Skip to main content
Erschienen in: Tribology Letters 1/2020

01.03.2020 | Original Paper

Nanowear Mechanisms of Mg Alloyed with Al and Y at Elevated Temperatures

verfasst von: Aditya Gokhale, Trapesh Meena, Soo Yeol Lee, E-Wen Huang, Nitya N. Gosvami, Sujeet K. Sinha, Jayant Jain

Erschienen in: Tribology Letters | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We examine the role of important alloying elements (Al, Y), on friction and wear mechanisms of Mg as a function of temperature. Friction and wear tests of Mg–5%Al and Mg–5%Y alloys performed at room temperature, 100 °C and 150 °C reveal that addition of Al and Y significantly reduces the coefficient of friction. However, despite higher hardness of Mg–5%Y alloy, its wear rate was found to be higher than Mg–5%Al alloy at elevated temperatures. We show that this behaviour, observed for Mg–5%Y alloy at elevated temperature, can be attributed to its higher surface energy than Mg–5%Al and pure Mg, leading to enhanced adhesive wear, which is detrimental to tribological applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zou, H., Zeng, X., Zhai, C., Ding, W.: The effects of yttrium element on microstructure and mechanical properties of Mg–5wt.% Zn–2wt.% Al alloy. Mater. Sci. Eng. A 402, 142–148 (2005)CrossRef Zou, H., Zeng, X., Zhai, C., Ding, W.: The effects of yttrium element on microstructure and mechanical properties of Mg–5wt.% Zn–2wt.% Al alloy. Mater. Sci. Eng. A 402, 142–148 (2005)CrossRef
2.
Zurück zum Zitat Tahreen, N., Zhang, D.F., Pan, F.S., Jiang, X.Q., Li, D.Y., Chen, D.L.: Texture evolution and deformation activity of an extruded magnesium alloy: effect of yttrium and deformation temperature. J. Alloys Compd. 688, 270–284 (2016)CrossRef Tahreen, N., Zhang, D.F., Pan, F.S., Jiang, X.Q., Li, D.Y., Chen, D.L.: Texture evolution and deformation activity of an extruded magnesium alloy: effect of yttrium and deformation temperature. J. Alloys Compd. 688, 270–284 (2016)CrossRef
3.
Zurück zum Zitat Zafari, A., Ghasemi, H.M., Mahmudi, R.: Effect of rare earth elements addition on the tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear 303, 98–108 (2013)CrossRef Zafari, A., Ghasemi, H.M., Mahmudi, R.: Effect of rare earth elements addition on the tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear 303, 98–108 (2013)CrossRef
4.
Zurück zum Zitat Maruyama, K., Suzuki, M., Sato, H.: Creep strength of magnesium-based alloys. Metall. Mater. Trans. A 33, 875–882 (2002)CrossRef Maruyama, K., Suzuki, M., Sato, H.: Creep strength of magnesium-based alloys. Metall. Mater. Trans. A 33, 875–882 (2002)CrossRef
5.
Zurück zum Zitat Liang, C., Li, C., Lv, X.X., An, J.: Correlation between friction-induced microstructural evolution, strain hardening in subsurface and tribological properties of AZ31 magnesium alloy. Wear 312, 29–39 (2014)CrossRef Liang, C., Li, C., Lv, X.X., An, J.: Correlation between friction-induced microstructural evolution, strain hardening in subsurface and tribological properties of AZ31 magnesium alloy. Wear 312, 29–39 (2014)CrossRef
6.
Zurück zum Zitat Liang, C., Han, X., Su, T.F., Li, C., An, J.: Sliding wear map for AZ31 magnesium alloy. Tribol. Trans. 57, 1077–1085 (2014)CrossRef Liang, C., Han, X., Su, T.F., Li, C., An, J.: Sliding wear map for AZ31 magnesium alloy. Tribol. Trans. 57, 1077–1085 (2014)CrossRef
7.
Zurück zum Zitat Liang, C., Han, X., Su, T.F., Lv, X.X., An, J.: Roles of friction-induced strain hardening and recrystallization in dry sliding wear of AZ31 magnesium alloy. Trans. Indian Inst. Met. 68, 89–98 (2014)CrossRef Liang, C., Han, X., Su, T.F., Lv, X.X., An, J.: Roles of friction-induced strain hardening and recrystallization in dry sliding wear of AZ31 magnesium alloy. Trans. Indian Inst. Met. 68, 89–98 (2014)CrossRef
8.
Zurück zum Zitat Wang, S.Q., Yang, Z.R., Zhao, Y.T., Wei, M.X.: Sliding wear characteristics of AZ91D alloy at ambient temperatures of 25–200 °C. Tribol. Lett. 38, 39–45 (2010)CrossRef Wang, S.Q., Yang, Z.R., Zhao, Y.T., Wei, M.X.: Sliding wear characteristics of AZ91D alloy at ambient temperatures of 25–200 °C. Tribol. Lett. 38, 39–45 (2010)CrossRef
9.
Zurück zum Zitat Meshinchi Asl, K., Masoudi, A., Khomamizadeh, F.: The effect of different rare earth elements content on microstructure, mechanical and wear behavior of Mg–Al–Zn alloy. Mater. Sci. Eng. A 527, 2027–2035 (2010)CrossRef Meshinchi Asl, K., Masoudi, A., Khomamizadeh, F.: The effect of different rare earth elements content on microstructure, mechanical and wear behavior of Mg–Al–Zn alloy. Mater. Sci. Eng. A 527, 2027–2035 (2010)CrossRef
10.
Zurück zum Zitat Zafari, A., Ghasemi, H.M., Mahmudi, R.: An investigation on the tribological behavior of AZ91 and AZ91+3wt% RE magnesium alloys at elevated temperatures. Mater. Des. 1980–2015(54), 544–552 (2014)CrossRef Zafari, A., Ghasemi, H.M., Mahmudi, R.: An investigation on the tribological behavior of AZ91 and AZ91+3wt% RE magnesium alloys at elevated temperatures. Mater. Des. 1980–2015(54), 544–552 (2014)CrossRef
11.
Zurück zum Zitat Nautiyal, P., Jain, J., Agarwal, A.: Influence of microstructure on scratch-induced deformation mechanisms in AZ80 magnesium alloy. Tribol. Lett. 61, 29 (2016)CrossRef Nautiyal, P., Jain, J., Agarwal, A.: Influence of microstructure on scratch-induced deformation mechanisms in AZ80 magnesium alloy. Tribol. Lett. 61, 29 (2016)CrossRef
12.
Zurück zum Zitat Yagi, T., Hirayama, T., Matsuoka, T., Somekawa, H.: Effect of alloying elements on nano-ordered wear property of magnesium alloys. Metall. Mater. Trans. A 48, 1366–1374 (2016)CrossRef Yagi, T., Hirayama, T., Matsuoka, T., Somekawa, H.: Effect of alloying elements on nano-ordered wear property of magnesium alloys. Metall. Mater. Trans. A 48, 1366–1374 (2016)CrossRef
13.
Zurück zum Zitat Owens, D.K., Wendt, R.: Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969)CrossRef Owens, D.K., Wendt, R.: Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969)CrossRef
14.
Zurück zum Zitat Kruss Scientific: Owens, Wendt, Rabel and Kaelble (OWRK) Method. Kruss Scientific, Hamburg (2003) Kruss Scientific: Owens, Wendt, Rabel and Kaelble (OWRK) Method. Kruss Scientific, Hamburg (2003)
15.
Zurück zum Zitat Huang, G.H., Yin, D.D., Lu, J.W., Zhou, H., Zeng, Y., Quan, G.F., et al.: Microstructure, texture and mechanical properties evolution of extruded fine-grained Mg-Y sheets during annealing. Mater. Sci. Eng. A 720, 24–35 (2018)CrossRef Huang, G.H., Yin, D.D., Lu, J.W., Zhou, H., Zeng, Y., Quan, G.F., et al.: Microstructure, texture and mechanical properties evolution of extruded fine-grained Mg-Y sheets during annealing. Mater. Sci. Eng. A 720, 24–35 (2018)CrossRef
16.
Zurück zum Zitat Somekawa, H., Tsuru, T.: Effect of alloying elements on grain boundary sliding in magnesium binary alloys: experimental and numerical studies. Mater. Sci. Eng. A 708, 267–273 (2017)CrossRef Somekawa, H., Tsuru, T.: Effect of alloying elements on grain boundary sliding in magnesium binary alloys: experimental and numerical studies. Mater. Sci. Eng. A 708, 267–273 (2017)CrossRef
17.
Zurück zum Zitat Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)CrossRef Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)CrossRef
18.
Zurück zum Zitat Woldman, M., Van Der Heide, E., Tinga, T., Masen, M.A.: A finite element approach to modeling abrasive wear modes. Tribol. Trans. 60, 711–718 (2016)CrossRef Woldman, M., Van Der Heide, E., Tinga, T., Masen, M.A.: A finite element approach to modeling abrasive wear modes. Tribol. Trans. 60, 711–718 (2016)CrossRef
19.
Zurück zum Zitat Rabinowicz, E.: Influence of surface energy on friction and wear phenomena. J. Appl. Phys. 32, 1440–1444 (1961)CrossRef Rabinowicz, E.: Influence of surface energy on friction and wear phenomena. J. Appl. Phys. 32, 1440–1444 (1961)CrossRef
Metadaten
Titel
Nanowear Mechanisms of Mg Alloyed with Al and Y at Elevated Temperatures
verfasst von
Aditya Gokhale
Trapesh Meena
Soo Yeol Lee
E-Wen Huang
Nitya N. Gosvami
Sujeet K. Sinha
Jayant Jain
Publikationsdatum
01.03.2020
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2020
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-020-01288-8

Weitere Artikel der Ausgabe 1/2020

Tribology Letters 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.