Skip to main content

2011 | OriginalPaper | Buchkapitel

7. Nanofabrication of Functional Nanostructures by Thermochemical Nanolithography

verfasst von : Debin Wang, Vamsi K. Kodali, Jennifer E. Curtis, Elisa Riedo

Erschienen in: Tip-Based Nanofabrication

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofabrication is the process of building functional structures with nanoscale dimensions, which can be used as components, devices, or systems with high density, in large quantities, and at low cost. Since the invention of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) in 1980s, the application of scanning probe based lithography (SPL) techniques for modification of substrates and creation of functional nanoscale structures and nanostructured materials has been widespread, resulting in the emergence of a large variety of methodologies. In this chapter, we review the recent development of a thermal probe based nanofabrication technique called thermochemical nanolithography (TCNL). We start with a brief review of the evolution of the thermal AFM probes integrated with resistive heaters. We then provide an overview of some established nanofabrication techniques in which thermal probes are used, namely thermomechanical nanolithography, the Millipede project, and thermal dip-pen nanolithography. We discuss the heat transfer mechanisms of the thermal probes in the thermal writing process of TCNL. The remainder of the chapter focuses on the use of TCNL on a variety of systems and thermochemical reactions. TCNL has been successfully used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. Finally, we close this chapter by discussing some future research directions where the capabilities and robustness of TCNL can be further extended.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. M. Saavedra, T. J. Mullen, P. P. Zhang, D. C. Dewey, S. A. Claridge, P. S. Weiss, Hybrid strategies in nanolithography, Rep. Prog. Phys. 73, 036501 (2010). H. M. Saavedra, T. J. Mullen, P. P. Zhang, D. C. Dewey, S. A. Claridge, P. S. Weiss, Hybrid strategies in nanolithography, Rep. Prog. Phys. 73, 036501 (2010).
2.
Zurück zum Zitat Y. N. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99, 1823 (1999). Y. N. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99, 1823 (1999).
3.
Zurück zum Zitat B. D. Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, New approaches to nanofabrication: Molding, printing, and other techniques, Chem. Rev. 105, 1171 (2005). B. D. Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, New approaches to nanofabrication: Molding, printing, and other techniques, Chem. Rev. 105, 1171 (2005).
4.
Zurück zum Zitat A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: A review, J. Vac. Sci. & Technol. B 23, 877 (2005). A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: A review, J. Vac. Sci. & Technol. B 23, 877 (2005).
5.
Zurück zum Zitat R. F. Service, Can chip devices keep shrinking? Science 274, 1834 (1996). R. F. Service, Can chip devices keep shrinking? Science 274, 1834 (1996).
6.
Zurück zum Zitat G. M. Whitesides, The ‘right’ size in nanobiotechnology, Nat. Biotechnol. 21, 1161 (2003). G. M. Whitesides, The ‘right’ size in nanobiotechnology, Nat. Biotechnol. 21, 1161 (2003).
7.
Zurück zum Zitat S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics – a route to nanoscale optical devices, Adv. Mater. 13, 1501 (2001). S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics – a route to nanoscale optical devices, Adv. Mater. 13, 1501 (2001).
8.
Zurück zum Zitat M. D. Levenson, N. S. Viswanathan, R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask, IEEE Trans. Electron Dev. 29, 1828 (1982). M. D. Levenson, N. S. Viswanathan, R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask, IEEE Trans. Electron Dev. 29, 1828 (1982).
9.
Zurück zum Zitat D. R. Medeiros, A. Aviram, C. R. Guarnieri, W. S. Huang, R. Kwong, C. K. Magg, A. P. Mahorowala, W. M. Moreau, K. E. Petrillo, M. Angelopoulos, Recent progress in electron-beam a resists for advanced mask-making, IBM J. Res. Dev. 45, 639 (2001). D. R. Medeiros, A. Aviram, C. R. Guarnieri, W. S. Huang, R. Kwong, C. K. Magg, A. P. Mahorowala, W. M. Moreau, K. E. Petrillo, M. Angelopoulos, Recent progress in electron-beam a resists for advanced mask-making, IBM J. Res. Dev. 45, 639 (2001).
10.
Zurück zum Zitat Y. N. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, Complex optical surfaces formed by replica molding against elastomeric masters, Science 273, 347 (1996). Y. N. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, Complex optical surfaces formed by replica molding against elastomeric masters, Science 273, 347 (1996).
11.
Zurück zum Zitat G. Krausch, R. Magerle, Nanostructured thin films via self-assembly of block copolymers, Adv. Mater. 14, 1579 (2002). G. Krausch, R. Magerle, Nanostructured thin films via self-assembly of block copolymers, Adv. Mater. 14, 1579 (2002).
12.
Zurück zum Zitat M. P. Zach, K. H. Ng, R. M. Penner, Molybdenum nanowires by electrodeposition, Science 290, 2120 (2000). M. P. Zach, K. H. Ng, R. M. Penner, Molybdenum nanowires by electrodeposition, Science 290, 2120 (2000).
13.
Zurück zum Zitat D. Wouters, U. S. Schubert, Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices, Angew. Chem. Int. Ed. 43, 2480 (2004). D. Wouters, U. S. Schubert, Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices, Angew. Chem. Int. Ed. 43, 2480 (2004).
14.
Zurück zum Zitat G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, 178 (1982). G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, 178 (1982).
15.
Zurück zum Zitat G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56, 930 (1986). G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56, 930 (1986).
16.
Zurück zum Zitat D. M. Eigler, E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature 344, 524 (1990). D. M. Eigler, E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature 344, 524 (1990).
17.
Zurück zum Zitat R. M. Nyffenegger, R. M. Penner, Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991, Chem. Rev. 97, 1195 (1997). R. M. Nyffenegger, R. M. Penner, Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991, Chem. Rev. 97, 1195 (1997).
18.
Zurück zum Zitat R. D. Piner, J. Zhu, F. Xu, S. H. Hong, C. A. Mirkin, Dip-pen nanolithography, Science 283, 661 (1999). R. D. Piner, J. Zhu, F. Xu, S. H. Hong, C. A. Mirkin, Dip-pen nanolithography, Science 283, 661 (1999).
19.
Zurück zum Zitat J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air, Appl. Phys. Lett. 56, 2001 (1990). J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air, Appl. Phys. Lett. 56, 2001 (1990).
20.
Zurück zum Zitat P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “Millipede” – nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1, 39 (2002). P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “Millipede” – nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1, 39 (2002).
21.
Zurück zum Zitat R. Neffati, A. Alexeev, S. Saunin, J. C. M. Brokken-Zijp, D. Wouters, S. Schmatloch, U. S. Schubert, J. Loos, Automated scanning probe microscopy as a new tool for combinatorial polymer research: Conductive carbon black/poly(dimethylsiloxane) composites, Macromol. Rapid Commun. 24, 113 (2003). R. Neffati, A. Alexeev, S. Saunin, J. C. M. Brokken-Zijp, D. Wouters, S. Schmatloch, U. S. Schubert, J. Loos, Automated scanning probe microscopy as a new tool for combinatorial polymer research: Conductive carbon black/poly(dimethylsiloxane) composites, Macromol. Rapid Commun. 24, 113 (2003).
22.
Zurück zum Zitat D. S. Ginger, H. Zhang, C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed. 43, 30 (2004). D. S. Ginger, H. Zhang, C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed. 43, 30 (2004).
23.
Zurück zum Zitat S. H. Hong, J. Zhu, C. A. Mirkin, Multiple ink nanolithography: Toward a multiple-pen nano-plotter, Science 286, 523 (1999). S. H. Hong, J. Zhu, C. A. Mirkin, Multiple ink nanolithography: Toward a multiple-pen nano-plotter, Science 286, 523 (1999).
24.
Zurück zum Zitat A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B. W. Woods, J. J. DeYoreo, Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography, Nano Lett. 2, 109 (2002). A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B. W. Woods, J. J. DeYoreo, Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography, Nano Lett. 2, 109 (2002).
25.
Zurück zum Zitat L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, C. A. Mirkin, Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science 296, 1836 (2002). L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, C. A. Mirkin, Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science 296, 1836 (2002).
26.
Zurück zum Zitat J. C. Garno, Y. Y. Yang, N. A. Amro, S. Cruchon-Dupeyrat, S. W. Chen, G. Y. Liu, Precise positioning of nanoparticles on surfaces using scanning probe lithography, Nano Lett. 3, 389 (2003). J. C. Garno, Y. Y. Yang, N. A. Amro, S. Cruchon-Dupeyrat, S. W. Chen, G. Y. Liu, Precise positioning of nanoparticles on surfaces using scanning probe lithography, Nano Lett. 3, 389 (2003).
27.
Zurück zum Zitat L. A. Porter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies, Nano Lett. 2, 1369 (2002). L. A. Porter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies, Nano Lett. 2, 1369 (2002).
28.
Zurück zum Zitat D. A. Weinberger, S. G. Hong, C. A. Mirkin, B. W. Wessels, T. B. Higgins, Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching, Adv. Mater. 12, 1600 (2000). D. A. Weinberger, S. G. Hong, C. A. Mirkin, B. W. Wessels, T. B. Higgins, Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching, Adv. Mater. 12, 1600 (2000).
29.
Zurück zum Zitat T. Thorsen, S. J. Maerkl, S. R. Quake, Microfluidic large-scale integration, Science 298, 580 (2002). T. Thorsen, S. J. Maerkl, S. R. Quake, Microfluidic large-scale integration, Science 298, 580 (2002).
30.
Zurück zum Zitat A. Majumdar, Scanning thermal microscopy, Annu. Rev. Mater. Res. 29, 505 (1999). A. Majumdar, Scanning thermal microscopy, Annu. Rev. Mater. Res. 29, 505 (1999).
31.
Zurück zum Zitat W. P. King, T. W. Kenny, K. E. Goodson, Comparison of thermal and piezoresistive sensing approaches for atomic force microscopy topography measurements, Appl. Phys. Lett. 85, 2086 (2004). W. P. King, T. W. Kenny, K. E. Goodson, Comparison of thermal and piezoresistive sensing approaches for atomic force microscopy topography measurements, Appl. Phys. Lett. 85, 2086 (2004).
32.
Zurück zum Zitat W. P. King, Design analysis of heated atomic force microscope cantilevers for nanotopography measurements, J. Micromech. Microeng. 15, 2441 (2005). W. P. King, Design analysis of heated atomic force microscope cantilevers for nanotopography measurements, J. Micromech. Microeng. 15, 2441 (2005).
33.
Zurück zum Zitat A. Hammiche, H. M. Pollock, M. Song, D. J. Hourston, Sub-surface imaging by scanning thermal microscopy, Meas. Sci. Technol. 7, 142 (1996). A. Hammiche, H. M. Pollock, M. Song, D. J. Hourston, Sub-surface imaging by scanning thermal microscopy, Meas. Sci. Technol. 7, 142 (1996).
34.
Zurück zum Zitat M. H. Li, Y. B. Gianchandani, Microcalorimetry applications of a surface micromachined bolometer-type thermal probe, J. Vac. Sci. Technol. B 18, 3600 (2000). M. H. Li, Y. B. Gianchandani, Microcalorimetry applications of a surface micromachined bolometer-type thermal probe, J. Vac. Sci. Technol. B 18, 3600 (2000).
35.
Zurück zum Zitat H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, D. Rugar, High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39, 681 (1995). H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, D. Rugar, High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39, 681 (1995).
36.
Zurück zum Zitat M. A. Lantz, G. K. Binnig, M. Despont, U. Drechsler, A micromechanical thermal displacement sensor with nanometre resolution, Nanotechnology 16, 1089 (2005). M. A. Lantz, G. K. Binnig, M. Despont, U. Drechsler, A micromechanical thermal displacement sensor with nanometre resolution, Nanotechnology 16, 1089 (2005).
37.
Zurück zum Zitat A. Pantazi, A. Sebastian, T. A. Antonakopoulos, P. Baechtold, A. R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R. A. DiPietro, U. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, C. Hagleitner, J. L. Hedrick, D. Jubin, A. Knoll, M. A. Lantz, J. Pentaralkis, H. Pozidis, R. C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Wiesmann, E. Eleftheriou, Probe-based ultrahigh-density storage technology, IBM J. Res. Dev. 52, 493 (2008). A. Pantazi, A. Sebastian, T. A. Antonakopoulos, P. Baechtold, A. R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R. A. DiPietro, U. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, C. Hagleitner, J. L. Hedrick, D. Jubin, A. Knoll, M. A. Lantz, J. Pentaralkis, H. Pozidis, R. C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Wiesmann, E. Eleftheriou, Probe-based ultrahigh-density storage technology, IBM J. Res. Dev. 52, 493 (2008).
38.
Zurück zum Zitat W. P. King, T. W. Kenny, K. E. Goodson, G. Cross, M. Despont, U. Durig, H. Rothuizen, G. K. Binnig, P. Vettiger, Atomic force microscope cantilevers for combined thermomechanical data writing and reading, Appl. Phys. Lett. 78, 1300 (2001). W. P. King, T. W. Kenny, K. E. Goodson, G. Cross, M. Despont, U. Durig, H. Rothuizen, G. K. Binnig, P. Vettiger, Atomic force microscope cantilevers for combined thermomechanical data writing and reading, Appl. Phys. Lett. 78, 1300 (2001).
39.
Zurück zum Zitat J. Lee, W. P. King, Improved all-silicon microcantilever heaters with integrated piezoresistive sensing, J. Microelectromech. Syst. 17, 432 (2008). J. Lee, W. P. King, Improved all-silicon microcantilever heaters with integrated piezoresistive sensing, J. Microelectromech. Syst. 17, 432 (2008).
40.
Zurück zum Zitat K. J. Kim, K. Park, J. Lee, Z. M. Zhang, W. P. King, Nanotopographical imaging using a heated atomic force microscope cantilever probe, Sensor. Actuat. A-Phys. 136, 95 (2007). K. J. Kim, K. Park, J. Lee, Z. M. Zhang, W. P. King, Nanotopographical imaging using a heated atomic force microscope cantilever probe, Sensor. Actuat. A-Phys. 136, 95 (2007).
41.
Zurück zum Zitat K. Park, J. Lee, Z. M. Zhang, W. P. King, Topography imaging with a heated atomic force microscope cantilever in tapping mode, Rev. Sci. Instrum. 78, (2007). K. Park, J. Lee, Z. M. Zhang, W. P. King, Topography imaging with a heated atomic force microscope cantilever in tapping mode, Rev. Sci. Instrum. 78, (2007).
42.
Zurück zum Zitat J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, H. W. Kesteren, Disk recording beyond 100 Gb/in2: Hybrid recording? J. Appl. Phys. 87, 5398 (2000). J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, H. W. Kesteren, Disk recording beyond 100 Gb/in2: Hybrid recording? J. Appl. Phys. 87, 5398 (2000).
43.
Zurück zum Zitat H. J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003 (1992). H. J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003 (1992).
44.
Zurück zum Zitat H. J. Mamin, Thermal writing using a heated atomic force microscope tip, Appl. Phys. Lett. 69, 433 (1996). H. J. Mamin, Thermal writing using a heated atomic force microscope tip, Appl. Phys. Lett. 69, 433 (1996).
45.
Zurück zum Zitat A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater. 22, 3361–3365 (2010). A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater. 22, 3361–3365 (2010).
46.
Zurück zum Zitat D. Pires, J. L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A. W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science 328, 732 (2010). D. Pires, J. L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A. W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science 328, 732 (2010).
47.
Zurück zum Zitat P. E. Sheehan, L. J. Whitman, W. P. King, B. A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett. 85, 1589 (2004). P. E. Sheehan, L. J. Whitman, W. P. King, B. A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett. 85, 1589 (2004).
48.
Zurück zum Zitat W. K. Lee, L. J. Whitman, J. Lee, W. P. King, P. E. Sheehan, The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography, Soft Matter 4, 1844 (2008). W. K. Lee, L. J. Whitman, J. Lee, W. P. King, P. E. Sheehan, The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography, Soft Matter 4, 1844 (2008).
49.
Zurück zum Zitat B. A. Nelson, W. P. King, A. R. Laracuente, P. E. Sheehan, L. J. Whitman, Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography, Appl. Phys. Lett. 88, 033104 (2006). B. A. Nelson, W. P. King, A. R. Laracuente, P. E. Sheehan, L. J. Whitman, Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography, Appl. Phys. Lett. 88, 033104 (2006).
50.
Zurück zum Zitat L. Aeschimann, A. Meister, T. Akiyama, B. W. Chui, P. Niedermann, H. Heinzelmann, N. F. De Rooij, U. Staufer, P. Vettiger, Scanning probe arrays for life sciences and nanobiology applications, Microelectron. Eng. 83, 1698 (2006). L. Aeschimann, A. Meister, T. Akiyama, B. W. Chui, P. Niedermann, H. Heinzelmann, N. F. De Rooij, U. Staufer, P. Vettiger, Scanning probe arrays for life sciences and nanobiology applications, Microelectron. Eng. 83, 1698 (2006).
51.
Zurück zum Zitat J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, J. K. Gimzewski, Translating biomolecular recognition into nanomechanics, Science 288, 316 (2000). J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, J. K. Gimzewski, Translating biomolecular recognition into nanomechanics, Science 288, 316 (2000).
52.
Zurück zum Zitat F. Huber, M. Hegner, C. Gerber, H. J. Guntherodt, H. P. Lang, Label free analysis of transcription factors using microcantilever arrays, Biosens. Bioelectron. 21, 1599 (2006). F. Huber, M. Hegner, C. Gerber, H. J. Guntherodt, H. P. Lang, Label free analysis of transcription factors using microcantilever arrays, Biosens. Bioelectron. 21, 1599 (2006).
53.
Zurück zum Zitat G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, A. Majumdar, Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nat. Biotechnol. 19, 856 (2001). G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, A. Majumdar, Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nat. Biotechnol. 19, 856 (2001).
54.
Zurück zum Zitat M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate, 5X5 2D AFM cantilever arrays a first step towards a Terabit storage device, Sensor. Actuat. A-Phys. 73, 89 (1999). M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate, 5X5 2D AFM cantilever arrays a first step towards a Terabit storage device, Sensor. Actuat. A-Phys. 73, 89 (1999).
55.
Zurück zum Zitat M. Despont, U. Drechsler, R. Yu, H. B. Pogge, P. Vettiger, Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system, J. Microelectromech. Syst. 13, 895 (2004). M. Despont, U. Drechsler, R. Yu, H. B. Pogge, P. Vettiger, Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system, J. Microelectromech. Syst. 13, 895 (2004).
56.
Zurück zum Zitat M. Zhang, D. Bullen, S. W. Chung, S. Hong, K. S. Ryu, Z. F. Fan, C. A. Mirkin, C. Liu, A MEMS nanoplotter with high-density parallel dip-pen manolithography probe arrays, Nanotechnology 13, 212 (2002). M. Zhang, D. Bullen, S. W. Chung, S. Hong, K. S. Ryu, Z. F. Fan, C. A. Mirkin, C. Liu, A MEMS nanoplotter with high-density parallel dip-pen manolithography probe arrays, Nanotechnology 13, 212 (2002).
57.
Zurück zum Zitat X. F. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett. 5, 1867 (2005). X. F. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett. 5, 1867 (2005).
58.
Zurück zum Zitat J. Zou, D. Bullen, X. F. Wang, C. Liu, C. A. Mirkin, Conductivity-based contact sensing for probe arrays in dip-pen nanolithography, Appl. Phys. Lett. 83, 581 (2003). J. Zou, D. Bullen, X. F. Wang, C. Liu, C. A. Mirkin, Conductivity-based contact sensing for probe arrays in dip-pen nanolithography, Appl. Phys. Lett. 83, 581 (2003).
59.
Zurück zum Zitat J. Lee, W. P. King, Array of Microcantilever Heaters with Integrated Piezoresistors, in Proceedings of the 7th International IEEE Conference on Nanotechnology, Hong Kong, 135–140, (2007). J. Lee, W. P. King, Array of Microcantilever Heaters with Integrated Piezoresistors, in Proceedings of the 7th International IEEE Conference on Nanotechnology, Hong Kong, 135–140, (2007).
60.
Zurück zum Zitat J. Lee, T. Beechem, T. L. Wright, B. A. Nelson, S. Graham, W. P. King, Electrical, thermal, and mechanical characterization of silicon microcantilever heaters, J. Microelectromech. Syst. 15, 1644 (2006). J. Lee, T. Beechem, T. L. Wright, B. A. Nelson, S. Graham, W. P. King, Electrical, thermal, and mechanical characterization of silicon microcantilever heaters, J. Microelectromech. Syst. 15, 1644 (2006).
61.
Zurück zum Zitat L. Shi, A. Majumdar, Thermal transport mechanisms at nanoscale point contacts, J. Heat Trans-T ASME 124, 329 (2002). L. Shi, A. Majumdar, Thermal transport mechanisms at nanoscale point contacts, J. Heat Trans-T ASME 124, 329 (2002).
62.
Zurück zum Zitat S. K. Saha, L. Shi, Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon, J. Appl. Phys. 101 (2007). S. K. Saha, L. Shi, Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon, J. Appl. Phys. 101 (2007).
63.
Zurück zum Zitat B. W. Chui, M. Asheghi, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, Intrinsic-carrier thermal runaway in silicon microcantilevers, Nanosc. Microsc. Therm. 3, 217 (1999). B. W. Chui, M. Asheghi, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, Intrinsic-carrier thermal runaway in silicon microcantilevers, Nanosc. Microsc. Therm. 3, 217 (1999).
64.
Zurück zum Zitat B. A. Nelson, W. P. King, Modeling and simulation of the interface temperature between a heated silicon tip and a substrate, Nanosc. Microsc. Therm. 12, 98 (2008). B. A. Nelson, W. P. King, Modeling and simulation of the interface temperature between a heated silicon tip and a substrate, Nanosc. Microsc. Therm. 12, 98 (2008).
65.
Zurück zum Zitat B. Bhushan, H. Fuchs, Applied Scanning Probe Methods IV: Industrial Applications (Springer, Berlin, 2006). B. Bhushan, H. Fuchs, Applied Scanning Probe Methods IV: Industrial Applications (Springer, Berlin, 2006).
66.
Zurück zum Zitat D. Wang, Thermochemical Nanolithography Fabrication and Atomic Force Microscopy Characterization of Functional Nanostructures, Georgia Institute of Technology (2010). D. Wang, Thermochemical Nanolithography Fabrication and Atomic Force Microscopy Characterization of Functional Nanostructures, Georgia Institute of Technology (2010).
67.
Zurück zum Zitat G. Chen, Phonon heat conduction in nanostructures, Inter. J. Therm. Sci. 39, 471 (2000). G. Chen, Phonon heat conduction in nanostructures, Inter. J. Therm. Sci. 39, 471 (2000).
68.
Zurück zum Zitat C. Hu, M. Kiene, P. S. Ho, Thermal conductivity and interfacial thermal resistance of polymeric low k films, Appl. Phys. Lett. 79, 4121 (2001). C. Hu, M. Kiene, P. S. Ho, Thermal conductivity and interfacial thermal resistance of polymeric low k films, Appl. Phys. Lett. 79, 4121 (2001).
69.
Zurück zum Zitat M. M. Yovanovich, J. R. Culham, P. Teertstra, Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks, IEEE T. Compon. Pack. T 21, 168 (1998). M. M. Yovanovich, J. R. Culham, P. Teertstra, Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks, IEEE T. Compon. Pack. T 21, 168 (1998).
70.
Zurück zum Zitat D. Wang, V. K. Kodali, W. D. Underwood, J. E. Jarvholm, T. Okada, S. C. Jones, M. Rumi, Z. Dai, W. P. King, S. R. Marder, J. E. Curtis, E. Riedo, Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects, Adv. Funct. Mater. 19, 1 (2009). D. Wang, V. K. Kodali, W. D. Underwood, J. E. Jarvholm, T. Okada, S. C. Jones, M. Rumi, Z. Dai, W. P. King, S. R. Marder, J. E. Curtis, E. Riedo, Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects, Adv. Funct. Mater. 19, 1 (2009).
71.
Zurück zum Zitat R. Szoszkiewicz, T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, High-speed, sub-15 nm feature size thermochemical nanolithography, Nano Lett. 7, 1064 (2007). R. Szoszkiewicz, T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, High-speed, sub-15 nm feature size thermochemical nanolithography, Nano Lett. 7, 1064 (2007).
72.
Zurück zum Zitat S. Xu, G. Y. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir 13, 127 (1997). S. Xu, G. Y. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir 13, 127 (1997).
73.
Zurück zum Zitat B. Klehn, U. Kunze, Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing, J. Appl. Phys. 85, 3897 (1999). B. Klehn, U. Kunze, Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing, J. Appl. Phys. 85, 3897 (1999).
74.
Zurück zum Zitat W. Fudickar, A. Fery, T. Linker, Reversible light and air-driven lithography by singlet oxygen, J. Am. Chem. Soc. 127, 9386 (2005). W. Fudickar, A. Fery, T. Linker, Reversible light and air-driven lithography by singlet oxygen, J. Am. Chem. Soc. 127, 9386 (2005).
75.
Zurück zum Zitat I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, Writing-reading-erasing on tungsten oxide films using the scanning electrochemical microscope, Adv. Mater. 12, 330 (2000). I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, Writing-reading-erasing on tungsten oxide films using the scanning electrochemical microscope, Adv. Mater. 12, 330 (2000).
76.
Zurück zum Zitat K. Seo, E. Borguet, Nanolithographic write, read, and erase via reversible nanotemplated nanostructure electrodeposition on alkanethiol-modified Au(111) in an aqueous solution, Langmuir 22, 1388 (2006). K. Seo, E. Borguet, Nanolithographic write, read, and erase via reversible nanotemplated nanostructure electrodeposition on alkanethiol-modified Au(111) in an aqueous solution, Langmuir 22, 1388 (2006).
77.
Zurück zum Zitat D. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, W. P. King, Local wettability modification by thermochemical nanolithography with write-read-overwrite capability, Appl. Phys. Lett. 91, 243104 (2007). D. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, W. P. King, Local wettability modification by thermochemical nanolithography with write-read-overwrite capability, Appl. Phys. Lett. 91, 243104 (2007).
78.
Zurück zum Zitat M. A. Lantz, B. Gotsmann, U. T. Durig, P. Vettiger, Y. Nakayama, T. Shimizu, H. Tokumoto, Carbon nanotube tips for thermomechanical data storage, Appl. Phys. Lett. 83, 1266 (2003). M. A. Lantz, B. Gotsmann, U. T. Durig, P. Vettiger, Y. Nakayama, T. Shimizu, H. Tokumoto, Carbon nanotube tips for thermomechanical data storage, Appl. Phys. Lett. 83, 1266 (2003).
79.
Zurück zum Zitat M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blummel, W. Eck, M. Kantlehner, H. Kessler, J. P. Spatz, Activation of integrin function by nanopatterned adhesive interfaces, Chemphyschem 5, 383 (2004). M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blummel, W. Eck, M. Kantlehner, H. Kessler, J. P. Spatz, Activation of integrin function by nanopatterned adhesive interfaces, Chemphyschem 5, 383 (2004).
80.
Zurück zum Zitat E. Zamir, B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions, J. Cell Sci. 114, 3583 (2001). E. Zamir, B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions, J. Cell Sci. 114, 3583 (2001).
81.
Zurück zum Zitat A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, The immunological synapse: A molecular machine controlling T cell activation, Science 285, 221 (1999). A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, The immunological synapse: A molecular machine controlling T cell activation, Science 285, 221 (1999).
82.
Zurück zum Zitat J. Duvigneau, H. Schonherr, G. J. Vancso, Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation, Langmuir 24, 10825 (2008). J. Duvigneau, H. Schonherr, G. J. Vancso, Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation, Langmuir 24, 10825 (2008).
83.
Zurück zum Zitat C. L. Feng, G. J. Vancso, H. Schonherr, Reactive μCP on ultrathin block copolymer films: Investigation of the μCP mechanism and application to sub-μm (Bio)molecular patterning, Langmuir 23, 1131 (2007). C. L. Feng, G. J. Vancso, H. Schonherr, Reactive μCP on ultrathin block copolymer films: Investigation of the μCP mechanism and application to sub-μm (Bio)molecular patterning, Langmuir 23, 1131 (2007).
84.
Zurück zum Zitat M. H. Yun, N. V. Myung, R. P. Vasquez, C. S. Lee, E. Menke, R. M. Penner, Electrochemically grown wires for individually addressable sensor arrays, Nano Lett. 4, 419 (2004). M. H. Yun, N. V. Myung, R. P. Vasquez, C. S. Lee, E. Menke, R. M. Penner, Electrochemically grown wires for individually addressable sensor arrays, Nano Lett. 4, 419 (2004).
85.
Zurück zum Zitat J. Kameoka, D. Czaplewski, H. Q. Liu, H. G. Craighead, Polymeric nanowire architecture, J. Mater. Chem. 14, 1503 (2004). J. Kameoka, D. Czaplewski, H. Q. Liu, H. G. Craighead, Polymeric nanowire architecture, J. Mater. Chem. 14, 1503 (2004).
86.
Zurück zum Zitat E. Tekin, E. Holder, D. Kozodaev, U. S. Schubert, Controlled pattern formation of poly [2-methoxy-5(2 '-ethylhexyloxyl)-1,4-phenylenevinylene] (MEH-PPV) by ink-jet printing, Adv. Funct. Mater. 17, 277 (2007). E. Tekin, E. Holder, D. Kozodaev, U. S. Schubert, Controlled pattern formation of poly [2-methoxy-5(2 '-ethylhexyloxyl)-1,4-phenylenevinylene] (MEH-PPV) by ink-jet printing, Adv. Funct. Mater. 17, 277 (2007).
87.
Zurück zum Zitat B. Dong, N. Lu, M. Zelsmann, N. Kehagias, H. Fuchs, C. M. S. Torres, L. F. Chi, Fabrication of high-density large-area conducting-polymer nanostructures, Adv. Funct. Mater. 16, 1937 (2006). B. Dong, N. Lu, M. Zelsmann, N. Kehagias, H. Fuchs, C. M. S. Torres, L. F. Chi, Fabrication of high-density large-area conducting-polymer nanostructures, Adv. Funct. Mater. 16, 1937 (2006).
88.
Zurück zum Zitat J. H. Lim, C. A. Mirkin, Electrostatically driven dip-pen nanolithography of conducting polymers, Adv. Mater. 14, 1474 (2002). J. H. Lim, C. A. Mirkin, Electrostatically driven dip-pen nanolithography of conducting polymers, Adv. Mater. 14, 1474 (2002).
89.
Zurück zum Zitat B. W. Maynor, S. F. Filocamo, M. W. Grinstaff, J. Liu, Direct-writing of polymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces, J. Am. Chem. Soc. 124, 522 (2002). B. W. Maynor, S. F. Filocamo, M. W. Grinstaff, J. Liu, Direct-writing of polymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces, J. Am. Chem. Soc. 124, 522 (2002).
90.
Zurück zum Zitat E. Betzig, J. K. Trautman, Near-field optics- microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257, 189 (1992). E. Betzig, J. K. Trautman, Near-field optics- microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257, 189 (1992).
91.
Zurück zum Zitat R. Riehn, A. Charas, J. Morgado, F. Cacialli, Near-field optical lithography of a conjugated polymer, Appl. Phys. Lett. 82, 526 (2003). R. Riehn, A. Charas, J. Morgado, F. Cacialli, Near-field optical lithography of a conjugated polymer, Appl. Phys. Lett. 82, 526 (2003).
92.
Zurück zum Zitat O. Fenwick, L. Bozec, D. Credgington, A. Hammiche, G. M. Lazzerini, Y. R. Silberberg, F. Cacialli, Thermochemical nanopatterning of organic semiconductors, Nat. Nanotechnol. 4, 664 (2009). O. Fenwick, L. Bozec, D. Credgington, A. Hammiche, G. M. Lazzerini, Y. R. Silberberg, F. Cacialli, Thermochemical nanopatterning of organic semiconductors, Nat. Nanotechnol. 4, 664 (2009).
93.
Zurück zum Zitat D. J. Lipomi, R. C. Chiechi, M. D. Dickey, G. M. Whitesides, Fabrication of conjugated polymer nanowires by edge lithography, Nano Lett. 8, 2100 (2008). D. J. Lipomi, R. C. Chiechi, M. D. Dickey, G. M. Whitesides, Fabrication of conjugated polymer nanowires by edge lithography, Nano Lett. 8, 2100 (2008).
94.
Zurück zum Zitat D. Wang, S. Kim, W. D. Underwood, A. J. Giordano, C. L. Henderson, Z. T. Dai, W. P. King, S. R. Marder, E. Riedo, Direct writing and characterization of poly(p-phenylene vinylene) nanostructures, Appl. Phys. Lett. 95, 233108 (2009). D. Wang, S. Kim, W. D. Underwood, A. J. Giordano, C. L. Henderson, Z. T. Dai, W. P. King, S. R. Marder, E. Riedo, Direct writing and characterization of poly(p-phenylene vinylene) nanostructures, Appl. Phys. Lett. 95, 233108 (2009).
95.
Zurück zum Zitat X. S. Wu, M. Sprinkle, X. B. Li, F. Ming, C. Berger, W. A. de Heer, Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics, Phys. Rev. Lett. 101, 026801 (2008). X. S. Wu, M. Sprinkle, X. B. Li, F. Ming, C. Berger, W. A. de Heer, Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics, Phys. Rev. Lett. 101, 026801 (2008).
96.
Zurück zum Zitat D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448, 457 (2007). D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448, 457 (2007).
97.
Zurück zum Zitat G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3, 270 (2008). G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3, 270 (2008).
98.
Zurück zum Zitat J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8, 3137 (2008). J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8, 3137 (2008).
99.
Zurück zum Zitat J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Q. Wei, P. Sheehan, B. H. Houston, Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano Lett. 8, 3441 (2008). J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Q. Wei, P. Sheehan, B. H. Houston, Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano Lett. 8, 3441 (2008).
100.
Zurück zum Zitat G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to semimetal transition in graphene oxide, J. Phys. Chem. C 113, 15768 (2009). G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to semimetal transition in graphene oxide, J. Phys. Chem. C 113, 15768 (2009).
101.
Zurück zum Zitat Z. Wei, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. T. Dai, S. R. Marder, C. Berger, W. P. King, W. A. deHeer, P. E. Sheehan, E. Riedo, Nanoscale tunable reduction of graphene oxide for graphene electronics, Science 328, 1373 (2010). Z. Wei, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. T. Dai, S. R. Marder, C. Berger, W. P. King, W. A. deHeer, P. E. Sheehan, E. Riedo, Nanoscale tunable reduction of graphene oxide for graphene electronics, Science 328, 1373 (2010).
102.
Zurück zum Zitat J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting-diodes based on conjugated polymers, Nature 347, 539 (1990). J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting-diodes based on conjugated polymers, Nature 347, 539 (1990).
103.
Zurück zum Zitat E. Kim, Y. N. Xia, G. M. Whitesides, Polymer microstructures formed by molding in capillaries, Nature 376, 581 (1995). E. Kim, Y. N. Xia, G. M. Whitesides, Polymer microstructures formed by molding in capillaries, Nature 376, 581 (1995).
104.
Zurück zum Zitat J. Lee, W. P. King, Liquid operation of silicon microcantilever heaters, IEEE Sens. J. 8, 1805 (2008). J. Lee, W. P. King, Liquid operation of silicon microcantilever heaters, IEEE Sens. J. 8, 1805 (2008).
105.
Zurück zum Zitat P. C. Fletcher, J. R. Felts, Z. T. Dai, T. D. Jacobs, H. J. Zeng, W. Lee, P. E. Sheehan, J. A. Carlisle, R. W. Carpick, W. P. King, Wear-resistant diamond nanoprobe tips with integrated silicon heater for Tip-based nanomanufacturing, ACS Nano 4, 3338 (2010). P. C. Fletcher, J. R. Felts, Z. T. Dai, T. D. Jacobs, H. J. Zeng, W. Lee, P. E. Sheehan, J. A. Carlisle, R. W. Carpick, W. P. King, Wear-resistant diamond nanoprobe tips with integrated silicon heater for Tip-based nanomanufacturing, ACS Nano 4, 3338 (2010).
106.
Zurück zum Zitat O. Akbulut, J. M. Jung, R. D. Bennett, Y. Hu, H. T. Jung, R. E. Cohen, A. M. Mayes, F. Stellacci, Application of supramolecular nanostarnping to the replication of DNA nanoarrays, Nano Lett. 7, 3493 (2007). O. Akbulut, J. M. Jung, R. D. Bennett, Y. Hu, H. T. Jung, R. E. Cohen, A. M. Mayes, F. Stellacci, Application of supramolecular nanostarnping to the replication of DNA nanoarrays, Nano Lett. 7, 3493 (2007).
Metadaten
Titel
Nanofabrication of Functional Nanostructures by Thermochemical Nanolithography
verfasst von
Debin Wang
Vamsi K. Kodali
Jennifer E. Curtis
Elisa Riedo
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-9899-6_7

Neuer Inhalt