Skip to main content

2017 | OriginalPaper | Buchkapitel

20. Natural Convection Supercritical Fluid Systems for Geothermal, Heat Transfer, and Energy Conversion

verfasst von : Lin Chen, Xin-Rong Zhang

Erschienen in: Energy Solutions to Combat Global Warming

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural convective flow of supercritical fluids has become a hot topic in engineering applications. Natural circulation thermosyphon (or NCL: natural circulation loop) using supercritical/transcritical CO2 can be a potential choice for effectively transportation of heat and mass without pumping devices. This chapter presents a series of numerical/experimental investigations into the fundamental features in a supercritical/transcritical CO2 based natural circulation loop systems as well as possible applications and innovations in engineering fields. New heat transport model aiming at transcritical thermosyphon heat transfer and stability is proposed with supercritical/transcritical turbulence model incorporated. The effects from various system parameters, operation conditions, accident analysis, apparatus developments as well as control strategies are also included with detailed explanations in this chapter. It is clearly found that such novel fluids and systems would be one promising candidate for future development of energy solutions to global warming issues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atrens AD, Gurgenci H, Rudolph V (2009) CO2 thermosiphon for competitive geothermal power generation. Energy Fuels 23:553–557CrossRef Atrens AD, Gurgenci H, Rudolph V (2009) CO2 thermosiphon for competitive geothermal power generation. Energy Fuels 23:553–557CrossRef
2.
Zurück zum Zitat Basu DN, Bhattacharyys S, Das PK (2008) Effect of geometric parameters on steady-state performance of single-phase NCL with heat loss to ambient. Int J Therm Sci 47:1359–1373CrossRef Basu DN, Bhattacharyys S, Das PK (2008) Effect of geometric parameters on steady-state performance of single-phase NCL with heat loss to ambient. Int J Therm Sci 47:1359–1373CrossRef
3.
Zurück zum Zitat Cammarata L, Fichera A, Pagano A (2003) Stability maps for rectangular circulation loops. Appl Therm Eng 23:965–977CrossRef Cammarata L, Fichera A, Pagano A (2003) Stability maps for rectangular circulation loops. Appl Therm Eng 23:965–977CrossRef
4.
Zurück zum Zitat Carles P (2010) A brief review of the thermaophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11CrossRef Carles P (2010) A brief review of the thermaophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11CrossRef
5.
Zurück zum Zitat Chatoorgoon V, Voodi A, Fraser D (2005) The stability boundary for supercritical flow in natural convection loops Part I: H2O studies. Nucl Eng Des 235:2570–2580CrossRef Chatoorgoon V, Voodi A, Fraser D (2005) The stability boundary for supercritical flow in natural convection loops Part I: H2O studies. Nucl Eng Des 235:2570–2580CrossRef
6.
Zurück zum Zitat Chatoorgoon V, Voodi A, Upadhye P (2005) The stability boundary for supercritical flow in natural-convection loops Part II: CO2 and H2. Nucl Eng Des 235:2581–2593CrossRef Chatoorgoon V, Voodi A, Upadhye P (2005) The stability boundary for supercritical flow in natural-convection loops Part II: CO2 and H2. Nucl Eng Des 235:2581–2593CrossRef
7.
Zurück zum Zitat Chen L, Zhang XR, Yamaguchi H, Liu ZSS (2010) Effect of heat transfer on the instabilities and transitions of supercritical CO2 flow in a natural circulation loop. Int J Heat Mass Transf 53:4101–4111 Chen L, Zhang XR, Yamaguchi H, Liu ZSS (2010) Effect of heat transfer on the instabilities and transitions of supercritical CO2 flow in a natural circulation loop. Int J Heat Mass Transf 53:4101–4111
8.
Zurück zum Zitat Chen L, Zhang XR (2011) Simulation of heat transfer and system behavior in a supercritical CO2 based thermosyphon: effect of pipe diameter. ASME J Heat Transf 133:2505–2513 Chen L, Zhang XR (2011) Simulation of heat transfer and system behavior in a supercritical CO2 based thermosyphon: effect of pipe diameter. ASME J Heat Transf 133:2505–2513
9.
Zurück zum Zitat Chen L, Zhang XR, Cao S, Bai H (2012) Study of trans-critical CO2 natural convective flow with unsteady heat input and its implications on system control. Int J Heat Mass Transf 55:7119–7132CrossRef Chen L, Zhang XR, Cao S, Bai H (2012) Study of trans-critical CO2 natural convective flow with unsteady heat input and its implications on system control. Int J Heat Mass Transf 55:7119–7132CrossRef
10.
Zurück zum Zitat Chen L, Deng BL, Jiang B, Zhang XR (2013) Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops. Nucl Eng Des 257:21–30CrossRef Chen L, Deng BL, Jiang B, Zhang XR (2013) Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops. Nucl Eng Des 257:21–30CrossRef
11.
Zurück zum Zitat Chen L, Deng BL, Zhang XR (2013) Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region. Int J Heat Mass Transf 64:202–211CrossRef Chen L, Deng BL, Zhang XR (2013) Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region. Int J Heat Mass Transf 64:202–211CrossRef
12.
Zurück zum Zitat Chen L, Deng BL, Zhang XR (2013) Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop. Appl Therm Eng 59:1–13CrossRef Chen L, Deng BL, Zhang XR (2013) Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop. Appl Therm Eng 59:1–13CrossRef
13.
Zurück zum Zitat Chen L, Zhang XR, Jiang B (2014) Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop. ASME J Heat Transf 136(5):052501, 11 p Chen L, Zhang XR, Jiang B (2014) Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop. ASME J Heat Transf 136(5):052501, 11 p
14.
Zurück zum Zitat Dimmick GR, Chatoorgon V, Khartabil HF, Duffey RB (2002) Natural-convection studies for advanced CANDU reactor concepts. Nucl Eng Des 215:27–38CrossRef Dimmick GR, Chatoorgon V, Khartabil HF, Duffey RB (2002) Natural-convection studies for advanced CANDU reactor concepts. Nucl Eng Des 215:27–38CrossRef
15.
Zurück zum Zitat Driscoll MJ, Hejzlar P (2004) 300 MWe Supercritical CO2 plant layout and design, Report No: MIT-GFR-014, MIT Nuclear Engineering Department Driscoll MJ, Hejzlar P (2004) 300 MWe Supercritical CO2 plant layout and design, Report No: MIT-GFR-014, MIT Nuclear Engineering Department
16.
Zurück zum Zitat Duffey RB, Pioro IL (2005) Experimental heat transfer for supercritical carbon dioxide flowing inside channels (survey). Nucl Eng Des 235:913–924CrossRef Duffey RB, Pioro IL (2005) Experimental heat transfer for supercritical carbon dioxide flowing inside channels (survey). Nucl Eng Des 235:913–924CrossRef
17.
Zurück zum Zitat Fukuda K, Kobori T (1979) Classification of two-phase flow stability by density-wave oscillation model. J Nucl Sci Tech 16:95–108CrossRef Fukuda K, Kobori T (1979) Classification of two-phase flow stability by density-wave oscillation model. J Nucl Sci Tech 16:95–108CrossRef
18.
Zurück zum Zitat He S, Kim WS, Jackson JD (2008) A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value. Appl Therm Eng 28:1662–1675CrossRef He S, Kim WS, Jackson JD (2008) A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value. Appl Therm Eng 28:1662–1675CrossRef
19.
Zurück zum Zitat International Atomic Energy Agency (2009) Passive safety systems and natural circulation in water cooled nuclear power plants, IAEA-TECDOC-1624, pp 53–67 International Atomic Energy Agency (2009) Passive safety systems and natural circulation in water cooled nuclear power plants, IAEA-TECDOC-1624, pp 53–67
20.
Zurück zum Zitat Jain PK, Rizwan-uddin (2008) Numerical analysis of supercritical flow instabilities in a natural circulation loop. Nucl Eng Des 238:1947–1957 Jain PK, Rizwan-uddin (2008) Numerical analysis of supercritical flow instabilities in a natural circulation loop. Nucl Eng Des 238:1947–1957
21.
Zurück zum Zitat Kumar KK, Gopal MR (2008) Steady-state analysis of CO2 based natural circulation loops with end heat exchangers. Appl Therm Eng 29:1893–1903CrossRef Kumar KK, Gopal MR (2008) Steady-state analysis of CO2 based natural circulation loops with end heat exchangers. Appl Therm Eng 29:1893–1903CrossRef
22.
Zurück zum Zitat Kumar KK, Gopal MR (2009) Effect of system pressure on the steady state performance of a CO2 based natural circulation loop. Appl Therm Eng 29:3346–3352CrossRef Kumar KK, Gopal MR (2009) Effect of system pressure on the steady state performance of a CO2 based natural circulation loop. Appl Therm Eng 29:3346–3352CrossRef
23.
Zurück zum Zitat Kumar KK, Gopal MR (2011) Experimental studies on CO2 based single and two-phase natural circulation loops. Appl Therm Eng 31:3437–3443CrossRef Kumar KK, Gopal MR (2011) Experimental studies on CO2 based single and two-phase natural circulation loops. Appl Therm Eng 31:3437–3443CrossRef
24.
Zurück zum Zitat Linzer W, Walter H (2003) Flow reversal in natural circulation systems. Appl Therm Eng 23:2363–2372CrossRef Linzer W, Walter H (2003) Flow reversal in natural circulation systems. Appl Therm Eng 23:2363–2372CrossRef
25.
Zurück zum Zitat Lisboa PF, Fernandes J, Simoes PC, Mota JPB, Saatdjian E (2010) Computational fluid dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide. J Supercrit Fluids 55:107–115CrossRef Lisboa PF, Fernandes J, Simoes PC, Mota JPB, Saatdjian E (2010) Computational fluid dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide. J Supercrit Fluids 55:107–115CrossRef
26.
Zurück zum Zitat Misale M, Frogheri M (2001) Stablization of a single-phase natural circulation loop by pressure drops. Exp Thermal Fluid Sci 25:277–282CrossRef Misale M, Frogheri M (2001) Stablization of a single-phase natural circulation loop by pressure drops. Exp Thermal Fluid Sci 25:277–282CrossRef
27.
Zurück zum Zitat Misale M, Garibaldi P, Passos JC, Bitencourt GG (2007) Experiments in a single-phase natural circulation mini-loop. Exp Thermal Fluid Sci 31:1111–1120CrossRef Misale M, Garibaldi P, Passos JC, Bitencourt GG (2007) Experiments in a single-phase natural circulation mini-loop. Exp Thermal Fluid Sci 31:1111–1120CrossRef
28.
Zurück zum Zitat Moisseytsev A, Sienicki JJ (2008) Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor. Nucl Eng Des 238:2094–2105CrossRef Moisseytsev A, Sienicki JJ (2008) Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor. Nucl Eng Des 238:2094–2105CrossRef
29.
Zurück zum Zitat Mousavian SK, Misale M, D’Aural F, Salehi M (2004) Transient and stability analysis in single-phase natural circulation. Ann Nucl Energy 31:1177–1198CrossRef Mousavian SK, Misale M, D’Aural F, Salehi M (2004) Transient and stability analysis in single-phase natural circulation. Ann Nucl Energy 31:1177–1198CrossRef
30.
31.
Zurück zum Zitat Neksfit P, Rekstad H, Zakeri GR, Schiefloe PA (1998) CO2-heat pump water heater: characteristics, system design and experimental results. Int J Refrig 21:172–179CrossRef Neksfit P, Rekstad H, Zakeri GR, Schiefloe PA (1998) CO2-heat pump water heater: characteristics, system design and experimental results. Int J Refrig 21:172–179CrossRef
32.
Zurück zum Zitat NIST (2006) Standard Reference Database-REFPROP, Version 8.0 NIST (2006) Standard Reference Database-REFPROP, Version 8.0
33.
Zurück zum Zitat Shan XY, Schmidt DP, Watkins JJ (2007) Study of natural convection in supercritical CO2 cold wall reactors: simulations and experiments. J Supercrit Fluids 40:84–92CrossRef Shan XY, Schmidt DP, Watkins JJ (2007) Study of natural convection in supercritical CO2 cold wall reactors: simulations and experiments. J Supercrit Fluids 40:84–92CrossRef
34.
Zurück zum Zitat Swapnalee BT, Vijayan PK (2011) A generalized flow equation for single-phase natural circulation loops obeying multiple friction laws. Int J Heat Mass Transf 54:2618–2619CrossRefMATH Swapnalee BT, Vijayan PK (2011) A generalized flow equation for single-phase natural circulation loops obeying multiple friction laws. Int J Heat Mass Transf 54:2618–2619CrossRefMATH
35.
Zurück zum Zitat Swapnalee BT, Vijayan PK, Sharma M, Pilkhwal DS (2012) Steady state flow and static instability of supercritical natural circulation loops. Nucl Eng Des 245:99–112CrossRef Swapnalee BT, Vijayan PK, Sharma M, Pilkhwal DS (2012) Steady state flow and static instability of supercritical natural circulation loops. Nucl Eng Des 245:99–112CrossRef
36.
Zurück zum Zitat Vijayan PK, Austregesilo H, Teschendorff V (1995) Simulation of the unstable oscillatory behavior of single-phase natural circulation with repetitive flow reversals in a rectangular loop using the computer code ATHLET. Nucl Eng Des 155:623–641CrossRef Vijayan PK, Austregesilo H, Teschendorff V (1995) Simulation of the unstable oscillatory behavior of single-phase natural circulation with repetitive flow reversals in a rectangular loop using the computer code ATHLET. Nucl Eng Des 155:623–641CrossRef
37.
Zurück zum Zitat Vijayan PK, Bade MH, Saha D, Sinha RK, Venkat RV (2004) A generalized flow correlation for single-phase natural circulation loops. In: Proceedings of the 17th National and 6th ISHMT/ASME heat and mass transfer conference, Kalpakkam, India, January, HMT-2004-C022 Vijayan PK, Bade MH, Saha D, Sinha RK, Venkat RV (2004) A generalized flow correlation for single-phase natural circulation loops. In: Proceedings of the 17th National and 6th ISHMT/ASME heat and mass transfer conference, Kalpakkam, India, January, HMT-2004-C022
38.
Zurück zum Zitat Welander P (1967) On the oscillatory instability of a differentially heated fluid loop. J Fluid Mech 29:17–30CrossRefMATH Welander P (1967) On the oscillatory instability of a differentially heated fluid loop. J Fluid Mech 29:17–30CrossRefMATH
39.
Zurück zum Zitat Yadav AK, Gopal MR, Bhattacharyya S (2012) CO2 based natural circulation loops: New correlations for friction and heat transfer. Int J Heat Mass Transf 55:4621–4630CrossRef Yadav AK, Gopal MR, Bhattacharyya S (2012) CO2 based natural circulation loops: New correlations for friction and heat transfer. Int J Heat Mass Transf 55:4621–4630CrossRef
40.
Zurück zum Zitat Yang J, Oka Y, Ishiwatari Y, Liu J, Yoo J (2007) Numerical investigation of heat transfer in upward flow of supercritical water in circular tubes and tight fuel rod bundles. Nucl Eng Des 237:420–430CrossRef Yang J, Oka Y, Ishiwatari Y, Liu J, Yoo J (2007) Numerical investigation of heat transfer in upward flow of supercritical water in circular tubes and tight fuel rod bundles. Nucl Eng Des 237:420–430CrossRef
41.
Zurück zum Zitat Yamaguchi H, Sawada N, Suzuki H, Ueda H, Zhang XR (2010) Preliminary study on a solar water heater using supercritical carbon dioxide as working fluid. ASME J Solar Energy Eng 132:101–106CrossRef Yamaguchi H, Sawada N, Suzuki H, Ueda H, Zhang XR (2010) Preliminary study on a solar water heater using supercritical carbon dioxide as working fluid. ASME J Solar Energy Eng 132:101–106CrossRef
42.
Zurück zum Zitat Yoshikawa S, Smith RL, Inomata H, Matsumura Y, Arai K (2005) Performance of a natural convection circulation system for supercritical fluids. J Supercrit Fluids 36:70–80CrossRef Yoshikawa S, Smith RL, Inomata H, Matsumura Y, Arai K (2005) Performance of a natural convection circulation system for supercritical fluids. J Supercrit Fluids 36:70–80CrossRef
43.
44.
Zurück zum Zitat Zhang XR, Chen L, Yamaguchi H (2010) Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop. Int J Heat Mass Transf 53:4112–4122CrossRefMATH Zhang XR, Chen L, Yamaguchi H (2010) Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop. Int J Heat Mass Transf 53:4112–4122CrossRefMATH
45.
Zurück zum Zitat Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N (2007) Theoretical analysis of a thermodynamic cycle for power production using supercritical carbon dioxide. Energy 32:591–599CrossRef Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N (2007) Theoretical analysis of a thermodynamic cycle for power production using supercritical carbon dioxide. Energy 32:591–599CrossRef
46.
Zurück zum Zitat Zhang XR, Yamaguchi H (2008) An experimental study on evacuated tube solar collector using supercritical CO2. Appl Therm Eng 28:1225–1233CrossRef Zhang XR, Yamaguchi H (2008) An experimental study on evacuated tube solar collector using supercritical CO2. Appl Therm Eng 28:1225–1233CrossRef
47.
Zurück zum Zitat Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N (2005) A feasibility study of CO2—based Rankine cycle powered by solar energy. JSME Int J Ser B Fluids Therm Eng 48:540–547CrossRef Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N (2005) A feasibility study of CO2—based Rankine cycle powered by solar energy. JSME Int J Ser B Fluids Therm Eng 48:540–547CrossRef
48.
Zurück zum Zitat Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N (2006) Analysis of a novel solar energy powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 31:1839–1854CrossRef Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N (2006) Analysis of a novel solar energy powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 31:1839–1854CrossRef
49.
Zurück zum Zitat Zhang XR, Yamaguchi H, Uneno D (2007) Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy 32:2617–2628CrossRef Zhang XR, Yamaguchi H, Uneno D (2007) Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy 32:2617–2628CrossRef
Metadaten
Titel
Natural Convection Supercritical Fluid Systems for Geothermal, Heat Transfer, and Energy Conversion
verfasst von
Lin Chen
Xin-Rong Zhang
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-26950-4_20