Skip to main content

2015 | OriginalPaper | Buchkapitel

9. Nanomedicine: Implications from Nanotoxicity

verfasst von : Ruhong Zhou

Erschienen in: Modeling of Nanotoxicity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Feynman’s 1959 vision of a “smaller world” is now actively being realized through advances in nanotechnology and nanoscience [1]. Particularly over the past decade, nanotechnology has emerged as a nexus of physical and medical scientific research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36 Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36
2.
Zurück zum Zitat National Science and Technology Council (2012) The national nanotechnology initiative—supplement to the president’s 2013 budget National Science and Technology Council (2012) The national nanotechnology initiative—supplement to the president’s 2013 budget
4.
Zurück zum Zitat Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44(10):1029–1038CrossRef Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44(10):1029–1038CrossRef
5.
Zurück zum Zitat Mendes RG, Bachmatiuk A, Buchner B, Cuniberti G, Rummeli MH (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1(4):401–428CrossRef Mendes RG, Bachmatiuk A, Buchner B, Cuniberti G, Rummeli MH (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1(4):401–428CrossRef
6.
Zurück zum Zitat Kang SG, Zhou G, Yang P, Liu Y, Sun B et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by gd@c82(oh)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci U.S.A. 109(38):15431–15436CrossRef Kang SG, Zhou G, Yang P, Liu Y, Sun B et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by gd@c82(oh)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci U.S.A. 109(38):15431–15436CrossRef
7.
Zurück zum Zitat Tu Y, Lv M, Xiu P, Huynh T, Zhang M et al (2013) Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8(8):594–601CrossRef Tu Y, Lv M, Xiu P, Huynh T, Zhang M et al (2013) Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8(8):594–601CrossRef
8.
Zurück zum Zitat Li H, Li Y, Jiao J, Hu HM (2011) Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 6(10):645–650CrossRef Li H, Li Y, Jiao J, Hu HM (2011) Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 6(10):645–650CrossRef
9.
Zurück zum Zitat Zhang Y, Zheng F, Yang T, Zhou W, Liu Y et al (2012) Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 11(9):817–826CrossRef Zhang Y, Zheng F, Yang T, Zhou W, Liu Y et al (2012) Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 11(9):817–826CrossRef
10.
Zurück zum Zitat Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41(7):2885–2911CrossRef Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41(7):2885–2911CrossRef
11.
Zurück zum Zitat Yoo D, Lee JH, Shin TH, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44(10):863–874CrossRef Yoo D, Lee JH, Shin TH, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44(10):863–874CrossRef
12.
Zurück zum Zitat Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA et al (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of aids-related kaposi’s sarcoma: Results of a randomized phase iii clinical trial. J Clin Oncol Off J Am Soc Clin Oncol 16(7):2445–2451 Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA et al (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of aids-related kaposi’s sarcoma: Results of a randomized phase iii clinical trial. J Clin Oncol Off J Am Soc Clin Oncol 16(7):2445–2451
13.
Zurück zum Zitat Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S et al (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol Off J Eur Soc Med Oncol/ESMO 11(8):1029–1033CrossRef Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S et al (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol Off J Eur Soc Med Oncol/ESMO 11(8):1029–1033CrossRef
14.
Zurück zum Zitat Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053CrossRef Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053CrossRef
15.
Zurück zum Zitat Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10(7):521–535CrossRef Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10(7):521–535CrossRef
16.
Zurück zum Zitat Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Accounts Chem Res 44(10):999–1008CrossRef Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Accounts Chem Res 44(10):999–1008CrossRef
17.
18.
Zurück zum Zitat Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664CrossRef Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664CrossRef
19.
Zurück zum Zitat Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392 Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392
20.
Zurück zum Zitat Maeda H, Matsumura Y (2011) Epr effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev 63(3):129–130CrossRef Maeda H, Matsumura Y (2011) Epr effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev 63(3):129–130CrossRef
21.
Zurück zum Zitat Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257CrossRef Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257CrossRef
22.
Zurück zum Zitat Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW et al (2005) 131i-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352(5):441–449CrossRef Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW et al (2005) 131i-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352(5):441–449CrossRef
23.
Zurück zum Zitat Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659CrossRef Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659CrossRef
24.
Zurück zum Zitat Jain RK, Lee JJ, Hong D, Markman M, Gong J et al (2010) Phase i oncology studies: Evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin Cancer Res Off J Am Assoc Cancer Res 16(4):1289–1297CrossRef Jain RK, Lee JJ, Hong D, Markman M, Gong J et al (2010) Phase i oncology studies: Evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin Cancer Res Off J Am Assoc Cancer Res 16(4):1289–1297CrossRef
25.
Zurück zum Zitat Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897CrossRef Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897CrossRef
26.
Zurück zum Zitat Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z et al (2007) Medicinal applications of fullerenes. Int J Nanomed 2(4):639–649 Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z et al (2007) Medicinal applications of fullerenes. Int J Nanomed 2(4):639–649
27.
Zurück zum Zitat Anilkumar P, Lu F, Cao L, Luo PG, Liu JH et al (2011) Fullerenes for applications in biology and medicine. Curr Med Chem 18(14):2045–2059CrossRef Anilkumar P, Lu F, Cao L, Luo PG, Liu JH et al (2011) Fullerenes for applications in biology and medicine. Curr Med Chem 18(14):2045–2059CrossRef
28.
Zurück zum Zitat Chawla P, Chawla V, Maheshwari R, Saraf SA, Saraf SK (2010) Fullerenes: from carbon to nanomedicine. Mini-Rev Med Chem 10(8):662–677CrossRef Chawla P, Chawla V, Maheshwari R, Saraf SA, Saraf SK (2010) Fullerenes: from carbon to nanomedicine. Mini-Rev Med Chem 10(8):662–677CrossRef
29.
Zurück zum Zitat Cai X, Jia H, Liu Z, Hou B, Luo C et al (2008) Polyhydroxylated fullerene derivative c(60)(oh)(24) prevents mitochondrial dysfunction and oxidative damage in an mpp(+)-induced cellular model of parkinson’s disease. J Neurosci Res 86(16):3622–3634CrossRef Cai X, Jia H, Liu Z, Hou B, Luo C et al (2008) Polyhydroxylated fullerene derivative c(60)(oh)(24) prevents mitochondrial dysfunction and oxidative damage in an mpp(+)-induced cellular model of parkinson’s disease. J Neurosci Res 86(16):3622–3634CrossRef
30.
Zurück zum Zitat Bogdanovic V, Stankov K, Icevic I, Zikic D, Nikolic A et al (2008) Fullerenol c60(oh)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line. J Radiat Res 49(3):321–327CrossRef Bogdanovic V, Stankov K, Icevic I, Zikic D, Nikolic A et al (2008) Fullerenol c60(oh)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line. J Radiat Res 49(3):321–327CrossRef
31.
Zurück zum Zitat Ashcroft JM, Tsyboulski DA, Hartman KB, Zakharian TY, Marks JW et al (2006) Fullerene (c60) immunoconjugates: interaction of water-soluble c60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun (Camb) 28:3004–3006CrossRef Ashcroft JM, Tsyboulski DA, Hartman KB, Zakharian TY, Marks JW et al (2006) Fullerene (c60) immunoconjugates: interaction of water-soluble c60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun (Camb) 28:3004–3006CrossRef
32.
Zurück zum Zitat Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41(23):7723–7760CrossRef Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41(23):7723–7760CrossRef
33.
Zurück zum Zitat Kato H, Kanazawa Y, Okumura M, Taninaka A, Yokawa T et al (2003) Lanthanoid endohedral metallofullerenols for mri contrast agents. J Am Chem Soc 125(14):4391–4397CrossRef Kato H, Kanazawa Y, Okumura M, Taninaka A, Yokawa T et al (2003) Lanthanoid endohedral metallofullerenols for mri contrast agents. J Am Chem Soc 125(14):4391–4397CrossRef
34.
Zurück zum Zitat Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for mri contrast agents. Bioconjug Chem 12(4):510–514CrossRef Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for mri contrast agents. Bioconjug Chem 12(4):510–514CrossRef
35.
Zurück zum Zitat Chen C, Xing G, Wang J, Zhao Y, Li B et al (2005) Multihydroxylated [gd@c82(oh)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity. Nano Lett 5(10):2050–2057CrossRef Chen C, Xing G, Wang J, Zhao Y, Li B et al (2005) Multihydroxylated [gd@c82(oh)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity. Nano Lett 5(10):2050–2057CrossRef
36.
Zurück zum Zitat Meng H, Xing G, Blanco E, Song Y, Zhao L et al (2012) Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: Imprisoning instead of poisoning cancer cells. Nanomedicine 8(2):136–146CrossRef Meng H, Xing G, Blanco E, Song Y, Zhao L et al (2012) Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: Imprisoning instead of poisoning cancer cells. Nanomedicine 8(2):136–146CrossRef
37.
Zurück zum Zitat Yin JJ, Lao F, Meng J, Fu PP, Zhao Y et al (2008) Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74(4):1132–1140CrossRef Yin JJ, Lao F, Meng J, Fu PP, Zhao Y et al (2008) Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74(4):1132–1140CrossRef
38.
Zurück zum Zitat Meng H, Xing G, Sun B, Zhao F, Lei H et al (2010) Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4(5):2773–2783CrossRef Meng H, Xing G, Sun B, Zhao F, Lei H et al (2010) Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4(5):2773–2783CrossRef
39.
Zurück zum Zitat Yang D, Zhao Y, Guo H, Li Y, Tewary P et al (2010) [gd@c82(oh)22]n nanoparticles induce dendritic cell maturation and activate th1 immune responses. ACS Nano 4(2):1178–1186CrossRef Yang D, Zhao Y, Guo H, Li Y, Tewary P et al (2010) [gd@c82(oh)22]n nanoparticles induce dendritic cell maturation and activate th1 immune responses. ACS Nano 4(2):1178–1186CrossRef
40.
Zurück zum Zitat Zuo G, Huang Q, Wei G, Zhou R, Fang H (2010) Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4(12):7508–7514CrossRef Zuo G, Huang Q, Wei G, Zhou R, Fang H (2010) Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4(12):7508–7514CrossRef
41.
Zurück zum Zitat Ge C, Du J, Zhao L, Wang L, Liu Y et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U.S.A. 108(41):16968–16973CrossRef Ge C, Du J, Zhao L, Wang L, Liu Y et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U.S.A. 108(41):16968–16973CrossRef
42.
Zurück zum Zitat Zuo G, Zhou X, Huang Q, Fang HP, Zhou RH (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and c60: Effect of contacting surface curvatures on binding affinity. J Phys Chem C 115(47):23323–23328CrossRef Zuo G, Zhou X, Huang Q, Fang HP, Zhou RH (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and c60: Effect of contacting surface curvatures on binding affinity. J Phys Chem C 115(47):23323–23328CrossRef
43.
Zurück zum Zitat Jacobsen JA, Major Jourden JL, Miller MT, Cohen SM (2010) To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 1803(1):72–94 Jacobsen JA, Major Jourden JL, Miller MT, Cohen SM (2010) To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 1803(1):72–94
44.
Zurück zum Zitat Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3(4):191–192CrossRef Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3(4):191–192CrossRef
45.
Zurück zum Zitat Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRef Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRef
46.
Zurück zum Zitat Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP et al (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3(6):363–368CrossRef Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP et al (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3(6):363–368CrossRef
47.
Zurück zum Zitat Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of c60 and its derivatives across a lipid bilayer. Nano Lett 7(3):614–619CrossRef Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of c60 and its derivatives across a lipid bilayer. Nano Lett 7(3):614–619CrossRef
48.
Zurück zum Zitat Shi X, von dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6:714–719CrossRef Shi X, von dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6:714–719CrossRef
49.
Zurück zum Zitat Wallace EJ, Sansom MSP (2008) Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett 8(9):2751–2756CrossRef Wallace EJ, Sansom MSP (2008) Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett 8(9):2751–2756CrossRef
50.
Zurück zum Zitat Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived pc12 cells. ACS Nano 4(6):3181–3186CrossRef Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived pc12 cells. ACS Nano 4(6):3181–3186CrossRef
51.
Zurück zum Zitat Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583CrossRef Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583CrossRef
52.
Zurück zum Zitat Vácha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11(12):5391–5395CrossRef Vácha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11(12):5391–5395CrossRef
53.
Zurück zum Zitat Hu W, Peng C, Luo W, Lv M, Li X et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323CrossRef Hu W, Peng C, Luo W, Lv M, Li X et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323CrossRef
54.
Zurück zum Zitat Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736CrossRef Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736CrossRef
55.
Zurück zum Zitat Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980CrossRef Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980CrossRef
56.
Zurück zum Zitat Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116(32):17280–17287CrossRef Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116(32):17280–17287CrossRef
57.
Zurück zum Zitat Hu W, Peng C, Lv M, Li X, Zhang Y et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700CrossRef Hu W, Peng C, Lv M, Li X, Zhang Y et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700CrossRef
58.
Zurück zum Zitat Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902CrossRef Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902CrossRef
59.
Zurück zum Zitat Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150CrossRef Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150CrossRef
60.
Zurück zum Zitat Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482CrossRef Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482CrossRef
61.
Zurück zum Zitat Shih CJ, Lin S, Sharma R, Strano MS, Blankschtein D (2012) Understanding the ph-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28(1):235–241CrossRef Shih CJ, Lin S, Sharma R, Strano MS, Blankschtein D (2012) Understanding the ph-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28(1):235–241CrossRef
62.
Zurück zum Zitat Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB (2010) Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 4(4):2300–2306CrossRef Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB (2010) Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 4(4):2300–2306CrossRef
63.
Zurück zum Zitat Zhao J, Deng B, Lv M, Li J, Zhang Y et al (2013) Graphene oxide-based antibacterial cotton fabrics. Adv Healthc Mater 2013 (in press) Zhao J, Deng B, Lv M, Li J, Zhang Y et al (2013) Graphene oxide-based antibacterial cotton fabrics. Adv Healthc Mater 2013 (in press)
64.
Zurück zum Zitat Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138CrossRef Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138CrossRef
65.
Zurück zum Zitat Wei C, Lin WY, Zainal Z, Williams NE, Zhu K et al (1994) Bactericidal activity of tio2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environ Sci Technol 28(5):934–938CrossRef Wei C, Lin WY, Zainal Z, Williams NE, Zhu K et al (1994) Bactericidal activity of tio2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environ Sci Technol 28(5):934–938CrossRef
66.
Zurück zum Zitat Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125CrossRef Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125CrossRef
67.
Zurück zum Zitat Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NW, Chu P et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3(4):216–221CrossRef Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NW, Chu P et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3(4):216–221CrossRef
68.
Zurück zum Zitat Yu L, Lu Y, Man N, Yu SH, Wen LP (2009) Rare earth oxide nanocrystals induce autophagy in hela cells. Small 5(24):2784–2787CrossRef Yu L, Lu Y, Man N, Yu SH, Wen LP (2009) Rare earth oxide nanocrystals induce autophagy in hela cells. Small 5(24):2784–2787CrossRef
69.
Zurück zum Zitat Zhang Q, Yang W, Man N, Zheng F, Shen Y et al (2009) Autophagy-mediated chemosensitization in cancer cells by fullerene c60 nanocrystal. Autophagy 5(8):1107–1117CrossRef Zhang Q, Yang W, Man N, Zheng F, Shen Y et al (2009) Autophagy-mediated chemosensitization in cancer cells by fullerene c60 nanocrystal. Autophagy 5(8):1107–1117CrossRef
70.
Zurück zum Zitat Zhang Y, Yu C, Huang G, Wang C, Wen L (2010) Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy. Int J Nanomed 5:601–609CrossRef Zhang Y, Yu C, Huang G, Wang C, Wen L (2010) Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy. Int J Nanomed 5:601–609CrossRef
71.
Zurück zum Zitat Wu YN, Yang LX, Shi XY, Li IC, Biazik JM et al (2011) The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32(20):4565–4573CrossRef Wu YN, Yang LX, Shi XY, Li IC, Biazik JM et al (2011) The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32(20):4565–4573CrossRef
72.
Zurück zum Zitat Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R et al (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41(7):2943–2970CrossRef Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R et al (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41(7):2943–2970CrossRef
73.
Zurück zum Zitat Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annual Rev Pathol 3:427–455CrossRef Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annual Rev Pathol 3:427–455CrossRef
74.
Zurück zum Zitat Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42CrossRef Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42CrossRef
75.
Zurück zum Zitat Zabirnyk O, Yezhelyev M, Seleverstov O (2007) Nanoparticles as a novel class of autophagy activators. Autophagy 3(3):278–281CrossRef Zabirnyk O, Yezhelyev M, Seleverstov O (2007) Nanoparticles as a novel class of autophagy activators. Autophagy 3(3):278–281CrossRef
76.
Zurück zum Zitat Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64CrossRef Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64CrossRef
77.
Zurück zum Zitat Burgdorf S, Kurts C (2008) Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 20(1):89–95CrossRef Burgdorf S, Kurts C (2008) Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 20(1):89–95CrossRef
78.
Zurück zum Zitat Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation. Nat Rev Immunol 8(8):607–618CrossRef Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation. Nat Rev Immunol 8(8):607–618CrossRef
79.
Zurück zum Zitat Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5(7):505–517CrossRef Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5(7):505–517CrossRef
80.
Zurück zum Zitat Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293CrossRef Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293CrossRef
81.
Zurück zum Zitat Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107 Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107
82.
Zurück zum Zitat Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6(7):535–545CrossRef Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6(7):535–545CrossRef
83.
Zurück zum Zitat Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391(7):2469–2495CrossRef Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391(7):2469–2495CrossRef
84.
Zurück zum Zitat Chen JY, Lee YM, Zhao D, Mak NK, Wong RN et al (2010) Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochem Photobiol 86(2):431–437CrossRef Chen JY, Lee YM, Zhao D, Mak NK, Wong RN et al (2010) Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochem Photobiol 86(2):431–437CrossRef
85.
Zurück zum Zitat Rakovich A, Savateeva D, Rakovich T, Donegan JF, Rakovich YP et al (2010) Cdte quantum dot/dye hybrid system as photosensitizer for photodynamic therapy. Nanoscale Res Lett 5(4):753–760CrossRef Rakovich A, Savateeva D, Rakovich T, Donegan JF, Rakovich YP et al (2010) Cdte quantum dot/dye hybrid system as photosensitizer for photodynamic therapy. Nanoscale Res Lett 5(4):753–760CrossRef
86.
Zurück zum Zitat Choi HS, Liu W, Liu F, Nasr K, Misra P et al (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47CrossRef Choi HS, Liu W, Liu F, Nasr K, Misra P et al (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5(1):42–47CrossRef
87.
Zurück zum Zitat Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404CrossRef Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404CrossRef
88.
Zurück zum Zitat Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRef Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRef
89.
Zurück zum Zitat Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2(5):681–693CrossRef Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2(5):681–693CrossRef
90.
Zurück zum Zitat Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K et al (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5(6):4319–4328CrossRef Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K et al (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5(6):4319–4328CrossRef
91.
Zurück zum Zitat Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66CrossRef Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66CrossRef
92.
Zurück zum Zitat Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851CrossRef Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851CrossRef
93.
Zurück zum Zitat Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J et al (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70(23):9855–9864CrossRef Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J et al (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70(23):9855–9864CrossRef
94.
Zurück zum Zitat Yang K, Zhang S, Zhang G, Sun X, Lee ST et al (2010) Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323CrossRef Yang K, Zhang S, Zhang G, Sun X, Lee ST et al (2010) Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323CrossRef
95.
Zurück zum Zitat Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831CrossRef Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831CrossRef
96.
Zurück zum Zitat Huang X, Tang S, Mu X, Dai Y, Chen G et al (2011) Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 6(1):28–32CrossRef Huang X, Tang S, Mu X, Dai Y, Chen G et al (2011) Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 6(1):28–32CrossRef
97.
Zurück zum Zitat Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B et al (2011) Copper selenide nanocrystals for photothermal therapy. Nano Lett 11(6):2560–2566CrossRef Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B et al (2011) Copper selenide nanocrystals for photothermal therapy. Nano Lett 11(6):2560–2566CrossRef
98.
Zurück zum Zitat Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294CrossRef Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294CrossRef
99.
Zurück zum Zitat Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892CrossRef Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892CrossRef
100.
Zurück zum Zitat Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862CrossRef Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862CrossRef
101.
Zurück zum Zitat Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422CrossRef Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422CrossRef
102.
Zurück zum Zitat Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW et al (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50CrossRef Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW et al (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50CrossRef
103.
Zurück zum Zitat Venditto VJ, Szoka FC Jr (2013) Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev 65(1):80–88CrossRef Venditto VJ, Szoka FC Jr (2013) Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev 65(1):80–88CrossRef
Metadaten
Titel
Nanomedicine: Implications from Nanotoxicity
verfasst von
Ruhong Zhou
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15382-7_9

Neuer Inhalt