Skip to main content

2016 | OriginalPaper | Buchkapitel

13. Nano- and Microscale Delivery Systems for Cardiovascular Therapy

verfasst von : Renae Waters, Ryan Maloney, Sudhir H. Ranganath, Hsin-Yi Hsieh, Arghya Paul

Erschienen in: Microscale Technologies for Cell Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cardiovascular disease is still a major healthcare concern as it continues to be the leading cause of death in developed countries. Recent advancement in bioengineering technologies to generate micro- and nanoscale materials as biotransporters and therapeutics has led to a variety of new approaches to treat cardiovascular diseases. Although these strategies are still in their initial stage of research, developing effective alternate therapies to treat life-threatening diseases such as myocardial infarction and atherosclerosis can potentially improve patient outcomes and long-term economic costs imposed on the healthcare system. Over the last decade, a wide array of materials with tunable biophysical and chemical properties has been developed to successfully deliver therapeutic agents such as nucleic acids, proteins, and small molecules, and even stem cells in combination with nanomaterials for advanced cardiovascular treatments. This mainly includes polymeric nanoparticles and nanohybrid materials, microparticles, carbon nanotubes, graphene oxide, liposomes, microgels, nanofibers, and nanoscaffolds. In addition, these materials also find application as multifunctional theranostic nanoagents which combine in vivo diagnostic properties along with therapeutic capabilities. This chapter discusses the emerging therapeutic delivery systems for biomedical research and highlights the recent developments in this highly interdisciplinary field along with examples of strategies that hold promise for the future of cardiovascular medicine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Heidenreich P, Trogdon J, Khavjou O et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 8:933–944CrossRef Heidenreich P, Trogdon J, Khavjou O et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 8:933–944CrossRef
2.
Zurück zum Zitat Libby P, Ridker P, Hansson G (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325CrossRef Libby P, Ridker P, Hansson G (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325CrossRef
3.
Zurück zum Zitat Park H, Larson B, Kolewe M et al (2014) Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development. Exp Cell Res 321:297–306CrossRef Park H, Larson B, Kolewe M et al (2014) Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development. Exp Cell Res 321:297–306CrossRef
4.
Zurück zum Zitat Thygesen K, Alpert J, Jaffe A et al (2012) Third universal definition of myocardial infarction. J Am Coll Cardiol 60:1581–1598CrossRef Thygesen K, Alpert J, Jaffe A et al (2012) Third universal definition of myocardial infarction. J Am Coll Cardiol 60:1581–1598CrossRef
5.
Zurück zum Zitat Krijnen P, Nijmeijer R, Meijer C et al (2002) Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55:801–811CrossRef Krijnen P, Nijmeijer R, Meijer C et al (2002) Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55:801–811CrossRef
6.
Zurück zum Zitat Cam C, Segura T (2013) Matrix-based gene delivery for tissue repair. Curr Opin Biotechnol 24:855–863CrossRef Cam C, Segura T (2013) Matrix-based gene delivery for tissue repair. Curr Opin Biotechnol 24:855–863CrossRef
7.
Zurück zum Zitat Jaffe A (2006) Chasing troponin: how low can you go if you can see the rise? J Am Coll Cardiol 48:1763–1764CrossRef Jaffe A (2006) Chasing troponin: how low can you go if you can see the rise? J Am Coll Cardiol 48:1763–1764CrossRef
8.
Zurück zum Zitat Melo L, Pachori A, Kong D et al (2004) Molecular and cell-based therapies for protection, rescue, and repair of ischemic myocardium: reasons for cautious optimism. Circulation 109:2386–2393CrossRef Melo L, Pachori A, Kong D et al (2004) Molecular and cell-based therapies for protection, rescue, and repair of ischemic myocardium: reasons for cautious optimism. Circulation 109:2386–2393CrossRef
9.
Zurück zum Zitat Melo L, Pachori A, Kong D et al (2004) Gene and cell-based therapies for heart disease. FASEB J 18:648–663CrossRef Melo L, Pachori A, Kong D et al (2004) Gene and cell-based therapies for heart disease. FASEB J 18:648–663CrossRef
10.
Zurück zum Zitat Chen C, Jamaluddin M, Kougias P et al (2011) miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn 11:79–89CrossRef Chen C, Jamaluddin M, Kougias P et al (2011) miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn 11:79–89CrossRef
11.
Zurück zum Zitat Dorn I, Gerald W (2011) MicroRNAs in cardiac disease. Transl Res 157:226–235CrossRef Dorn I, Gerald W (2011) MicroRNAs in cardiac disease. Transl Res 157:226–235CrossRef
12.
Zurück zum Zitat Pucéat M (2008) Pharmacological approaches to regenerative strategies for the treatment of cardiovascular diseases. Curr Opin Pharmacol 8:189–192CrossRef Pucéat M (2008) Pharmacological approaches to regenerative strategies for the treatment of cardiovascular diseases. Curr Opin Pharmacol 8:189–192CrossRef
13.
Zurück zum Zitat Traverse J, Henry T, Ellis S et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306:2110–2119CrossRef Traverse J, Henry T, Ellis S et al (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306:2110–2119CrossRef
14.
Zurück zum Zitat Traverse J, Henry T, Pepine C et al (2012) Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the time randomized trial. JAMA 308:2380–2389CrossRef Traverse J, Henry T, Pepine C et al (2012) Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the time randomized trial. JAMA 308:2380–2389CrossRef
15.
Zurück zum Zitat Schächinger V, Erbs S, Elsässer A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221CrossRef Schächinger V, Erbs S, Elsässer A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221CrossRef
16.
Zurück zum Zitat Traverse J, Henry T, Vaughn D et al (2009) Rationale and design for TIME: a phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. Am Heart J 158:356–363CrossRef Traverse J, Henry T, Vaughn D et al (2009) Rationale and design for TIME: a phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. Am Heart J 158:356–363CrossRef
17.
Zurück zum Zitat Huang X-P, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429CrossRef Huang X-P, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429CrossRef
18.
Zurück zum Zitat Hare J, Fishman J, Gerstenblith G et al (2012) Comparison of allogeneic vs. autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the Poseidon randomized trial. JAMA 308:2369–2379CrossRef Hare J, Fishman J, Gerstenblith G et al (2012) Comparison of allogeneic vs. autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the Poseidon randomized trial. JAMA 308:2369–2379CrossRef
19.
Zurück zum Zitat Perin E, Mei T, Marini F III et al (2011) Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One 6:1–13CrossRef Perin E, Mei T, Marini F III et al (2011) Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One 6:1–13CrossRef
20.
Zurück zum Zitat Blum B, Benvenisty N (2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 8:3822–3830CrossRef Blum B, Benvenisty N (2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 8:3822–3830CrossRef
21.
Zurück zum Zitat Godin B, Ferrari M (2012) Cardiovascular nanomedicine: a posse ad esse. Methodist Debakey Cardiovasc J 8:2–5CrossRef Godin B, Ferrari M (2012) Cardiovascular nanomedicine: a posse ad esse. Methodist Debakey Cardiovasc J 8:2–5CrossRef
22.
Zurück zum Zitat Cheng Z, Al Zaki A, Hui J et al (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910CrossRef Cheng Z, Al Zaki A, Hui J et al (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910CrossRef
23.
Zurück zum Zitat Shi J, Xiao Z, Kamaly N et al (2011) Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 44:1123–1134CrossRef Shi J, Xiao Z, Kamaly N et al (2011) Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 44:1123–1134CrossRef
24.
Zurück zum Zitat Christian P, Von der Kammer F, Baalousha M et al (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343CrossRef Christian P, Von der Kammer F, Baalousha M et al (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343CrossRef
25.
Zurück zum Zitat Sahoo S, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3:20–31CrossRef Sahoo S, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3:20–31CrossRef
26.
Zurück zum Zitat Gupta A (2011) Nanomedicine approaches in vascular disease: a review. Nanomedicine 6:763–779CrossRef Gupta A (2011) Nanomedicine approaches in vascular disease: a review. Nanomedicine 6:763–779CrossRef
27.
Zurück zum Zitat Lukyanov A, Torchilin V (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289CrossRef Lukyanov A, Torchilin V (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289CrossRef
28.
Zurück zum Zitat Torchilin V (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRef Torchilin V (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRef
29.
Zurück zum Zitat Liu YT, Thomas A, Ou-Yang D et al (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3:181–194CrossRef Liu YT, Thomas A, Ou-Yang D et al (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3:181–194CrossRef
30.
Zurück zum Zitat Alzaraa A, Gravante G, Chung W et al (2012) Targeted microbubbles in the experimental and clinical setting. Am J Surg 204:355–366CrossRef Alzaraa A, Gravante G, Chung W et al (2012) Targeted microbubbles in the experimental and clinical setting. Am J Surg 204:355–366CrossRef
31.
Zurück zum Zitat Kang S, Yeh C (2012) Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J 35:125–139 Kang S, Yeh C (2012) Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J 35:125–139
32.
Zurück zum Zitat Kircher M, Willmann J (2012) Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263:633–643CrossRef Kircher M, Willmann J (2012) Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263:633–643CrossRef
33.
Zurück zum Zitat Unnikrishnan S, Klibanov A (2012) Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol 199:292–299CrossRef Unnikrishnan S, Klibanov A (2012) Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol 199:292–299CrossRef
34.
Zurück zum Zitat Colombo M, Carregal-Romero S, Casula M et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRef Colombo M, Carregal-Romero S, Casula M et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRef
35.
Zurück zum Zitat Sosnovik D, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130CrossRef Sosnovik D, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130CrossRef
36.
Zurück zum Zitat Tomczak N, Jańczewski D, Dorokhin D et al (2012) Enabling biomedical research with designer quantum dots. In: Navarro M, Planell JA (eds) Nanotechnology in regenerative medicine, vol 811, Methods in molecular biology. Humana Press, New York, pp 245–265CrossRef Tomczak N, Jańczewski D, Dorokhin D et al (2012) Enabling biomedical research with designer quantum dots. In: Navarro M, Planell JA (eds) Nanotechnology in regenerative medicine, vol 811, Methods in molecular biology. Humana Press, New York, pp 245–265CrossRef
37.
Zurück zum Zitat Obonyo O, Fisher E, Edwards M et al (2010) Quantum dots synthesis and biological applications as imaging and drug delivery systems. Crit Rev Biotechnol 30:283–301CrossRef Obonyo O, Fisher E, Edwards M et al (2010) Quantum dots synthesis and biological applications as imaging and drug delivery systems. Crit Rev Biotechnol 30:283–301CrossRef
38.
Zurück zum Zitat Paul A, Nayan M, Khan A et al (2012) Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. Int J Nanomedicine 7:663–682CrossRef Paul A, Nayan M, Khan A et al (2012) Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. Int J Nanomedicine 7:663–682CrossRef
39.
Zurück zum Zitat Paul A, Shao W, Abbasi S et al (2012) PAMAM dendrimer-baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment. Mol Pharm 9:2479–2488CrossRef Paul A, Shao W, Abbasi S et al (2012) PAMAM dendrimer-baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment. Mol Pharm 9:2479–2488CrossRef
40.
Zurück zum Zitat Paul A, Binsalamah Z, Khan A et al (2011) A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials 32:8304–8318CrossRef Paul A, Binsalamah Z, Khan A et al (2011) A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials 32:8304–8318CrossRef
41.
Zurück zum Zitat T-I K, Rothmund T, Kissel T et al (2011) Bioreducible polymers with cell penetrating and endosome buffering functionality for gene delivery systems. J Control Release 152:110–119CrossRef T-I K, Rothmund T, Kissel T et al (2011) Bioreducible polymers with cell penetrating and endosome buffering functionality for gene delivery systems. J Control Release 152:110–119CrossRef
42.
Zurück zum Zitat Won Y-W, Bull D, Kim S (2014) Functional polymers of gene delivery for treatment of myocardial infarct. J Control Release 195:110–119CrossRef Won Y-W, Bull D, Kim S (2014) Functional polymers of gene delivery for treatment of myocardial infarct. J Control Release 195:110–119CrossRef
43.
Zurück zum Zitat Liu M, Li M, Sun S et al (2014) The use of antibody modified liposomes loaded with AMO-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy. Biomaterials 35:3697–3707MathSciNetCrossRef Liu M, Li M, Sun S et al (2014) The use of antibody modified liposomes loaded with AMO-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy. Biomaterials 35:3697–3707MathSciNetCrossRef
44.
Zurück zum Zitat Park H-J, Yang F, Cho S-W (2012) Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev 64:40–52CrossRef Park H-J, Yang F, Cho S-W (2012) Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev 64:40–52CrossRef
45.
Zurück zum Zitat Eulalio A, Mano M, Ferro M et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381CrossRef Eulalio A, Mano M, Ferro M et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381CrossRef
46.
Zurück zum Zitat Tafuro S, Ayuso E, Zacchigna S et al (2009) Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc Res 83:663–671CrossRef Tafuro S, Ayuso E, Zacchigna S et al (2009) Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc Res 83:663–671CrossRef
47.
Zurück zum Zitat Tao Z, Chen B, Tan X et al (2011) Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci U S A 108:2064–2069CrossRef Tao Z, Chen B, Tan X et al (2011) Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci U S A 108:2064–2069CrossRef
48.
Zurück zum Zitat Martinelli V, Cellot G, Toma F et al (2013) Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes. ACS Nano 7:5746–5756CrossRef Martinelli V, Cellot G, Toma F et al (2013) Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes. ACS Nano 7:5746–5756CrossRef
49.
Zurück zum Zitat Shin S, Jung S, Zalabany M et al (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369–2380CrossRef Shin S, Jung S, Zalabany M et al (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369–2380CrossRef
50.
Zurück zum Zitat Martinelli V, Cellot G, Fabbro A et al (2013) Improving cardiac myocytes performance by carbon nanotubes platforms. Front Physiol 4:239CrossRef Martinelli V, Cellot G, Fabbro A et al (2013) Improving cardiac myocytes performance by carbon nanotubes platforms. Front Physiol 4:239CrossRef
51.
Zurück zum Zitat Ghasemi-Mobarakeh L, Prabhakaran MP, Nematollahi M et al (2013) Embryonic stem cell differentiation to cardiomyocytes on nanostructured scaffolds for myocardial tissue regeneration. Int J Polym Mater Polym Biomater 63:240–245CrossRef Ghasemi-Mobarakeh L, Prabhakaran MP, Nematollahi M et al (2013) Embryonic stem cell differentiation to cardiomyocytes on nanostructured scaffolds for myocardial tissue regeneration. Int J Polym Mater Polym Biomater 63:240–245CrossRef
52.
Zurück zum Zitat Shi C, Li Q, Zhao Y et al (2011) Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials 32:2508–2515CrossRef Shi C, Li Q, Zhao Y et al (2011) Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials 32:2508–2515CrossRef
53.
Zurück zum Zitat Karam J-P, Muscari C, Montero-Menei C (2012) Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 33:5683–5695CrossRef Karam J-P, Muscari C, Montero-Menei C (2012) Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 33:5683–5695CrossRef
54.
Zurück zum Zitat Prabhakaran M, Nair S, Kai D et al (2012) Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering. Biopolymers 97:529–538CrossRef Prabhakaran M, Nair S, Kai D et al (2012) Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering. Biopolymers 97:529–538CrossRef
55.
Zurück zum Zitat Kai D, Prabhakaran M, Jin G et al (2011) Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 98B:379–386CrossRef Kai D, Prabhakaran M, Jin G et al (2011) Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 98B:379–386CrossRef
56.
Zurück zum Zitat Şenel Ayaz H, Perets A, Ayaz H et al (2014) Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials 35:8540–8552CrossRef Şenel Ayaz H, Perets A, Ayaz H et al (2014) Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials 35:8540–8552CrossRef
57.
Zurück zum Zitat Dvir T, Timko B, Kohane D (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22CrossRef Dvir T, Timko B, Kohane D (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22CrossRef
58.
Zurück zum Zitat Ravichandran R, Griffith M, Phopase J (2014) Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic. J Mater Chem B 2:8466–8478CrossRef Ravichandran R, Griffith M, Phopase J (2014) Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic. J Mater Chem B 2:8466–8478CrossRef
59.
Zurück zum Zitat Lin Y-D, Luo C-Y, Hu Y-N et al (2012) Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci Transl Med 4:146ra109 Lin Y-D, Luo C-Y, Hu Y-N et al (2012) Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci Transl Med 4:146ra109
60.
Zurück zum Zitat Holzwarth J, Ma P (2011) 3D nanofibrous scaffolds for tissue engineering. J Mater Chem 21:10243–10251CrossRef Holzwarth J, Ma P (2011) 3D nanofibrous scaffolds for tissue engineering. J Mater Chem 21:10243–10251CrossRef
61.
Zurück zum Zitat Singelyn J, Christman K (2010) Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 3:478–486CrossRef Singelyn J, Christman K (2010) Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 3:478–486CrossRef
62.
Zurück zum Zitat Badylak S, Freytes D, Gilbert T (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:1–13CrossRef Badylak S, Freytes D, Gilbert T (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:1–13CrossRef
63.
Zurück zum Zitat Lu T-Y, Lin B, Kim J et al (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4. doi:10.1038/ncomms3307 Lu T-Y, Lin B, Kim J et al (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4. doi:10.1038/ncomms3307
64.
Zurück zum Zitat Kolios G, Moodley Y (2012) Introduction to stem cells and regenerative medicine. Respiration 85:3–10CrossRef Kolios G, Moodley Y (2012) Introduction to stem cells and regenerative medicine. Respiration 85:3–10CrossRef
65.
Zurück zum Zitat Yang F, Cho S-W, Son S et al (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci U S A 107:3317–3322CrossRef Yang F, Cho S-W, Son S et al (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci U S A 107:3317–3322CrossRef
66.
Zurück zum Zitat Tang J, Lobatto M, Read J et al (2012) Nanomedical theranostics in cardiovascular disease. Curr Cardiovasc Imaging Rep 5:19–25CrossRef Tang J, Lobatto M, Read J et al (2012) Nanomedical theranostics in cardiovascular disease. Curr Cardiovasc Imaging Rep 5:19–25CrossRef
67.
Zurück zum Zitat Winter P, Caruthers S, Zhang H et al (2008) Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging 1:624–634CrossRef Winter P, Caruthers S, Zhang H et al (2008) Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging 1:624–634CrossRef
68.
Zurück zum Zitat Winter P, Neubauer A, Caruthers S et al (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109CrossRef Winter P, Neubauer A, Caruthers S et al (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109CrossRef
69.
Zurück zum Zitat McCarthy J, Korngold E, Weissleder R et al (2010) A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 6:2041–2049CrossRef McCarthy J, Korngold E, Weissleder R et al (2010) A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 6:2041–2049CrossRef
70.
Zurück zum Zitat Marsh J, Senpan A, Hu G et al (2007) Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine 4:533–543CrossRef Marsh J, Senpan A, Hu G et al (2007) Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine 4:533–543CrossRef
71.
Zurück zum Zitat Erdem S, Sazonova I, Hara T et al (2012) Detection and treatment of intravascular thrombi with magnetofluorescent nanoparticles. Methods Enzymol 508:191–209CrossRef Erdem S, Sazonova I, Hara T et al (2012) Detection and treatment of intravascular thrombi with magnetofluorescent nanoparticles. Methods Enzymol 508:191–209CrossRef
72.
Zurück zum Zitat McCarthy J, Sazonova I, Erdem S et al (2012) Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine 7:1017–1028CrossRef McCarthy J, Sazonova I, Erdem S et al (2012) Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine 7:1017–1028CrossRef
73.
Zurück zum Zitat Lanza G, Yu X, Winter P et al (2002) Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106:2842–2847CrossRef Lanza G, Yu X, Winter P et al (2002) Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106:2842–2847CrossRef
74.
Zurück zum Zitat Sutton J, Haworth K, Pyne-Geithman G et al (2013) Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 10:573–592CrossRef Sutton J, Haworth K, Pyne-Geithman G et al (2013) Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 10:573–592CrossRef
75.
Zurück zum Zitat Sy J, Seshadri G, Yang S et al (2008) Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater 7:863–868CrossRef Sy J, Seshadri G, Yang S et al (2008) Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater 7:863–868CrossRef
76.
Zurück zum Zitat Formiga F, Pelacho B, Garbayo E et al (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. J Control Release 147:30–37CrossRef Formiga F, Pelacho B, Garbayo E et al (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. J Control Release 147:30–37CrossRef
77.
Zurück zum Zitat Simon-Yarza T, Tamayo E, Benavides C et al (2013) Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia. Int J Pharm 454:784–790CrossRef Simon-Yarza T, Tamayo E, Benavides C et al (2013) Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia. Int J Pharm 454:784–790CrossRef
78.
Zurück zum Zitat Suarez S, Grover G, Braden R et al (2013) Tunable protein release from acetalated dextran microparticles: a platform for delivery of protein therapeutics to the heart post-MI. Biomacromolecules 14:3927–3935CrossRef Suarez S, Grover G, Braden R et al (2013) Tunable protein release from acetalated dextran microparticles: a platform for delivery of protein therapeutics to the heart post-MI. Biomacromolecules 14:3927–3935CrossRef
79.
Zurück zum Zitat Seshadri G, Sy J, Brown M et al (2010) The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials 31:1372–1379CrossRef Seshadri G, Sy J, Brown M et al (2010) The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials 31:1372–1379CrossRef
80.
Zurück zum Zitat Formiga F, Garbayo E, Diaz-Herraez P et al (2013) Biodegradation and heart retention of polymeric microparticles in a rat model of myocardial ischemia. Eur J Pharm Biopharm 85:665–672CrossRef Formiga F, Garbayo E, Diaz-Herraez P et al (2013) Biodegradation and heart retention of polymeric microparticles in a rat model of myocardial ischemia. Eur J Pharm Biopharm 85:665–672CrossRef
81.
Zurück zum Zitat Simon-Yarza T, Formiga F, Tamayo E et al (2013) PEGylated-PLGA microparticles containing VEGF for long term drug delivery. Int J Pharm 440:13–18CrossRef Simon-Yarza T, Formiga F, Tamayo E et al (2013) PEGylated-PLGA microparticles containing VEGF for long term drug delivery. Int J Pharm 440:13–18CrossRef
82.
Zurück zum Zitat Nelson D, Hashizume R, Yoshizumi T (2014) Intramyocardial injection of a synthetic hydrogel with delivery of bFGF and IGF1 in a rat model of ischemic cardiomyopathy. Biomacromolecules 15:1–11CrossRef Nelson D, Hashizume R, Yoshizumi T (2014) Intramyocardial injection of a synthetic hydrogel with delivery of bFGF and IGF1 in a rat model of ischemic cardiomyopathy. Biomacromolecules 15:1–11CrossRef
83.
Zurück zum Zitat Li Z, Guo X, Guan J (2012) An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials 33:5914–5923CrossRef Li Z, Guo X, Guan J (2012) An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials 33:5914–5923CrossRef
84.
Zurück zum Zitat Ye L, Zhang P, Duval S et al (2013) Thymosin beta4 increases the potency of transplanted mesenchymal stem cells for myocardial repair. Circulation 11(Suppl 128):S32–S41CrossRef Ye L, Zhang P, Duval S et al (2013) Thymosin beta4 increases the potency of transplanted mesenchymal stem cells for myocardial repair. Circulation 11(Suppl 128):S32–S41CrossRef
85.
Zurück zum Zitat Tous E, Weber H, Lee M et al (2012) Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater 8:3218–3227CrossRef Tous E, Weber H, Lee M et al (2012) Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater 8:3218–3227CrossRef
86.
Zurück zum Zitat Do Y, Kao E, Ganaha F et al (2004) In-stent restenosis limitation with stent-based controlled-release nitric oxide: initial results in rabbits. Radiology 230:377–382CrossRef Do Y, Kao E, Ganaha F et al (2004) In-stent restenosis limitation with stent-based controlled-release nitric oxide: initial results in rabbits. Radiology 230:377–382CrossRef
87.
Zurück zum Zitat Getts D, Terry R, Getts M et al (2014) Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 6:219ra217CrossRef Getts D, Terry R, Getts M et al (2014) Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 6:219ra217CrossRef
88.
Zurück zum Zitat Ranganath S, Levy O, Inamdar M et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258CrossRef Ranganath S, Levy O, Inamdar M et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258CrossRef
89.
Zurück zum Zitat Paul A, Hasan A, Kindi HA et al (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–8062CrossRef Paul A, Hasan A, Kindi HA et al (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–8062CrossRef
90.
Zurück zum Zitat Paul A, Elias CB, Shum-Tim D et al (2013) Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization. Sci Rep 3:2366. doi:10.1038/srep02366 CrossRef Paul A, Elias CB, Shum-Tim D et al (2013) Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization. Sci Rep 3:2366. doi:10.​1038/​srep02366 CrossRef
Metadaten
Titel
Nano- and Microscale Delivery Systems for Cardiovascular Therapy
verfasst von
Renae Waters
Ryan Maloney
Sudhir H. Ranganath
Hsin-Yi Hsieh
Arghya Paul
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-20726-1_13

Neuer Inhalt