Skip to main content

2020 | OriginalPaper | Buchkapitel

15. Nanozymes for Antimicrobes: Precision Biocide

verfasst von : Zhuobin Xu, Dandan Li, Zhiyue Qiu, Lizeng Gao

Erschienen in: Nanozymology

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanozymes have been used to dealing with microbes and remarkable advances have been made in various areas. Nanozymes with peroxidase-activity such as CeO2 nanoparticles are used for colorimetric sensing of bacteria when integrated with detection antibody, which is much more rapid and lower-cost than traditional methods. Oxidase-mimic nanozymes such as Au nanoparticles (AuNP) are able to generate reactive oxide species (ROS) for killing bacteria. Plenty of nanozymes with peroxidase-activity, such as magnetic iron oxide, grapheme quantum dots have been used for combating bacteria, biofilms as well as practical wound disinfection and healing, through catalyzing H2O2 into highly toxic hydroxyl radical that can degrade the biofilm matrix and effectively kill the bacteria. Recently, a new generation of hybrid nanozymes, such as Au nanoparticles-graphitic carbon nitride (Au/g-C3N4), graphene quantum dot–Ag nanoparticles (GQD/AgNP), has been constructed with synergistically improved catalytic efficiency for more outstanding bactericidal performance. Apart from medical applications, nanozymes also have been used in industrial area. V2O5 nanowires and CeO2−x nanorods acting like natural haloperoxidase can prevent marine biofouling through catalyzing the oxidation of bromide ions with hydrogen peroxide to hypobromous acid, which interferes with the quorum sensing system of bacteria for thwarting biofilm development. Nanozymes are stable, biocompatible and not causing drug resistance, having great potential to be the substitution of conventional biocides.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zheng K, Setyawati MI, Leong DT, Xie J (2017) Antimicrobial gold nanoclusters. ACS Nano 11(7):6904–6910 Zheng K, Setyawati MI, Leong DT, Xie J (2017) Antimicrobial gold nanoclusters. ACS Nano 11(7):6904–6910
2.
Zurück zum Zitat Wang LS, Gupta A, Rotello VM (2016) Nanomaterials for the treatment of bacterial biofilms. ACS Infect Dis 2(1):3–4 Wang LS, Gupta A, Rotello VM (2016) Nanomaterials for the treatment of bacterial biofilms. ACS Infect Dis 2(1):3–4
3.
Zurück zum Zitat Koo H, Yamada KM (2016) Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol 42:102–112 Koo H, Yamada KM (2016) Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol 42:102–112
4.
Zurück zum Zitat He J, Zhu X, Qi Z, Wang C, Mao X, Zhu C, He Z, Li M, Tang Z (2015) Killing dental pathogens using antibacterial graphene oxide. ACS Appl Mater Interfaces 7(9):5605–5611 He J, Zhu X, Qi Z, Wang C, Mao X, Zhu C, He Z, Li M, Tang Z (2015) Killing dental pathogens using antibacterial graphene oxide. ACS Appl Mater Interfaces 7(9):5605–5611
5.
Zurück zum Zitat Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511 Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511
6.
Zurück zum Zitat Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554 Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554
7.
Zurück zum Zitat Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11(7):1034–1043 Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11(7):1034–1043
8.
Zurück zum Zitat Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633 Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633
9.
Zurück zum Zitat Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189(22):7945–7947 Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189(22):7945–7947
10.
Zurück zum Zitat Ding Y, Zhou Y, Yao J, Szymanski C, Fredrickson J, Shi L, Cao B, Zhu Z, Yu XY (2016) In situ molecular imaging of the biofilm and its matrix. Anal Chem 88(22):11244–11252 Ding Y, Zhou Y, Yao J, Szymanski C, Fredrickson J, Shi L, Cao B, Zhu Z, Yu XY (2016) In situ molecular imaging of the biofilm and its matrix. Anal Chem 88(22):11244–11252
11.
Zurück zum Zitat Zhao Y, Chen Z, Chen Y, Xu J, Li J, Jiang X (2013) Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J Am Chem Soc 135(35):12940–12943 Zhao Y, Chen Z, Chen Y, Xu J, Li J, Jiang X (2013) Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J Am Chem Soc 135(35):12940–12943
12.
Zurück zum Zitat Giri K, Yepes LR, Duncan B, Parameswaran PK, Yan B, Jiang Y, Bilska M, Moyano DF, Thompson M, Rotello VM, Prakash YS (2015) Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Adv 5(128):105551–105559 Giri K, Yepes LR, Duncan B, Parameswaran PK, Yan B, Jiang Y, Bilska M, Moyano DF, Thompson M, Rotello VM, Prakash YS (2015) Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Adv 5(128):105551–105559
13.
Zurück zum Zitat Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Altern Med eCAM 2015:246012 Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Altern Med eCAM 2015:246012
14.
Zurück zum Zitat Meeker DG, Jenkins SV, Miller EK, Beenken KE, Loughran AJ, Powless A, Muldoon TJ, Galanzha EI, Zharov VP, Smeltzer MS, Chen J (2016) Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis 2(4):241–250 Meeker DG, Jenkins SV, Miller EK, Beenken KE, Loughran AJ, Powless A, Muldoon TJ, Galanzha EI, Zharov VP, Smeltzer MS, Chen J (2016) Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis 2(4):241–250
15.
Zurück zum Zitat Guo Q, Zhao Y, Dai X, Zhang T, Yu Y, Zhang X, Li C (2017) Functional silver nanocomposites as broad-spectrum antimicrobial and biofilm-disrupting agents. ACS Appl Mater Interfaces 9(20):16834–16847 Guo Q, Zhao Y, Dai X, Zhang T, Yu Y, Zhang X, Li C (2017) Functional silver nanocomposites as broad-spectrum antimicrobial and biofilm-disrupting agents. ACS Appl Mater Interfaces 9(20):16834–16847
16.
Zurück zum Zitat Rojas-Andrade MD, Chata G, Rouholiman D, Liu J, Saltikov C, Chen S (2017) Antibacterial mechanisms of graphene-based composite nanomaterials. Nanoscale 9(3):994–1006 Rojas-Andrade MD, Chata G, Rouholiman D, Liu J, Saltikov C, Chen S (2017) Antibacterial mechanisms of graphene-based composite nanomaterials. Nanoscale 9(3):994–1006
17.
Zurück zum Zitat Jan T, Iqbal J, Ismail M, Badshah N, Mansoor Q, Arshad A, Ahkam QM (2014) Synthesis, physical properties and antibacterial activity of metal oxides nanostructures. Mater Sci Semicond Process 21:154–160 Jan T, Iqbal J, Ismail M, Badshah N, Mansoor Q, Arshad A, Ahkam QM (2014) Synthesis, physical properties and antibacterial activity of metal oxides nanostructures. Mater Sci Semicond Process 21:154–160
18.
Zurück zum Zitat Qu K, Shi P, Ren J, Qu X (2014) Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chemistry 20(24):7501–7506 Qu K, Shi P, Ren J, Qu X (2014) Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chemistry 20(24):7501–7506
19.
Zurück zum Zitat Maurer-Jones MA, Gunsolus IL, Meyer BM, Christenson CJ, Haynes CL (2013) Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Anal Chem 85(12):5810–5818 Maurer-Jones MA, Gunsolus IL, Meyer BM, Christenson CJ, Haynes CL (2013) Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Anal Chem 85(12):5810–5818
20.
Zurück zum Zitat Jankauskait LV, Vitkauskien LA, Lazauskas A, Baltrusaitis J, ProsyLevas I, AndruleviLius M (2016) Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Int J Pharm 511(1):90–97 Jankauskait LV, Vitkauskien LA, Lazauskas A, Baltrusaitis J, ProsyLevas I, AndruleviLius M (2016) Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Int J Pharm 511(1):90–97
21.
Zurück zum Zitat Gao L, Liu Y, Kim D, Li Y, Hwang G, Naha PC, Cormode DP, Koo H (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101:272–284 Gao L, Liu Y, Kim D, Li Y, Hwang G, Naha PC, Cormode DP, Koo H (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101:272–284
22.
Zurück zum Zitat Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588–2593 Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588–2593
23.
Zurück zum Zitat Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-Azzam SI, Alzoubi KH (2015) Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 67(3):427–435 Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-Azzam SI, Alzoubi KH (2015) Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 67(3):427–435
24.
Zurück zum Zitat Charbgoo F, Ahmad MB, Darroudi M (2017) Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomed 12:1401–1413 Charbgoo F, Ahmad MB, Darroudi M (2017) Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomed 12:1401–1413
25.
Zurück zum Zitat Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535 Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535
26.
Zurück zum Zitat Li J, Zhou H, Wang J, Wang D, Shen R, Zhang X, Jin P, Liu X (2016) Oxidative stress-mediated selective antimicrobial ability of nano-VO2 against Gram-positive bacteria for environmental and biomedical applications. Nanoscale 8(23):11907–11923 Li J, Zhou H, Wang J, Wang D, Shen R, Zhang X, Jin P, Liu X (2016) Oxidative stress-mediated selective antimicrobial ability of nano-VO2 against Gram-positive bacteria for environmental and biomedical applications. Nanoscale 8(23):11907–11923
27.
Zurück zum Zitat Diggikar RS, Patil RH, Kale SB, Thombre DK, Gade WN, Kulkarni MV, Kale BB (2013) Silver-decorated orthorhombic nanotubes of lithium vanadium oxide: an impeder of bacterial growth and biofilm. Appl Microbiol Biotechnol 97(18):8283–8290 Diggikar RS, Patil RH, Kale SB, Thombre DK, Gade WN, Kulkarni MV, Kale BB (2013) Silver-decorated orthorhombic nanotubes of lithium vanadium oxide: an impeder of bacterial growth and biofilm. Appl Microbiol Biotechnol 97(18):8283–8290
28.
Zurück zum Zitat Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C Mater Biol Appl 74:568–581 Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C Mater Biol Appl 74:568–581
29.
Zurück zum Zitat Dai X, Zhao Y, Yu Y, Chen X, Wei X, Zhang X, Li C (2017) Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl Mater Interfaces 9(36):30470–30479 Dai X, Zhao Y, Yu Y, Chen X, Wei X, Zhang X, Li C (2017) Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl Mater Interfaces 9(36):30470–30479
30.
Zurück zum Zitat Xu W, Xie W, Huang X, Chen X, Huang N, Wang X, Liu J (2017) The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem 221:267–277 Xu W, Xie W, Huang X, Chen X, Huang N, Wang X, Liu J (2017) The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem 221:267–277
31.
Zurück zum Zitat Tian Y, Cao H, Qiao Y, Meng F, Liu X (2014) Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation. Acta Biomater 10(10):4505–4517 Tian Y, Cao H, Qiao Y, Meng F, Liu X (2014) Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation. Acta Biomater 10(10):4505–4517
32.
Zurück zum Zitat Kalita S, Kandimalla R, Sharma KK, Kataki AC, Deka M, Kotoky J (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater Sci Eng C Mater Biol Appl 61:720–727 Kalita S, Kandimalla R, Sharma KK, Kataki AC, Deka M, Kotoky J (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater Sci Eng C Mater Biol Appl 61:720–727
33.
Zurück zum Zitat Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5(9):3867–3874 Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5(9):3867–3874
34.
Zurück zum Zitat Huang F, Gao Y, Zhang Y, Cheng T, Ou H, Yang L, Liu J, Shi L, Liu J (2017) Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl Mater Interfaces 9(20):16880–16889 Huang F, Gao Y, Zhang Y, Cheng T, Ou H, Yang L, Liu J, Shi L, Liu J (2017) Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl Mater Interfaces 9(20):16880–16889
35.
Zurück zum Zitat Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao Y (2016) Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12):11000–11011 Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao Y (2016) Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12):11000–11011
36.
Zurück zum Zitat Peng MY, Zheng DW, Wang SB, Cheng SX, Zhang XZ (2017) Multifunctional nanosystem for synergistic tumor therapy delivered by two-dimensional MoS2. ACS Appl Mater Interfaces 9(16):13965–13975 Peng MY, Zheng DW, Wang SB, Cheng SX, Zhang XZ (2017) Multifunctional nanosystem for synergistic tumor therapy delivered by two-dimensional MoS2. ACS Appl Mater Interfaces 9(16):13965–13975
37.
Zurück zum Zitat Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, Huang Y, Dong K, Ren J, Qu X (2017) An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano 11(5):4651–4659 Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, Huang Y, Dong K, Ren J, Qu X (2017) An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano 11(5):4651–4659
38.
Zurück zum Zitat Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23 Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23
39.
Zurück zum Zitat Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials 9(8):617 Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials 9(8):617
40.
Zurück zum Zitat Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077 Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077
41.
Zurück zum Zitat Zhu J, Wang J, Hou J, Zhang Y, Liu J, Van der Bruggen B (2017) Graphene-based antimicrobial polymeric membranes: a review. J Mater Chem A 5(15):6776–6793 Zhu J, Wang J, Hou J, Zhang Y, Liu J, Van der Bruggen B (2017) Graphene-based antimicrobial polymeric membranes: a review. J Mater Chem A 5(15):6776–6793
42.
Zurück zum Zitat Szunerits S, Boukherroub R (2016) Antibacterial activity of graphene-based materials. J Mater Chem B 4(43):6892–6912 Szunerits S, Boukherroub R (2016) Antibacterial activity of graphene-based materials. J Mater Chem B 4(43):6892–6912
43.
Zurück zum Zitat Park JY, Jeong HY, Kim MI, Park TJ (2015) Colorimetric detection system for salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. J Nanomater 2015:1–9 Park JY, Jeong HY, Kim MI, Park TJ (2015) Colorimetric detection system for salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. J Nanomater 2015:1–9
44.
Zurück zum Zitat Barzamini B, Moghbeli M, Soleimani NA (2014) Vibrio cholerae detection in water and wastewater by polymerase chain reaction assay. Int J Enteric Pathog 2(4) Barzamini B, Moghbeli M, Soleimani NA (2014) Vibrio cholerae detection in water and wastewater by polymerase chain reaction assay. Int J Enteric Pathog 2(4)
45.
Zurück zum Zitat Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P, Polpanich D (2013) Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem 85(12):5996 Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P, Polpanich D (2013) Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem 85(12):5996
47.
Zurück zum Zitat Dennehy PH (2008) Rotavirus vaccines: an overview. Clin Microbiol Rev 21(1):198 Dennehy PH (2008) Rotavirus vaccines: an overview. Clin Microbiol Rev 21(1):198
48.
Zurück zum Zitat Woo MA, Kim MI, Jung JH, Park KS, Seo TS, Park HG (2013) A novel colorimetric immunoassay utilizing the peroxidase mimicking activity of magnetic nanoparticles. Int J Mol Sci 14(5):9999–10014 Woo MA, Kim MI, Jung JH, Park KS, Seo TS, Park HG (2013) A novel colorimetric immunoassay utilizing the peroxidase mimicking activity of magnetic nanoparticles. Int J Mol Sci 14(5):9999–10014
49.
Zurück zum Zitat Dye C (2015) Ebola virus disease in West Africa–the first 9 months. N Engl J Med 372(2):189 Dye C (2015) Ebola virus disease in West Africa–the first 9 months. N Engl J Med 372(2):189
50.
Zurück zum Zitat Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Gao GF, Yan X (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141 Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Gao GF, Yan X (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141
51.
Zurück zum Zitat Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X (2017) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157 Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X (2017) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157
52.
Zurück zum Zitat Gao L, Fan K, Yan X (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13):3207–3227 Gao L, Fan K, Yan X (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13):3207–3227
53.
Zurück zum Zitat Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X (2016) A multinuclear metal complex based dnase-mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angew Chem 55(36):10732–10736 Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X (2016) A multinuclear metal complex based dnase-mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angew Chem 55(36):10732–10736
54.
Zurück zum Zitat Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, Yang G, Shao H, Jiang X (2017) Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 11(6):5737–5745 Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, Yang G, Shao H, Jiang X (2017) Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 11(6):5737–5745
55.
Zurück zum Zitat Chen W-Y, Chang H-Y, Lu J-K, Huang Y-C, Harroun SG, Tseng Y-T, Li Y-J, Huang C-C, Chang H-T (2015) Self-Assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv Func Mater 25(46):7189–7199 Chen W-Y, Chang H-Y, Lu J-K, Huang Y-C, Harroun SG, Tseng Y-T, Li Y-J, Huang C-C, Chang H-T (2015) Self-Assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv Func Mater 25(46):7189–7199
56.
Zurück zum Zitat Ayaz Ahmed KB, Subramanian S, Sivasubramanian A, Veerappan G, Veerappan A (2014) Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 130:54–58 Ayaz Ahmed KB, Subramanian S, Sivasubramanian A, Veerappan G, Veerappan A (2014) Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 130:54–58
57.
Zurück zum Zitat Comune M, Rai A, Chereddy KK, Pinto S, Aday S, Ferreira AF, Zonari A, Blersch J, Cunha R, Rodrigues R, Lerma J, Simoes PN, Preat V, Ferreira L (2017) Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. J Control Release Off J Control Release Soc 262:58–71 Comune M, Rai A, Chereddy KK, Pinto S, Aday S, Ferreira AF, Zonari A, Blersch J, Cunha R, Rodrigues R, Lerma J, Simoes PN, Preat V, Ferreira L (2017) Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. J Control Release Off J Control Release Soc 262:58–71
58.
Zurück zum Zitat Tao Y, Ju E, Ren J, Qu X (2015) Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 27(6):1097–1104 Tao Y, Ju E, Ren J, Qu X (2015) Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 27(6):1097–1104
59.
Zurück zum Zitat Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA (2017) Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 5(1):23–29 Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA (2017) Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 5(1):23–29
60.
Zurück zum Zitat Zhao Y, Ye C, Liu W, Chen R, Jiang X (2014) Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed 53(31):8127 Zhao Y, Ye C, Liu W, Chen R, Jiang X (2014) Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed 53(31):8127
61.
Zurück zum Zitat Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583 Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583
62.
Zurück zum Zitat Fan K, Wang H, Xi J, Liu Q, Meng X, Duan D, Gao L, Yan X (2016) Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun 53(2):424–427 Fan K, Wang H, Xi J, Liu Q, Meng X, Duan D, Gao L, Yan X (2016) Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun 53(2):424–427
63.
Zurück zum Zitat Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112(4):2323–2338 Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112(4):2323–2338
64.
Zurück zum Zitat Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021 Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021
65.
Zurück zum Zitat Durmus NG, Taylor EN, Kummer KM, Webster TJ (2013) Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv Mater 25(40):5706–5713 Durmus NG, Taylor EN, Kummer KM, Webster TJ (2013) Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv Mater 25(40):5706–5713
66.
Zurück zum Zitat Gumy D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hajdu R, Kiwi J (2006) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl Catal B Environ 63(1–2):76–84 Gumy D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hajdu R, Kiwi J (2006) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl Catal B Environ 63(1–2):76–84
67.
Zurück zum Zitat Ananpattarachai J, Boonto Y, Kajitvichyanukul P (2016) Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria. Environ Sci Pollut Res Int 23(5):4111–4119 Ananpattarachai J, Boonto Y, Kajitvichyanukul P (2016) Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria. Environ Sci Pollut Res Int 23(5):4111–4119
68.
Zurück zum Zitat Vijayalakshmi K, Sivaraj D (2016) Synergistic antibacterial activity of barium doped TiO2 nanoclusters synthesized by microwave processing. RSC Adv 6(12):9663–9671 Vijayalakshmi K, Sivaraj D (2016) Synergistic antibacterial activity of barium doped TiO2 nanoclusters synthesized by microwave processing. RSC Adv 6(12):9663–9671
69.
Zurück zum Zitat Wang L, He H, Yu Y, Sun L, Liu S, Zhang C, He L (2014) Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem 135:45–53 Wang L, He H, Yu Y, Sun L, Liu S, Zhang C, He L (2014) Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem 135:45–53
70.
Zurück zum Zitat Yu J, Ma X, Yin W, Gu Z (2016) Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. RSC Adv 6(84):81174–81183 Yu J, Ma X, Yin W, Gu Z (2016) Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. RSC Adv 6(84):81174–81183
71.
Zurück zum Zitat Pandit S, Karunakaran S, Boda SK, Basu B, De M (2016) High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl Mater Interfaces 8(46):31567–31573 Pandit S, Karunakaran S, Boda SK, Basu B, De M (2016) High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl Mater Interfaces 8(46):31567–31573
72.
Zurück zum Zitat Yang X, Li J, Liang T, Ma C, Zhang Y, Chen H, Hanagata N, Su H, Xu M (2014) Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6(17):10126–10133 Yang X, Li J, Liang T, Ma C, Zhang Y, Chen H, Hanagata N, Su H, Xu M (2014) Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6(17):10126–10133
73.
Zurück zum Zitat Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45(1):69–86 Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45(1):69–86
74.
Zurück zum Zitat Wu X, Tan S, Xing Y, Pu Q, Wu M, Zhao JX (2017) Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids Surf B 157:1–9 Wu X, Tan S, Xing Y, Pu Q, Wu M, Zhao JX (2017) Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids Surf B 157:1–9
75.
Zurück zum Zitat Chen S, Quan Y, Yu Y-L, Wang J-H (2017) Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater Sci Eng 3(3):313–321 Chen S, Quan Y, Yu Y-L, Wang J-H (2017) Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater Sci Eng 3(3):313–321
76.
Zurück zum Zitat Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980 Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980
77.
Zurück zum Zitat Wang H, Li P, Yu D, Zhang Y, Wang Z, Liu C, Qiu H, Liu Z, Ren J, Qu X (2018) Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett 18(6):3344–3351 Wang H, Li P, Yu D, Zhang Y, Wang Z, Liu C, Qiu H, Liu Z, Ren J, Qu X (2018) Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett 18(6):3344–3351
78.
Zurück zum Zitat Sun HJ, Gao N, Dong K, Ren JS, Qu XG (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210 Sun HJ, Gao N, Dong K, Ren JS, Qu XG (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210
79.
Zurück zum Zitat Yan Z, Bing W, Ding C, Dong K, Ren J, Qu X (2018) A H2O2-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilm in vivo. Nanoscale 10:17656–17662 Yan Z, Bing W, Ding C, Dong K, Ren J, Qu X (2018) A H2O2-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilm in vivo. Nanoscale 10:17656–17662
80.
Zurück zum Zitat Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47 Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47
81.
Zurück zum Zitat Thet NT, Alves DR, Bean JE, Booth S, Nzakizwanayo J, Young AE, Jones BV, Jenkins AT (2016) Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl Mater Interfaces 8(24):14909–14919 Thet NT, Alves DR, Bean JE, Booth S, Nzakizwanayo J, Young AE, Jones BV, Jenkins AT (2016) Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl Mater Interfaces 8(24):14909–14919
82.
Zurück zum Zitat Dai X, Guo Q, Zhao Y, Zhang P, Zhang T, Zhang X, Li C (2016) Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS Appl Mater Interfaces 8(39):25798–25807 Dai X, Guo Q, Zhao Y, Zhang P, Zhang T, Zhang X, Li C (2016) Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS Appl Mater Interfaces 8(39):25798–25807
84.
Zurück zum Zitat Shi SR, Wu S, Shen YR et al (2018) Iron oxide nanozyme suppress intracellular Salmonella Enteritidis growth and alleviates infection in vivo. Thernostics 8(22):6149–6162 Shi SR, Wu S, Shen YR et al (2018) Iron oxide nanozyme suppress intracellular Salmonella Enteritidis growth and alleviates infection in vivo. Thernostics 8(22):6149–6162
85.
Zurück zum Zitat Yin YY, Wu MX, Qin T et al (2019) Effects of iron-based nanozymes on S. typhimurium biofilm. Progr Biochem Biophys 46(06):587–595 Yin YY, Wu MX, Qin T et al (2019) Effects of iron-based nanozymes on S. typhimurium biofilm. Progr Biochem Biophys 46(06):587–595
87.
Zurück zum Zitat Herget K, Hubach P, Pusch S et al (2017) Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Adv Mater 29(4):1603823 Herget K, Hubach P, Pusch S et al (2017) Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Adv Mater 29(4):1603823
88.
Zurück zum Zitat Zhao Z, Yan R, Yi X et al (2017) Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection. ACS Nano 11(5):4428–4438 Zhao Z, Yan R, Yi X et al (2017) Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection. ACS Nano 11(5):4428–4438
89.
Zurück zum Zitat Zhao R, Lv M, Li Y, Sun M, Kong W, Wang L, Song S, Fan C, Jia L, Qiu S, Sun Y, Song H, Hao R (2017) Stable nanocomposite based on pegylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl Mater Interfaces 9(18):15328–15341 Zhao R, Lv M, Li Y, Sun M, Kong W, Wang L, Song S, Fan C, Jia L, Qiu S, Sun Y, Song H, Hao R (2017) Stable nanocomposite based on pegylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl Mater Interfaces 9(18):15328–15341
Metadaten
Titel
Nanozymes for Antimicrobes: Precision Biocide
verfasst von
Zhuobin Xu
Dandan Li
Zhiyue Qiu
Lizeng Gao
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1490-6_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.