Skip to main content

2019 | OriginalPaper | Buchkapitel

8. Native Crystalline Polysaccharide Nanofibers: Processing and Properties

verfasst von : Pieter Samyn, Anayancy Osorio-Madrazo

Erschienen in: Handbook of Nanofibers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Native polysaccharide nanocrystals have gained increasing interest as fibrous reinforcement in nanocomposites. Unique mechanical properties combined with biodegradability and renewability have placed them as alternative for designing environmentally friendly materials. The source origin and processing have a large impact on the nanofiber dimensions and properties. Most of the studies have been devoted to cellulose and chitin nanocrystals which are organized into fiber bundles in nature. Cellulose nanofibers can be obtained from animal, bacterial, algal, and plant sources. Chitin fibrils constitute, for example, fungal cell walls and arthropod exoskeletons. Based on processing, one defines two major families of polysaccharide nanofibers (whiskers and nanofibrils of polysaccharide). The preparation of the elementary whisker monocrystals has been achieved by acid hydrolysis, which allows collecting them after cleavage of the amorphous domains of the original substrates. Alternatively, the nanofibrillated material constitutes the other family, which results from the peeling of native microfibrils into a network of nanofibrils. The microfibril delamination is often performed with mechanical devices. Chitosan is the deacetylated derivative of chitin. Nevertheless, the preparation of chitosan crystalline nanofibrils that preserve the native directional packing is challenging. The preparation of chitosan nanofibril networks was recently reported by means of a chitosan mild hydrolysis at the solid state. This chapter reviews the methodologies used to produce crystalline nanofibers of polysaccharide with preserved native structural packing. Nanofibers of polysaccharides cellulose, chitin, and chitosan will be the focus of this review. The methods used to characterize these nanofibers will be revised, and the nanofiber properties will be discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168CrossRef Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168CrossRef
2.
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2003) Preparation of tunicin cellulose Iβ samples for X-ray and neutron diffraction. Fibre Diffract Rev 11:75–78 Nishiyama Y, Langan P, Chanzy H (2003) Preparation of tunicin cellulose Iβ samples for X-ray and neutron diffraction. Fibre Diffract Rev 11:75–78
3.
Zurück zum Zitat Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRef Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRef
4.
Zurück zum Zitat Nishiyama Y, Lagan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Lagan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
5.
Zurück zum Zitat Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRef Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRef
6.
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRef
7.
Zurück zum Zitat Chrétiennot-Dinet M-J, Giraud-Guille M-M, Vaulot D, Putaux J-L, Saito Y, Chanzy H (1997) The chitinous nature of filaments ejected by phaeocystis (Prymnesiophyceae). J Phycol 33:666–672CrossRef Chrétiennot-Dinet M-J, Giraud-Guille M-M, Vaulot D, Putaux J-L, Saito Y, Chanzy H (1997) The chitinous nature of filaments ejected by phaeocystis (Prymnesiophyceae). J Phycol 33:666–672CrossRef
8.
Zurück zum Zitat Blackwell J, Weih MA (1984) The structure of chitin-protein complexes. In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic, London, pp 257–263CrossRef Blackwell J, Weih MA (1984) The structure of chitin-protein complexes. In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic, London, pp 257–263CrossRef
9.
Zurück zum Zitat Neville AC (1993) Biology of fibrous composites; development beyond the cell membrane. Cambridge University Press, New YorkCrossRef Neville AC (1993) Biology of fibrous composites; development beyond the cell membrane. Cambridge University Press, New YorkCrossRef
10.
Zurück zum Zitat Revol JF, Marchessault RH (1993) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335CrossRef Revol JF, Marchessault RH (1993) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335CrossRef
11.
Zurück zum Zitat Giraud-Guille M-M (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16:75–92CrossRef Giraud-Guille M-M (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16:75–92CrossRef
12.
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
13.
Zurück zum Zitat Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633CrossRef Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633CrossRef
14.
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRef
15.
Zurück zum Zitat Dufresne A (2012) Nanocellulose, from nature to high performance tailored materials. Berlin, Boston: De Gruyter Dufresne A (2012) Nanocellulose, from nature to high performance tailored materials. Berlin, Boston: De Gruyter
16.
Zurück zum Zitat Fan Y, Fukuzumi H, Saito T, Isogai A (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50:69–76CrossRef Fan Y, Fukuzumi H, Saito T, Isogai A (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50:69–76CrossRef
17.
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
18.
Zurück zum Zitat Kaushik M, Fraschini C, Chauve G, Putaux J.-L, Moores A (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed) The transmission electron microscope – theory and applications. InTech, London, pp 129–163 Kaushik M, Fraschini C, Chauve G, Putaux J.-L, Moores A (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed) The transmission electron microscope – theory and applications. InTech, London, pp 129–163
19.
Zurück zum Zitat Mao J, Osorio-Madrazo A, Laborie M-P (2013) Preparation of cellulose I nanowhiskers with a mildly acidic aqueous ionic liquid: reaction efficiency and whiskers attributes. Cellulose 20:1829–1840CrossRef Mao J, Osorio-Madrazo A, Laborie M-P (2013) Preparation of cellulose I nanowhiskers with a mildly acidic aqueous ionic liquid: reaction efficiency and whiskers attributes. Cellulose 20:1829–1840CrossRef
20.
Zurück zum Zitat Abushammala H, Krossing I, Laborie M-P (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616CrossRef Abushammala H, Krossing I, Laborie M-P (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616CrossRef
21.
Zurück zum Zitat Abushammala H, Goldsztayn R, Leao A, Laborie M-P (2016) Combining steam explosion with 1-ethyl-3-methylimidazlium acetate treatment of wood yields lignin-coated cellulose nanocrystals of high aspect ratio. Cellulose 23:1813–1823CrossRef Abushammala H, Goldsztayn R, Leao A, Laborie M-P (2016) Combining steam explosion with 1-ethyl-3-methylimidazlium acetate treatment of wood yields lignin-coated cellulose nanocrystals of high aspect ratio. Cellulose 23:1813–1823CrossRef
22.
Zurück zum Zitat Fragal EH, Fragal VH, Huang X, Martins AC, Cellet TSP, Pereira GM, Mikmekova E, Rubira AF, Silva R, Asefa T (2017) From ionic liquid-modified cellulose nanowhiskers to highly active metal-free nanostructured carbon catalysts for the hydrazine oxidation reaction. J Mater Chem A 5:1066–1077CrossRef Fragal EH, Fragal VH, Huang X, Martins AC, Cellet TSP, Pereira GM, Mikmekova E, Rubira AF, Silva R, Asefa T (2017) From ionic liquid-modified cellulose nanowhiskers to highly active metal-free nanostructured carbon catalysts for the hydrazine oxidation reaction. J Mater Chem A 5:1066–1077CrossRef
23.
Zurück zum Zitat Osorio-Madrazo A, David L, Trombotto S, Lucas J-M, Peniche-Covas C, Domard A (2010) Kinetics study of the solid-state acid hydrolysis of chitosan: evolution of the crystallinity and macromolecular structure. Biomacromolecules 11:1376–1386CrossRef Osorio-Madrazo A, David L, Trombotto S, Lucas J-M, Peniche-Covas C, Domard A (2010) Kinetics study of the solid-state acid hydrolysis of chitosan: evolution of the crystallinity and macromolecular structure. Biomacromolecules 11:1376–1386CrossRef
24.
Zurück zum Zitat Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2010) Wet-spun alginate/chitosan whiskers nanocomposite fibers: preparation, characterization and release characteristic of the whiskers. Carbohydr Polym 79:738–746CrossRef Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2010) Wet-spun alginate/chitosan whiskers nanocomposite fibers: preparation, characterization and release characteristic of the whiskers. Carbohydr Polym 79:738–746CrossRef
25.
Zurück zum Zitat Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey J, Harrington MJ, Nishiyama Y, Putaux J-L, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13:850–856CrossRef Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey J, Harrington MJ, Nishiyama Y, Putaux J-L, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13:850–856CrossRef
26.
Zurück zum Zitat Belamie E, Domard A, Chanzy H, Giraud-Guille MM (1999) Spherulitic crystallization of chitosan oligomers. Langmuir 15:1549–1555CrossRef Belamie E, Domard A, Chanzy H, Giraud-Guille MM (1999) Spherulitic crystallization of chitosan oligomers. Langmuir 15:1549–1555CrossRef
27.
Zurück zum Zitat Osorio-Madrazo A, David L, Peniche-Covas C, Rochas C, Putaux J-L, Trombotto S, Alcouffe P, Domard A (2015) Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight. Carbohydr Polym 131:1–8CrossRef Osorio-Madrazo A, David L, Peniche-Covas C, Rochas C, Putaux J-L, Trombotto S, Alcouffe P, Domard A (2015) Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight. Carbohydr Polym 131:1–8CrossRef
28.
Zurück zum Zitat Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102CrossRef Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102CrossRef
29.
Zurück zum Zitat Kumar V, Bollström R, Yang A, Chen Q, Chen G, Salminen P, Bousfield D, Toivakka M (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456CrossRef Kumar V, Bollström R, Yang A, Chen Q, Chen G, Salminen P, Bousfield D, Toivakka M (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456CrossRef
30.
Zurück zum Zitat Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111CrossRef Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111CrossRef
31.
Zurück zum Zitat Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19:18367CrossRef Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19:18367CrossRef
32.
Zurück zum Zitat Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9:192–198CrossRef Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9:192–198CrossRef
33.
Zurück zum Zitat Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2011) Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydr Polym 84:762–764CrossRef Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2011) Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydr Polym 84:762–764CrossRef
34.
Zurück zum Zitat Zhang Y, Jiang J, Liu L, Zheng K, Yu S, Fan Y (2015) Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges. Nanoscale Res Lett 10(1):226CrossRef Zhang Y, Jiang J, Liu L, Zheng K, Yu S, Fan Y (2015) Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges. Nanoscale Res Lett 10(1):226CrossRef
35.
Zurück zum Zitat Janardhnan S, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6(2):1242–1250 Janardhnan S, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6(2):1242–1250
36.
Zurück zum Zitat Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem 41:423–429CrossRef Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem 41:423–429CrossRef
37.
Zurück zum Zitat Xiong Y, Zhang Z, Wang X, Liu B, Lin J (2014) Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst. Chem Eng J 235:349–355CrossRef Xiong Y, Zhang Z, Wang X, Liu B, Lin J (2014) Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst. Chem Eng J 235:349–355CrossRef
38.
Zurück zum Zitat Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23(2):1221–1238CrossRef Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23(2):1221–1238CrossRef
39.
Zurück zum Zitat Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12(3):223–231CrossRef Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12(3):223–231CrossRef
40.
Zurück zum Zitat Saurabh CK, Mustapha A, Masri MM, Owolabi AF, Syakir MI, Dungani R, Paridah MT, Jawaid M, Abdul Khalil HPS (2016) Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. J Nanomater 2016:8CrossRef Saurabh CK, Mustapha A, Masri MM, Owolabi AF, Syakir MI, Dungani R, Paridah MT, Jawaid M, Abdul Khalil HPS (2016) Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. J Nanomater 2016:8CrossRef
41.
Zurück zum Zitat Duchemin BCZ, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14(4):311–320CrossRef Duchemin BCZ, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14(4):311–320CrossRef
42.
Zurück zum Zitat Kondo T, Togawa E, Brown RM (2001) “Nematic ordered cellulose”: a concept of glucan chain association. Biomacromolecules 2(4):1324–1330CrossRef Kondo T, Togawa E, Brown RM (2001) “Nematic ordered cellulose”: a concept of glucan chain association. Biomacromolecules 2(4):1324–1330CrossRef
43.
Zurück zum Zitat Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466CrossRef Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466CrossRef
44.
Zurück zum Zitat Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234CrossRef Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234CrossRef
45.
Zurück zum Zitat Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res. 2014 16(4):2349CrossRef Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res. 2014 16(4):2349CrossRef
46.
Zurück zum Zitat Yuanita E, Pratama JN, Chalid M (2017) Preparation of micro fibrillated cellulose based on Arenga Pinnata “Ijuk” fibre for nucleating agent of polypropylene: characterization, optimization and feasibility study. Macromol Symp 371(1):61–68CrossRef Yuanita E, Pratama JN, Chalid M (2017) Preparation of micro fibrillated cellulose based on Arenga Pinnata “Ijuk” fibre for nucleating agent of polypropylene: characterization, optimization and feasibility study. Macromol Symp 371(1):61–68CrossRef
47.
Zurück zum Zitat Clark GL, Smith AF (1936) X-ray diffraction studies of chitin, chitosan, and derivatives. J Phys Chem 40(7):863–879CrossRef Clark GL, Smith AF (1936) X-ray diffraction studies of chitin, chitosan, and derivatives. J Phys Chem 40(7):863–879CrossRef
48.
Zurück zum Zitat Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30(19):5849–5855CrossRef Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30(19):5849–5855CrossRef
49.
Zurück zum Zitat Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) A new polymorph of chitosan. Macromolecules 17(4):973–975CrossRef Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) A new polymorph of chitosan. Macromolecules 17(4):973–975CrossRef
50.
Zurück zum Zitat Saito H, Tabeta R, Ogawa K (1987) High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules 20(10):2424–2430CrossRef Saito H, Tabeta R, Ogawa K (1987) High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules 20(10):2424–2430CrossRef
51.
Zurück zum Zitat Okuyama K, Noguchi K, Hanafusa Y, Osawa K, Ogawa K (1999) Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex. Int J Biol Macromol 26(4):285–293CrossRef Okuyama K, Noguchi K, Hanafusa Y, Osawa K, Ogawa K (1999) Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex. Int J Biol Macromol 26(4):285–293CrossRef
52.
Zurück zum Zitat Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95(5):778–781CrossRef Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95(5):778–781CrossRef
53.
Zurück zum Zitat Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23(1):451–464CrossRef Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23(1):451–464CrossRef
54.
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677CrossRef Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677CrossRef
55.
Zurück zum Zitat Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRef Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRef
56.
Zurück zum Zitat Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3):855–866CrossRef Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3):855–866CrossRef
57.
Zurück zum Zitat Lekha P, Mtibe A, Motaung TE, Andrew JE, Sitholè BB, Gibril M (2016) Effect of mechanical treatment on properties of cellulose nanofibrils produced from bleached hardwood and softwood pulps. Maderas Ciencia y tecnología 18:457–466 Lekha P, Mtibe A, Motaung TE, Andrew JE, Sitholè BB, Gibril M (2016) Effect of mechanical treatment on properties of cellulose nanofibrils produced from bleached hardwood and softwood pulps. Maderas Ciencia y tecnología 18:457–466
58.
Zurück zum Zitat Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22(5):3137–3150CrossRef Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22(5):3137–3150CrossRef
59.
Zurück zum Zitat Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromolecules 16(7):2127–2131CrossRef Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromolecules 16(7):2127–2131CrossRef
60.
Zurück zum Zitat Le Goff KJ, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123CrossRef Le Goff KJ, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123CrossRef
61.
Zurück zum Zitat Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145CrossRef Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145CrossRef
62.
Zurück zum Zitat Araki J, Yamanaka Y, Ohkawa K (2012) Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym J 44(7):713–717CrossRef Araki J, Yamanaka Y, Ohkawa K (2012) Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym J 44(7):713–717CrossRef
63.
Zurück zum Zitat Mushi NE, Kochumalayil J, Cervin NT, Zhou Q, Berglund LA (2016) Nanostructurally controlled hydrogel based on small-diameter native chitin nanofibers: preparation, structure, and properties. ChemSusChem 9(9):989–995CrossRef Mushi NE, Kochumalayil J, Cervin NT, Zhou Q, Berglund LA (2016) Nanostructurally controlled hydrogel based on small-diameter native chitin nanofibers: preparation, structure, and properties. ChemSusChem 9(9):989–995CrossRef
64.
Zurück zum Zitat Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRef
65.
Zurück zum Zitat Chen C, Yano H, Li D, Abe K (2015) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22(4):2543–2550CrossRef Chen C, Yano H, Li D, Abe K (2015) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22(4):2543–2550CrossRef
66.
Zurück zum Zitat Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576CrossRef
67.
Zurück zum Zitat Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef
68.
Zurück zum Zitat Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41(24):9755–9759CrossRef Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41(24):9755–9759CrossRef
69.
Zurück zum Zitat Eichhorn SJ (2012) Stiff as a board: perspectives on the crystalline modulus of cellulose. ACS Macro Lett 1(11):1237–1239CrossRef Eichhorn SJ (2012) Stiff as a board: perspectives on the crystalline modulus of cellulose. ACS Macro Lett 1(11):1237–1239CrossRef
70.
Zurück zum Zitat Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968CrossRef Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968CrossRef
71.
Zurück zum Zitat Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef
72.
Zurück zum Zitat Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012) Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349CrossRef Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindström T, Sampson WW, Eichhorn SJ (2012) Effective young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349CrossRef
73.
Zurück zum Zitat Lemke CH, Dong RY, Michal CA, Hamad WY (2012) New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose 19(5):1619–1629CrossRef Lemke CH, Dong RY, Michal CA, Hamad WY (2012) New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose 19(5):1619–1629CrossRef
74.
Zurück zum Zitat Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017CrossRef Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017CrossRef
75.
Zurück zum Zitat Fahma F, Hori N, Iwamoto S, Iwata T, Takemura A (2016) Cellulose nanowhiskers from sugar palm fibers. Emirates J Food Agric 28:566–571CrossRef Fahma F, Hori N, Iwamoto S, Iwata T, Takemura A (2016) Cellulose nanowhiskers from sugar palm fibers. Emirates J Food Agric 28:566–571CrossRef
76.
Zurück zum Zitat Hassanzadeh P, Sun W, de Silva JP, Jin J, Makhnejia K, Cross GLW, Rolandi M (2014) Mechanical properties of self-assembled chitin nanofiber networks. J Mater Chem B 2(17):2461–2466CrossRef Hassanzadeh P, Sun W, de Silva JP, Jin J, Makhnejia K, Cross GLW, Rolandi M (2014) Mechanical properties of self-assembled chitin nanofiber networks. J Mater Chem B 2(17):2461–2466CrossRef
77.
Zurück zum Zitat Cui J, Yu Z, Lau D (2016) Effect of acetyl group on mechanical properties of chitin/chitosan nanocrystal: a molecular dynamics study. Int J Mol Sci 17(1):61CrossRef Cui J, Yu Z, Lau D (2016) Effect of acetyl group on mechanical properties of chitin/chitosan nanocrystal: a molecular dynamics study. Int J Mol Sci 17(1):61CrossRef
78.
Zurück zum Zitat Oh DX, Cha YJ, Nguyen H-L, Je HH, Jho YS, Hwang DS, Yoon DK (2016) Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions. Sci Rep 6:23245CrossRef Oh DX, Cha YJ, Nguyen H-L, Je HH, Jho YS, Hwang DS, Yoon DK (2016) Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions. Sci Rep 6:23245CrossRef
79.
Zurück zum Zitat Liu L, Wang R, Yu J, Jiang J, Zheng K, Hu L, Wang Z, Fan Y (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromolecules 17(11):3773–3781CrossRef Liu L, Wang R, Yu J, Jiang J, Zheng K, Hu L, Wang Z, Fan Y (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromolecules 17(11):3773–3781CrossRef
80.
Zurück zum Zitat Josefsson G, Berthold F, Gamstedt EK (2014) Stiffness contribution of cellulose nanofibrils to composite materials. Int J Solids Struct 51(5):945–953CrossRef Josefsson G, Berthold F, Gamstedt EK (2014) Stiffness contribution of cellulose nanofibrils to composite materials. Int J Solids Struct 51(5):945–953CrossRef
81.
Zurück zum Zitat Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRef Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRef
82.
Zurück zum Zitat Rusli R, Eichhorn tJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111CrossRef Rusli R, Eichhorn tJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111CrossRef
83.
Zurück zum Zitat Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
84.
Zurück zum Zitat Matos Ruiz M, Cavaillé JY, Dufresne A, Gérard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interfaces 7(2):117–131CrossRef Matos Ruiz M, Cavaillé JY, Dufresne A, Gérard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interfaces 7(2):117–131CrossRef
85.
Zurück zum Zitat Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35(6):2190–2199CrossRef Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35(6):2190–2199CrossRef
86.
Zurück zum Zitat Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4(3):666–674CrossRef Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4(3):666–674CrossRef
87.
Zurück zum Zitat Rafeadah R, Stephen JE (2011) Interfacial energy dissipation in a cellulose nanowhisker composite. Nanotechnology 22(32):325706CrossRef Rafeadah R, Stephen JE (2011) Interfacial energy dissipation in a cellulose nanowhisker composite. Nanotechnology 22(32):325706CrossRef
88.
Zurück zum Zitat Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739CrossRef Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739CrossRef
89.
Zurück zum Zitat Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A (2012) Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci 125(4):2882–2889CrossRef Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A (2012) Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci 125(4):2882–2889CrossRef
90.
Zurück zum Zitat Sullivan E, Moon R, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8(12):5447CrossRef Sullivan E, Moon R, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8(12):5447CrossRef
91.
Zurück zum Zitat Suryanegara L, Nakagaito A, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17(4):771–778CrossRef Suryanegara L, Nakagaito A, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17(4):771–778CrossRef
92.
Zurück zum Zitat Yao X, Qi X, He Y, Tan D, Chen F, Fu Q (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6(4):2497–2507CrossRef Yao X, Qi X, He Y, Tan D, Chen F, Fu Q (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6(4):2497–2507CrossRef
93.
Zurück zum Zitat Wu G-m, Liu D, Liu G-f, Chen J, Huo S-p, Kong Z-w (2015) Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydr Polym 127:229–235CrossRef Wu G-m, Liu D, Liu G-f, Chen J, Huo S-p, Kong Z-w (2015) Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydr Polym 127:229–235CrossRef
94.
Zurück zum Zitat Liu H, Laborie M-PG (2011) Bio-based nanocomposites by in situ cure of phenolic prepolymers with cellulose whiskers. Cellulose 18(3):619–630CrossRef Liu H, Laborie M-PG (2011) Bio-based nanocomposites by in situ cure of phenolic prepolymers with cellulose whiskers. Cellulose 18(3):619–630CrossRef
95.
Zurück zum Zitat Wu G-M, Chen J, S-p H, G-f L, Kong Z-W (2014) Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydr Polym 105:207–213CrossRef Wu G-M, Chen J, S-p H, G-f L, Kong Z-W (2014) Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers. Carbohydr Polym 105:207–213CrossRef
96.
Zurück zum Zitat Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York
97.
Zurück zum Zitat Utracki LA (ed) (2003) Polymer blends handbook. Kluwer Academic, Dordrecht Utracki LA (ed) (2003) Polymer blends handbook. Kluwer Academic, Dordrecht
98.
Zurück zum Zitat Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A: Appl Sci Manuf 42(10):1509–1514CrossRef Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A: Appl Sci Manuf 42(10):1509–1514CrossRef
99.
Zurück zum Zitat Gedde UW (1995) Polymer physics. Chapman & Hall, London Gedde UW (1995) Polymer physics. Chapman & Hall, London
100.
Zurück zum Zitat Osorio-Madrazo A, Laborie M-P (2013) Morphological and thermal investigations of cellulosic bionanocomposites. In: Dufresne A, Thomas S, Pothen LA (eds) Biopolymer nanocomposites. Wiley, Hoboken, pp 411–436CrossRef Osorio-Madrazo A, Laborie M-P (2013) Morphological and thermal investigations of cellulosic bionanocomposites. In: Dufresne A, Thomas S, Pothen LA (eds) Biopolymer nanocomposites. Wiley, Hoboken, pp 411–436CrossRef
101.
Zurück zum Zitat Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42(24):2629–2645CrossRef Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42(24):2629–2645CrossRef
102.
Zurück zum Zitat Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRef Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRef
103.
Zurück zum Zitat Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7):1187–1192CrossRef Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7):1187–1192CrossRef
104.
Zurück zum Zitat Luiz de Paula E, Mano V, Pereira FV (2011) Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d,l-lactide). Polym Degrad Stab 96(9):1631–1638CrossRef Luiz de Paula E, Mano V, Pereira FV (2011) Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d,l-lactide). Polym Degrad Stab 96(9):1631–1638CrossRef
105.
Zurück zum Zitat Siqueira G, Fraschini C, Bras J, Dufresne A, Prud'homme R, Laborie M-P (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47(12):2216–2227CrossRef Siqueira G, Fraschini C, Bras J, Dufresne A, Prud'homme R, Laborie M-P (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47(12):2216–2227CrossRef
Metadaten
Titel
Native Crystalline Polysaccharide Nanofibers: Processing and Properties
verfasst von
Pieter Samyn
Anayancy Osorio-Madrazo
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_17

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.