4), 698–706 (2008)
95.
Zurück zum Zitat Fischer, L.J., von Arx, S., Wechsler, U., Züst, S., Worlitschek, J.: Phase change dispersion properties, modeling apparent heat capacity. Int. J. Refrig. 74, 240–253 (2017) Fischer, L.J., von Arx, S., Wechsler, U., Züst, S., Worlitschek, J.: Phase change dispersion properties, modeling apparent heat capacity. Int. J. Refrig. 74, 240–253 (2017)
96.
Zurück zum Zitat Weiss, L., Züst, S., Fischer, L., Worlitschek, J., Reinhard, E.: Vorrichtung zur Kühlung von Maschinenbauteilen mittels PCM, EP2949422 (2014) Weiss, L., Züst, S., Fischer, L., Worlitschek, J., Reinhard, E.: Vorrichtung zur Kühlung von Maschinenbauteilen mittels PCM, EP2949422 (2014)
97.
Zurück zum Zitat Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications. (2008) Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications. (2008)
98.
Zurück zum Zitat Kauffeld, M., Wang, M.J., Goldstein, V., Kasza, K.E.: Ice slurry applications. Int. J. Refrig. 33(8), 1491–1505 (2010) Kauffeld, M., Wang, M.J., Goldstein, V., Kasza, K.E.: Ice slurry applications. Int. J. Refrig. 33(8), 1491–1505 (2010)
99.
Zurück zum Zitat Egolf, P.W., Kauffeld, M.: From physical properties of ice slurries to industrial ice slurry applications. Int. J. Refrig. 28(1), 4–12 (2005) Egolf, P.W., Kauffeld, M.: From physical properties of ice slurries to industrial ice slurry applications. Int. J. Refrig. 28(1), 4–12 (2005)
Metadaten
Titel
N7 Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher
verfasst von
Ludger Josef Fischer
Copyright-Jahr
2019
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-52989-8_116

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.