Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

02.11.2020 | SI: Nature Inspired Computing for Wireless Networks Applications

Nature Based Self-Learning Mechanism and Simulation of Automatic Control Smart Hybrid Antilock Braking System

verfasst von: Roushan Kumar, Divyanshu, Adesh Kumar

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The antilock braking system (ABS) is intended to augment braking effectiveness, maintains understeer and oversteer conditions. The braking system performance is degraded in the case of severe road conditions. The research paper presented the effectiveness of smart hybrid antilock braking system in automobiles. The concept of antilock braking system and manual braking system is anticipated to a single unit to overcome the problem facing in the braking system in vehicles. Lyapunov’s theoretical stability approach is used for the system stability. The concept of smart control development is used to solve system complexity and real time issues in different road conditions. Directional Control Valve (DCV) plays very important role in controlling the flow direction of brake oil. The Electronic Control Unit (ECU) is the slip controller for antilock braking system, which takes inputs from brake pedal, speed of all four wheels and various road conditions, processes the accumulated data to generate corresponding PWM signal for the DCVs. The ignition switch and ECU controls the activation and de-activation of directional control valve. The MATLAB/Simulink, 2015 version and experimental analysis using Automation Studio verified the model behavior in both ABS and manual braking mode. The system performance is analyzed during ignition ‘ON’ and ‘OFF’ conditions. The comparative study of the ABS mode and manual mode against wheel speed and vehicle speed is predicted in different time intervals. The smart hybrid ABS control provides better response in comparison to conventional braking. It is experimentally proved that the acclaimed antilock braking system reduces the stopping distance in comparison to the manual braking unit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Savitski, D., Ivanov, V., Shyrokau, B., Pütz, T., De Smet, J., & Theunissen, J. (2016). Experimental investigations on continuous regenerative anti-lock braking system of full electric vehicle. International Journal of Automotive Technology, 17(2), 327–338.CrossRef Savitski, D., Ivanov, V., Shyrokau, B., Pütz, T., De Smet, J., & Theunissen, J. (2016). Experimental investigations on continuous regenerative anti-lock braking system of full electric vehicle. International Journal of Automotive Technology, 17(2), 327–338.CrossRef
2.
Zurück zum Zitat Burgoon, D. L. (2018). Inventor; Performance Friction Corp, assignee. Brake rotor assembly for use with an anti-lock braking system. United States patent application US 15/985,474. Burgoon, D. L. (2018). Inventor; Performance Friction Corp, assignee. Brake rotor assembly for use with an anti-lock braking system. United States patent application US 15/985,474.
3.
Zurück zum Zitat Morselli, R., & Zanasi, R. (2006). A self-tuning ABS control for electromechanical braking systems. IFAC Proceedings Volumes, 39(16), 620–625.CrossRef Morselli, R., & Zanasi, R. (2006). A self-tuning ABS control for electromechanical braking systems. IFAC Proceedings Volumes, 39(16), 620–625.CrossRef
4.
Zurück zum Zitat Wang, N., Wang, S., Peng, Z., Song, W., Xue, X., & Choi, S. B. (2018). Braking control performances of a disk-type magneto-rheological brake via hardware-in-the-loop simulation. Journal of Intelligent Material Systems and Structures, 29(20), 3937–3948.CrossRef Wang, N., Wang, S., Peng, Z., Song, W., Xue, X., & Choi, S. B. (2018). Braking control performances of a disk-type magneto-rheological brake via hardware-in-the-loop simulation. Journal of Intelligent Material Systems and Structures, 29(20), 3937–3948.CrossRef
5.
Zurück zum Zitat Gao, Y., Chen, L., & Ehsani, M. (1999). Investigation of the effectiveness of regenerative braking for EV and HEV. SAE Transactions, 1, 3184–3190. Gao, Y., Chen, L., & Ehsani, M. (1999). Investigation of the effectiveness of regenerative braking for EV and HEV. SAE Transactions, 1, 3184–3190.
6.
Zurück zum Zitat Shoukry Y, Martin P, Tabuada P, Srivastava M. Non-invasive spoofing attacks for anti-lock braking systems. InInternational Workshop on Cryptographic Hardware and Embedded Systems 2013 Aug 20 (pp. 55-72). Springer, Berlin, Heidelberg. Shoukry Y, Martin P, Tabuada P, Srivastava M. Non-invasive spoofing attacks for anti-lock braking systems. InInternational Workshop on Cryptographic Hardware and Embedded Systems 2013 Aug 20 (pp. 55-72). Springer, Berlin, Heidelberg.
7.
Zurück zum Zitat Li, J., Yu, F., Zhang, J. W., Feng, J. Z., & Zhao, H. P. (2002). The rapid development of a vehicle electronic control system and its application to an antilock braking system based on hardware-in-the-loop simulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216(2), 95–105. Li, J., Yu, F., Zhang, J. W., Feng, J. Z., & Zhao, H. P. (2002). The rapid development of a vehicle electronic control system and its application to an antilock braking system based on hardware-in-the-loop simulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216(2), 95–105.
8.
Zurück zum Zitat Sangtarash, F., Esfahanian, V., Nehzati, H., Haddadi, S., Bavanpour, M. A., & Haghpanah, B. (2009). Effect of different regenerative braking strategies on braking performance and fuel economy in a hybrid electric bus employing CRUISE vehicle simulation. SAE International Journal of Fuels and Lubricants, 1(1), 828–837.CrossRef Sangtarash, F., Esfahanian, V., Nehzati, H., Haddadi, S., Bavanpour, M. A., & Haghpanah, B. (2009). Effect of different regenerative braking strategies on braking performance and fuel economy in a hybrid electric bus employing CRUISE vehicle simulation. SAE International Journal of Fuels and Lubricants, 1(1), 828–837.CrossRef
9.
Zurück zum Zitat Khansari, M. H., & Yaghoobi, M. (2019). Adaptive generalized predictive control of anti lock braking system. Journal of Control & Instrumentation, 6(3), 1–2. Khansari, M. H., & Yaghoobi, M. (2019). Adaptive generalized predictive control of anti lock braking system. Journal of Control & Instrumentation, 6(3), 1–2.
10.
Zurück zum Zitat Verma, R., Ginoya, D., Shendge, P. D., & Phadke, S. B. (2015). Slip regulation for anti-lock braking systems using multiple surface sliding controller combined with inertial delay control. Vehicle System Dynamics, 53(8), 1150–1171.CrossRef Verma, R., Ginoya, D., Shendge, P. D., & Phadke, S. B. (2015). Slip regulation for anti-lock braking systems using multiple surface sliding controller combined with inertial delay control. Vehicle System Dynamics, 53(8), 1150–1171.CrossRef
11.
Zurück zum Zitat Lin, C. M., & Hsu, C. F. (2003). Self-learning fuzzy sliding-mode control for antilock braking systems. IEEE Transactions on Control Systems Technology, 11(2), 273–278.MathSciNetCrossRef Lin, C. M., & Hsu, C. F. (2003). Self-learning fuzzy sliding-mode control for antilock braking systems. IEEE Transactions on Control Systems Technology, 11(2), 273–278.MathSciNetCrossRef
12.
Zurück zum Zitat Penny, W. C., & Els, P. S. (2016). The test and simulation of ABS on rough, non-deformable terrains. Journal of Terramechanics, 1(67), 1.CrossRef Penny, W. C., & Els, P. S. (2016). The test and simulation of ABS on rough, non-deformable terrains. Journal of Terramechanics, 1(67), 1.CrossRef
13.
Zurück zum Zitat Tanelli, M., Sartori, R., & Savaresi, S. M. (2007). Sliding mode slip-deceleration control for brake-by-wire control systems. IFAC Proceedings Volumes, 40(10), 135–142.CrossRef Tanelli, M., Sartori, R., & Savaresi, S. M. (2007). Sliding mode slip-deceleration control for brake-by-wire control systems. IFAC Proceedings Volumes, 40(10), 135–142.CrossRef
14.
Zurück zum Zitat Chen, J., & Tan, G. (2011). Study of anti-lock brake system control strategy in automobile. In International conference on computer science, environment, ecoinformatics, and education (pp. 458–465). Springer, Berlin, Heidelberg. Chen, J., & Tan, G. (2011). Study of anti-lock brake system control strategy in automobile. In International conference on computer science, environment, ecoinformatics, and education (pp. 458–465). Springer, Berlin, Heidelberg.
15.
Zurück zum Zitat Anwar, S. (2004). An anti-lock braking control system for a hybrid electromagnetic/electrohydraulic brake-by-wire system. In Proceedings of the 2004 American control conference (Vol. 3, pp. 2699–2704). IEEE. Anwar, S. (2004). An anti-lock braking control system for a hybrid electromagnetic/electrohydraulic brake-by-wire system. In Proceedings of the 2004 American control conference (Vol. 3, pp. 2699–2704). IEEE.
16.
Zurück zum Zitat Wu, M. C., & Shih, M. C. (2003). Simulated and experimental study of hydraulic anti-lock braking system using sliding-mode PWM control. Mechatronics, 13(4), 331–351.CrossRef Wu, M. C., & Shih, M. C. (2003). Simulated and experimental study of hydraulic anti-lock braking system using sliding-mode PWM control. Mechatronics, 13(4), 331–351.CrossRef
17.
Zurück zum Zitat Raesian, N., Khajehpour, N., & Yaghoobi, M. (2011). A new approach in anti-lock braking system (ABS) based on adaptive neuro-fuzzy self-tuning PID controller. In The 2nd international conference on control, instrumentation and automation (pp. 530–535). IEEE. Raesian, N., Khajehpour, N., & Yaghoobi, M. (2011). A new approach in anti-lock braking system (ABS) based on adaptive neuro-fuzzy self-tuning PID controller. In The 2nd international conference on control, instrumentation and automation (pp. 530–535). IEEE.
18.
Zurück zum Zitat Chaple, M., Bodkhe, S. B., & Daigavane, P. (2019). Four phase (8/6) SRM with DTC for minimization of torque ripple. The International Journal of Electrical Engineering & Education, 22, 0020720919841686. Chaple, M., Bodkhe, S. B., & Daigavane, P. (2019). Four phase (8/6) SRM with DTC for minimization of torque ripple. The International Journal of Electrical Engineering & Education, 22, 0020720919841686.
19.
Zurück zum Zitat Guan, H., Hao, W. T., & Zhan, J. (2013). A vacuum booster model for brake pedal feeling analysis. In Advanced materials research (Vol. 622, pp. 1248–1252). Trans Tech Publications. Guan, H., Hao, W. T., & Zhan, J. (2013). A vacuum booster model for brake pedal feeling analysis. In Advanced materials research (Vol. 622, pp. 1248–1252). Trans Tech Publications.
20.
Zurück zum Zitat Fawzi, H., Tabuada, P., & Diggavi, S. (2011). Secure state-estimation for dynamical systems under active adversaries. In 2011 49th annual allerton conference on communication, control, and computing (allerton) (pp. 337–344). IEEE. Fawzi, H., Tabuada, P., & Diggavi, S. (2011). Secure state-estimation for dynamical systems under active adversaries. In 2011 49th annual allerton conference on communication, control, and computing (allerton) (pp. 337–344). IEEE.
21.
Zurück zum Zitat Li, L., Li, X., Wang, X., Liu, Y., Song, J., & Ran, X. (2016). Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system. Vehicle System Dynamics, 54(2), 231–257.CrossRef Li, L., Li, X., Wang, X., Liu, Y., Song, J., & Ran, X. (2016). Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system. Vehicle System Dynamics, 54(2), 231–257.CrossRef
22.
Zurück zum Zitat Ning, X. B., Guo, Y. Y., Jiang, J. P., Lynn, A., Smid, E., Eshraghi, M., et al. (2005). Pure electric bus regenerative braking and hydraulic braking coordinated control algorithm research. Journal of Applied Sciences, 13(22), 24. Ning, X. B., Guo, Y. Y., Jiang, J. P., Lynn, A., Smid, E., Eshraghi, M., et al. (2005). Pure electric bus regenerative braking and hydraulic braking coordinated control algorithm research. Journal of Applied Sciences, 13(22), 24.
23.
Zurück zum Zitat Ahmad, F., Hudha, K., Mazlan, S. A., Jamaluddin, H., Aparow, V. R., & Yunos, M. M. (2018). Simulation and experimental investigation of vehicle braking system employing a fixed caliper based electronic wedge brake. Simulation, 94(4), 327–340.CrossRef Ahmad, F., Hudha, K., Mazlan, S. A., Jamaluddin, H., Aparow, V. R., & Yunos, M. M. (2018). Simulation and experimental investigation of vehicle braking system employing a fixed caliper based electronic wedge brake. Simulation, 94(4), 327–340.CrossRef
24.
Zurück zum Zitat Dai-zong, X. I. (2007). Simulation technique of AMESim and its application in design and performance analysis of hydraulic component. Ship Science and Technology, 3, 142–145. Dai-zong, X. I. (2007). Simulation technique of AMESim and its application in design and performance analysis of hydraulic component. Ship Science and Technology, 3, 142–145.
Metadaten
Titel
Nature Based Self-Learning Mechanism and Simulation of Automatic Control Smart Hybrid Antilock Braking System
verfasst von
Roushan Kumar
Divyanshu
Adesh Kumar
Publikationsdatum
02.11.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07853-7

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt