Skip to main content
Erschienen in: Journal of Nanoparticle Research 11/2019

01.11.2019 | Research Paper

Nanoscale thermal transport in epoxy matrix composite materials reinforced with carbon nanotubes and graphene nanoplatelets

verfasst von: Junjie Chen, Baofang Liu, Longfei Yan

Erschienen in: Journal of Nanoparticle Research | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The technology related to hybrid filler-reinforced polymer matrix composite materials is growing at a high rate with increasing interest and usage. This study presents a way of increasing the thermal conductivity of polymer matrix composites by the use of a hybrid filler consisting of carbon nanotubes and graphene nanoplatelets and preliminarily clarifies the mechanisms that lead to the synergistic reinforcement of composite thermal conductivity at the nanoscale. The focus of this study was upon the fundamental relationships between nanometer-scale reinforcement structures and macroscopic composite thermal properties. The benefits and limitations associated with the incorporation of the hybrid filler into an epoxy matrix were evaluated. The results indicated that there exists an evident synergistic reinforcing effect between carbon nanotubes and graphene nanoplatelets on composite thermal conductivity. A significant increase has been gained in composite thermal conductivity, but low loading is required in order to exploit the benefits derived from the unique structure of the hybrid filler. Filler loading must be controlled very accurately in order to ensure that a critical threshold is not reached, beyond which there is a decrease in thermal conductivity, compared to that of graphene nanoplatelet-reinforced composites. The synergistic reinforcing benefits to composite thermal conductivity and is derived from effective conducting pathways formed between carbon nanotubes and graphene nanoplatelets within polymer matrices. The results can offer practical guidance on how to improve thermal transport properties for polymer matrix composite materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agrawal A, Satapathy A (2015) Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. International Journal of Thermal Sciences 89:203–209 Agrawal A, Satapathy A (2015) Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. International Journal of Thermal Sciences 89:203–209
Zurück zum Zitat Al-Saleh MH (2015) Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synthetic Metals 209:41–46 Al-Saleh MH (2015) Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synthetic Metals 209:41–46
Zurück zum Zitat Bagotia N, Choudhary V, Sharma DK (2019) Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Composites Part B: Engineering 159:378–388 Bagotia N, Choudhary V, Sharma DK (2019) Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Composites Part B: Engineering 159:378–388
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10:569–581 Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10:569–581
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Letters 8:902–907 Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Letters 8:902–907
Zurück zum Zitat Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110 Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110
Zurück zum Zitat Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters 91:201910 Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters 91:201910
Zurück zum Zitat Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Applied Physics Letters 87:161909 Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Applied Physics Letters 87:161909
Zurück zum Zitat Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Progress in Polymer Science 61:1–28 Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Progress in Polymer Science 61:1–28
Zurück zum Zitat Cahill DG, Braun PV, Chen G, Clarke DR, Fan S, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A, Maris HJ, Phillpot SR, Pop E, Shi L (2014) Nanoscale thermal transport. II. 2003-2012. Applied Physics Reviews 1: 011305. Cahill DG, Braun PV, Chen G, Clarke DR, Fan S, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A, Maris HJ, Phillpot SR, Pop E, Shi L (2014) Nanoscale thermal transport. II. 2003-2012. Applied Physics Reviews 1: 011305.
Zurück zum Zitat Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nüesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50:5380–5386 Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nüesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50:5380–5386
Zurück zum Zitat Chegel R, Behzad S (2019) Tight binding theory of thermal conductivity of doped carbon nanotube. Physica E: Low-dimensional Systems and Nanostructures 114:113586 Chegel R, Behzad S (2019) Tight binding theory of thermal conductivity of doped carbon nanotube. Physica E: Low-dimensional Systems and Nanostructures 114:113586
Zurück zum Zitat Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Progress in Polymer Science 59:41–85 Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Progress in Polymer Science 59:41–85
Zurück zum Zitat Chu K, Li W-S, Jia C-C, Tang F-L (2012) Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Applied Physics Letters 101:211903 Chu K, Li W-S, Jia C-C, Tang F-L (2012) Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Applied Physics Letters 101:211903
Zurück zum Zitat Clancy TC, Gates TS (2006) Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47:5990–5996 Clancy TC, Gates TS (2006) Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47:5990–5996
Zurück zum Zitat Feng W, Qin M, Feng Y (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597 Feng W, Qin M, Feng Y (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597
Zurück zum Zitat Gaska K, Rybak A, Kapusta C, Sekula R, Siwek A (2015) Enhanced thermal conductivity of epoxy-matrix composites with hybrid fillers. Polymers for Advanced Technologies 26:26–31 Gaska K, Rybak A, Kapusta C, Sekula R, Siwek A (2015) Enhanced thermal conductivity of epoxy-matrix composites with hybrid fillers. Polymers for Advanced Technologies 26:26–31
Zurück zum Zitat Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters 92:151911 Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters 92:151911
Zurück zum Zitat Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7:5114–5121 Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7:5114–5121
Zurück zum Zitat Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40:2417–2421 Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40:2417–2421
Zurück zum Zitat Han NR, Cho JW (2018) Effect of click coupled hybrids of graphene oxide and thin-walled carbon nanotubes on the mechanical properties of polyurethane nanocomposites. Composites Part A: Applied Science and Manufacturing 109:376–381 Han NR, Cho JW (2018) Effect of click coupled hybrids of graphene oxide and thin-walled carbon nanotubes on the mechanical properties of polyurethane nanocomposites. Composites Part A: Applied Science and Manufacturing 109:376–381
Zurück zum Zitat Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science 36:914–944 Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science 36:914–944
Zurück zum Zitat Hu H, He Y, Long Z, Zhan Y (2017) Synergistic effect of functional carbon nanotubes and graphene oxide on the anti-corrosion performance of epoxy coating. Polymers for Advanced Technologies 28:754–762 Hu H, He Y, Long Z, Zhan Y (2017) Synergistic effect of functional carbon nanotubes and graphene oxide on the anti-corrosion performance of epoxy coating. Polymers for Advanced Technologies 28:754–762
Zurück zum Zitat Hua Y, Li F, Liu Y, Huang G-W, Xiao H-M, Li Y-Q, Hu N, Fu S-Y (2017) Positive synergistic effect of graphene oxide/carbon nanotube hybrid coating on glass fiber/epoxy interfacial normal bond strength. Composites Science and Technology 149:294–304 Hua Y, Li F, Liu Y, Huang G-W, Xiao H-M, Li Y-Q, Hu N, Fu S-Y (2017) Positive synergistic effect of graphene oxide/carbon nanotube hybrid coating on glass fiber/epoxy interfacial normal bond strength. Composites Science and Technology 149:294–304
Zurück zum Zitat Huang X, Zhi C, Jiang P (2012) Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. The Journal of Physical Chemistry C 116:23812–23820 Huang X, Zhi C, Jiang P (2012) Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. The Journal of Physical Chemistry C 116:23812–23820
Zurück zum Zitat Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Materials Science and Engineering: R: Reports 132:1–22 Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Materials Science and Engineering: R: Reports 132:1–22
Zurück zum Zitat Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nature Materials 2:731–734 Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nature Materials 2:731–734
Zurück zum Zitat Kaur S, Raravikar N, Helms BA, Prasher R, Ogletree DF (2014) Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nature Communications 5:3082 Kaur S, Raravikar N, Helms BA, Prasher R, Ogletree DF (2014) Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nature Communications 5:3082
Zurück zum Zitat Khare KS, Khabaz F, Khare R (2014) Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions. ACS Applied Materials & Interfaces 6:6098–6110 Khare KS, Khabaz F, Khare R (2014) Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions. ACS Applied Materials & Interfaces 6:6098–6110
Zurück zum Zitat Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87:215502 Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87:215502
Zurück zum Zitat Kim HM, Lee S, Song YS, Lee D (2019) Synergistic improvement of electrical and thermal conductivities of carbon-based nanocomposites and its prediction by Mori-Tanaka scheme with interfacial resistances. Composite Structures 211:56–62 Kim HM, Lee S, Song YS, Lee D (2019) Synergistic improvement of electrical and thermal conductivities of carbon-based nanocomposites and its prediction by Mori-Tanaka scheme with interfacial resistances. Composite Structures 211:56–62
Zurück zum Zitat King JA, Barton RL, Hauser RA, Keith JM (2008a) Synergistic effects of carbon fillers in electrically and thermally conductive liquid crystal polymer based resins. Polymer Composites 29:421–428 King JA, Barton RL, Hauser RA, Keith JM (2008a) Synergistic effects of carbon fillers in electrically and thermally conductive liquid crystal polymer based resins. Polymer Composites 29:421–428
Zurück zum Zitat King JA, Hauser RA, Tomson AM, Wescoat IM, Keith JM (2008b) Synergistic effects of carbon fillers in thermally conductive liquid crystal polymer based resins. Journal of Composite Materials 42:91–107 King JA, Hauser RA, Tomson AM, Wescoat IM, Keith JM (2008b) Synergistic effects of carbon fillers in thermally conductive liquid crystal polymer based resins. Journal of Composite Materials 42:91–107
Zurück zum Zitat King JA, Keith JM, Glenn OL Jr, Miskioglu I, Cole AJ, McLaughlin SR, Pagel RM (2008c) Synergistic effects of carbon fillers on tensile and flexural properties in liquid-crystal polymer based resins. Journal of Applied Polymer Science 108:1657–1666 King JA, Keith JM, Glenn OL Jr, Miskioglu I, Cole AJ, McLaughlin SR, Pagel RM (2008c) Synergistic effects of carbon fillers on tensile and flexural properties in liquid-crystal polymer based resins. Journal of Applied Polymer Science 108:1657–1666
Zurück zum Zitat King JA, Via MD, Mills OP, Alpers DS, Sutherland JW, Bogucki GR (2011) Effects of multiple carbon fillers on the electrical and thermal conductivity and tensile and flexural modulus of polycarbonate-based resins. Journal of Composite Materials 46:331–350 King JA, Via MD, Mills OP, Alpers DS, Sutherland JW, Bogucki GR (2011) Effects of multiple carbon fillers on the electrical and thermal conductivity and tensile and flexural modulus of polycarbonate-based resins. Journal of Composite Materials 46:331–350
Zurück zum Zitat Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362:547–553 Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362:547–553
Zurück zum Zitat Konell JP, King JA, Miskioglu I (2004) Synergistic effects of carbon fillers on tensile and impact properties in nylon 6,6 and polycarbonate based resins. Polymer Composites 25:172–185 Konell JP, King JA, Miskioglu I (2004) Synergistic effects of carbon fillers on tensile and impact properties in nylon 6,6 and polycarbonate based resins. Polymer Composites 25:172–185
Zurück zum Zitat Kong HX (2013) Hybrids of carbon nanotubes and graphene/graphene oxide. Current Opinion in Solid State and Materials Science 17:31–37 Kong HX (2013) Hybrids of carbon nanotubes and graphene/graphene oxide. Current Opinion in Solid State and Materials Science 17:31–37
Zurück zum Zitat Kumar S, Sun LL, Caceres S, Li B, Wood W, Perugini A, Maguire RG, Zhong WH (2010) Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 21:105702 Kumar S, Sun LL, Caceres S, Li B, Wood W, Perugini A, Maguire RG, Zhong WH (2010) Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 21:105702
Zurück zum Zitat Lee G-W, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A: Applied Science and Manufacturing 37:727–734 Lee G-W, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A: Applied Science and Manufacturing 37:727–734
Zurück zum Zitat Lee S, Kim HM, Seong DG, Lee D (2019) Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites. Carbon 143:650–659 Lee S, Kim HM, Seong DG, Lee D (2019) Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites. Carbon 143:650–659
Zurück zum Zitat Li W, Dichiara A, Bai J (2013) Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Composites Science and Technology 74:221–227 Li W, Dichiara A, Bai J (2013) Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Composites Science and Technology 74:221–227
Zurück zum Zitat Li C-Q, Zha J-W, Li Z-J, Zhang D-L, Wang S-J, Dang Z-M (2018) Towards balanced mechanical and electrical properties of thermoplastic vulcanizates composites via unique synergistic effects of single-walled carbon nanotubes and graphene. Composites Science and Technology 157:134–143 Li C-Q, Zha J-W, Li Z-J, Zhang D-L, Wang S-J, Dang Z-M (2018) Towards balanced mechanical and electrical properties of thermoplastic vulcanizates composites via unique synergistic effects of single-walled carbon nanotubes and graphene. Composites Science and Technology 157:134–143
Zurück zum Zitat Liang X, Cheng Q (2018) Synergistic reinforcing effect from graphene and carbon nanotubes. Composites Communications 10:122–128 Liang X, Cheng Q (2018) Synergistic reinforcing effect from graphene and carbon nanotubes. Composites Communications 10:122–128
Zurück zum Zitat Lu H, Zhang J, Luo J, Gong W, Li C, Li Q, Zhang K, Hu M, Yao Y (2017) Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Composites Part A: Applied Science and Manufacturing 102:1–8 Lu H, Zhang J, Luo J, Gong W, Li C, Li Q, Zhang K, Hu M, Yao Y (2017) Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Composites Part A: Applied Science and Manufacturing 102:1–8
Zurück zum Zitat Luo T, Lloyd JR (2012) Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Advanced Functional Materials 22:2495–2502 Luo T, Lloyd JR (2012) Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Advanced Functional Materials 22:2495–2502
Zurück zum Zitat Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Applied Materials & Interfaces 5:4712–4724 Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Applied Materials & Interfaces 5:4712–4724
Zurück zum Zitat McNamara AJ, Joshi Y, Zhang ZM (2012) Characterization of nanostructured thermal interface materials - a review. International Journal of Thermal Sciences 62:2–11 McNamara AJ, Joshi Y, Zhang ZM (2012) Characterization of nanostructured thermal interface materials - a review. International Journal of Thermal Sciences 62:2–11
Zurück zum Zitat Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Materials Today 17:163–174 Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Materials Today 17:163–174
Zurück zum Zitat Ni Y, Han H, Volz S, Dumitricǎ T (2015) Nanoscale azide polymer functionalization: a robust solution for suppressing the carbon nanotube-polymer matrix thermal interface resistance. The Journal of Physical Chemistry C 119:12193–12198 Ni Y, Han H, Volz S, Dumitricǎ T (2015) Nanoscale azide polymer functionalization: a robust solution for suppressing the carbon nanotube-polymer matrix thermal interface resistance. The Journal of Physical Chemistry C 119:12193–12198
Zurück zum Zitat Pokharel P, Xiao D, Erogbogbo F, Keles O, Lee DS (2019) A hierarchical approach for creating electrically conductive network structure in polyurethane nanocomposites using a hybrid of graphene nanoplatelets, carbon black and multi-walled carbon nanotubes. Composites Part B: Engineering 161:169–182 Pokharel P, Xiao D, Erogbogbo F, Keles O, Lee DS (2019) A hierarchical approach for creating electrically conductive network structure in polyurethane nanocomposites using a hybrid of graphene nanoplatelets, carbon black and multi-walled carbon nanotubes. Composites Part B: Engineering 161:169–182
Zurück zum Zitat Prasad KE, Das B, Maitra U, Ramamurty U, Rao CNR (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proceedings of the National Academy of Sciences of the United States of America 106:13186–13189 Prasad KE, Das B, Maitra U, Ramamurty U, Rao CNR (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proceedings of the National Academy of Sciences of the United States of America 106:13186–13189
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology 3:327–331 Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology 3:327–331
Zurück zum Zitat Sagalianov I, Vovchenko L, Matzui L, Lazarenko O (2017) Synergistic enhancement of the percolation threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Nanoscale Research Letters 12:140 Sagalianov I, Vovchenko L, Matzui L, Lazarenko O (2017) Synergistic enhancement of the percolation threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Nanoscale Research Letters 12:140
Zurück zum Zitat Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Communications 152:1331–1340 Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Communications 152:1331–1340
Zurück zum Zitat Shenogin S, Bodapati A, Xue L, Ozisik R, Keblinski P (2004a) Effect of chemical functionalization on thermal transport of carbon nanotube composites. Applied Physics Letters 85:2229–2231 Shenogin S, Bodapati A, Xue L, Ozisik R, Keblinski P (2004a) Effect of chemical functionalization on thermal transport of carbon nanotube composites. Applied Physics Letters 85:2229–2231
Zurück zum Zitat Shenogin S, Xue L, Ozisik R, Keblinski P, Cahill DG (2004b) Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics 95:8136–8144 Shenogin S, Xue L, Ozisik R, Keblinski P, Cahill DG (2004b) Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics 95:8136–8144
Zurück zum Zitat Shenogina N, Shenogin S, Xue L, Keblinski P (2005) On the lack of thermal percolation in carbon nanotube composites. Applied Physics Letters 87:133106 Shenogina N, Shenogin S, Xue L, Keblinski P (2005) On the lack of thermal percolation in carbon nanotube composites. Applied Physics Letters 87:133106
Zurück zum Zitat Shin MK, Lee B, Kim SH, Lee JA, Spinks GM, Gambhir S, Wallace GG, Kozlov ME, Baughman RH, Kim SJ (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nature Communications 3:650 Shin MK, Lee B, Kim SH, Lee JA, Spinks GM, Gambhir S, Wallace GG, Kozlov ME, Baughman RH, Kim SJ (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nature Communications 3:650
Zurück zum Zitat Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chemistry of Materials 27:2100–2106 Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chemistry of Materials 27:2100–2106
Zurück zum Zitat Song PC, Liu CH, Fan SS (2006) Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes. Applied Physics Letters 88:153111 Song PC, Liu CH, Fan SS (2006) Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes. Applied Physics Letters 88:153111
Zurück zum Zitat Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong B-S, Paik K-W, Jeon S (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advanced Materials 25:732–737 Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong B-S, Paik K-W, Jeon S (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advanced Materials 25:732–737
Zurück zum Zitat Song S, Cao M, Shan H, Du C, Li B (2018a) Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly(vinylidene fluoride) composite membrane. Materials & Design 156:242–251 Song S, Cao M, Shan H, Du C, Li B (2018a) Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly(vinylidene fluoride) composite membrane. Materials & Design 156:242–251
Zurück zum Zitat Song H, Liu J, Liu B, Wu J, Cheng H-M, Kang F (2018b) Two-dimensional materials for thermal management applications. Joule 2:442–463 Song H, Liu J, Liu B, Wu J, Cheng H-M, Kang F (2018b) Two-dimensional materials for thermal management applications. Joule 2:442–463
Zurück zum Zitat Su Y, Li JJ, Weng GJ (2018) Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon 137:222–233 Su Y, Li JJ, Weng GJ (2018) Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon 137:222–233
Zurück zum Zitat Thostenson ET, Ziaee S, Chou T-W (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Science and Technology 69:801–804 Thostenson ET, Ziaee S, Chou T-W (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Science and Technology 69:801–804
Zurück zum Zitat Valentini L, Bon SB, Pugno NM, Santana MH, Lopez-Manchado MA, Giorgi G (2019) Synergistic icephobic behaviour of swollen nitrile butadiene rubber graphene and/or carbon nanotube composites. Composites Part B: Engineering 166:352–360 Valentini L, Bon SB, Pugno NM, Santana MH, Lopez-Manchado MA, Giorgi G (2019) Synergistic icephobic behaviour of swollen nitrile butadiene rubber graphene and/or carbon nanotube composites. Composites Part B: Engineering 166:352–360
Zurück zum Zitat Vijayan R, Ghazinezami A, Taklimi SR, Khan MY, Askari D (2019) The geometrical advantages of helical carbon nanotubes for high-performance multifunctional polymeric nanocomposites. Composites Part B: Engineering 156:28–42 Vijayan R, Ghazinezami A, Taklimi SR, Khan MY, Askari D (2019) The geometrical advantages of helical carbon nanotubes for high-performance multifunctional polymeric nanocomposites. Composites Part B: Engineering 156:28–42
Zurück zum Zitat Wang T-Y, Tsai J-L (2016) Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites. Computational Materials Science 122:272–280 Wang T-Y, Tsai J-L (2016) Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites. Computational Materials Science 122:272–280
Zurück zum Zitat Warzoha RJ, Fleischer AS (2014) Heat flow at nanoparticle interfaces. Nano Energy 6:137–158 Warzoha RJ, Fleischer AS (2014) Heat flow at nanoparticle interfaces. Nano Energy 6:137–158
Zurück zum Zitat Weber EH, Clingerman ML, King JA (2003a) Thermally conductive nylon 6,6 and polycarbonate based resins. I. Synergistic effects of carbon fillers. Journal of Applied Polymer Science 88:112–122 Weber EH, Clingerman ML, King JA (2003a) Thermally conductive nylon 6,6 and polycarbonate based resins. I. Synergistic effects of carbon fillers. Journal of Applied Polymer Science 88:112–122
Zurück zum Zitat Weber EH, Clingerman ML, King JA (2003b) Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling. Journal of Applied Polymer Science 88:123–130 Weber EH, Clingerman ML, King JA (2003b) Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling. Journal of Applied Polymer Science 88:123–130
Zurück zum Zitat Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bulletin 32:314–322 Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bulletin 32:314–322
Zurück zum Zitat Wu H, Drzal LT (2013) High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating: effect of percolation and particle size. Polymer Composites 34:2148–2153 Wu H, Drzal LT (2013) High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating: effect of percolation and particle size. Polymer Composites 34:2148–2153
Zurück zum Zitat Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Advanced Materials 30:1705544 Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Advanced Materials 30:1705544
Zurück zum Zitat Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, Li S-M, Wang Y-S (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803 Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, Li S-M, Wang Y-S (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803
Zurück zum Zitat Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters 5:1842–1846 Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters 5:1842–1846
Zurück zum Zitat Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites. Advanced Materials 20:4740–4744 Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites. Advanced Materials 20:4740–4744
Zurück zum Zitat Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets - Dispersion and synergy effects. Carbon 78:268–278 Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets - Dispersion and synergy effects. Carbon 78:268–278
Zurück zum Zitat Zhai S, Zhang P, Xian Y, Zeng J, Shi B (2018) Effective thermal conductivity of polymer composites: theoretical models and simulation models. International Journal of Heat and Mass Transfer 117:358–374 Zhai S, Zhang P, Xian Y, Zeng J, Shi B (2018) Effective thermal conductivity of polymer composites: theoretical models and simulation models. International Journal of Heat and Mass Transfer 117:358–374
Zurück zum Zitat Zhang Y, Park S-J (2018) In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications. Composites Part A: Applied Science and Manufacturing 112:40–48 Zhang Y, Park S-J (2018) In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications. Composites Part A: Applied Science and Manufacturing 112:40–48
Zurück zum Zitat Zhang Y, Park S-J (2019) Imidazolium-optimized conductive interfaces in multilayer graphene nanoplatelet/epoxy composites for thermal management applications and electroactive devices. Polymer 168:53–60 Zhang Y, Park S-J (2019) Imidazolium-optimized conductive interfaces in multilayer graphene nanoplatelet/epoxy composites for thermal management applications and electroactive devices. Polymer 168:53–60
Zurück zum Zitat Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. European Polymer Journal 49:3125–3134 Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. European Polymer Journal 49:3125–3134
Zurück zum Zitat Zhang Y, Heo Y-J, Son Y-R, In I, An K-H, Kim B-J, Park S-J (2019) Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460 Zhang Y, Heo Y-J, Son Y-R, In I, An K-H, Kim B-J, Park S-J (2019) Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460
Zurück zum Zitat Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. Journal of Materials Science 50:2797–2805 Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. Journal of Materials Science 50:2797–2805
Zurück zum Zitat Zhou E, Xi J, Guo Y, Liu Y, Xu Z, Peng L, Gao W, Ying J, Chen Z, Gao C (2018) Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133:316–322 Zhou E, Xi J, Guo Y, Liu Y, Xu Z, Peng L, Gao W, Ying J, Chen Z, Gao C (2018) Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133:316–322
Metadaten
Titel
Nanoscale thermal transport in epoxy matrix composite materials reinforced with carbon nanotubes and graphene nanoplatelets
verfasst von
Junjie Chen
Baofang Liu
Longfei Yan
Publikationsdatum
01.11.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 11/2019
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-019-4707-y

Weitere Artikel der Ausgabe 11/2019

Journal of Nanoparticle Research 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.