Skip to main content
Erschienen in: Experiments in Fluids 5/2012

01.05.2012 | Research Article

Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

verfasst von: Wei Zhang, Corey D. Markfort, Fernando Porté-Agel

Erschienen in: Experiments in Fluids | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (xz) and vertical span-wise planes (yz). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and validation of numerical models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275–290CrossRef Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275–290CrossRef
Zurück zum Zitat Ainslie JF (1988) Calculating the flow field in the wake of wind turbines. J Wind Eng Ind Aerodyn 27:213–224 Ainslie JF (1988) Calculating the flow field in the wake of wind turbines. J Wind Eng Ind Aerodyn 27:213–224
Zurück zum Zitat Athanassiadou M, Castro IP (2001) Neutral flow over a series of rough hills: a laboratory experiment. Boundary Layer Meteorol 101:1–30CrossRef Athanassiadou M, Castro IP (2001) Neutral flow over a series of rough hills: a laboratory experiment. Boundary Layer Meteorol 101:1–30CrossRef
Zurück zum Zitat Bingöl F, Mann J, Larsen GC (2007) Laser measurements of wake dynamics. The proceedings at EWEC, Milan Bingöl F, Mann J, Larsen GC (2007) Laser measurements of wake dynamics. The proceedings at EWEC, Milan
Zurück zum Zitat Bruun HH (1995) Hotwire anemometry, principles and signal analysis. Oxford University Press, UK Bruun HH (1995) Hotwire anemometry, principles and signal analysis. Oxford University Press, UK
Zurück zum Zitat Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. 1st edn. Wiley, New YorkCrossRef Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. 1st edn. Wiley, New YorkCrossRef
Zurück zum Zitat Cal RB, Lebrón J, Castillo L, Kang HS, Meneveau C (2010) Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J Renew Sustain Energy 2:013–106 Cal RB, Lebrón J, Castillo L, Kang HS, Meneveau C (2010) Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J Renew Sustain Energy 2:013–106
Zurück zum Zitat Carper MA, Porté-Agel F (2008) Subfilter-scale fluxes over a surface roughness transition. Part I: measured fluxes and energy transfer rate. Boundary Layer Meteorol 126:157–179CrossRef Carper MA, Porté-Agel F (2008) Subfilter-scale fluxes over a surface roughness transition. Part I: measured fluxes and energy transfer rate. Boundary Layer Meteorol 126:157–179CrossRef
Zurück zum Zitat Chamorro LP, Porté-Agel F (2009) A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects. Boundary Layer Meteorol 132(1):129–149CrossRef Chamorro LP, Porté-Agel F (2009) A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects. Boundary Layer Meteorol 132(1):129–149CrossRef
Zurück zum Zitat Chamorro LP, Porté-Agel F (2010) Thermal stability and boundary-layer effects on wind-turbine wakes: a wind-tunnel study. Boundary-Layer Meteorol 136:515–533CrossRef Chamorro LP, Porté-Agel F (2010) Thermal stability and boundary-layer effects on wind-turbine wakes: a wind-tunnel study. Boundary-Layer Meteorol 136:515–533CrossRef
Zurück zum Zitat Crespo A, Hernandez J, Frandsen S (1999) Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy 2:1–24CrossRef Crespo A, Hernandez J, Frandsen S (1999) Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy 2:1–24CrossRef
Zurück zum Zitat Dobrev I, Maalouf B, Troldborg N, Massouh F (2008) Investigation of the wind turbine vortex structure. In: 14th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal Dobrev I, Maalouf B, Troldborg N, Massouh F (2008) Investigation of the wind turbine vortex structure. In: 14th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal
Zurück zum Zitat Gong W, Ibbetson A (2009) A wind-tunnel study of turbulent flows over model hills. Boundary-Layer Meteorol 49:113–148CrossRef Gong W, Ibbetson A (2009) A wind-tunnel study of turbulent flows over model hills. Boundary-Layer Meteorol 49:113–148CrossRef
Zurück zum Zitat Grant ALM (1992) The structure of turbulence in the near-neutral atmospheric boundary-layer. J Atmos Sci 49:226–239CrossRef Grant ALM (1992) The structure of turbulence in the near-neutral atmospheric boundary-layer. J Atmos Sci 49:226–239CrossRef
Zurück zum Zitat Grant I, Parkin P (2000) A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw. Exp Fluids 28:368–376CrossRef Grant I, Parkin P (2000) A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw. Exp Fluids 28:368–376CrossRef
Zurück zum Zitat Grant I, Parkin P, Wang X (1997) Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation. Exp Fluids 23:513–519CrossRef Grant I, Parkin P, Wang X (1997) Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation. Exp Fluids 23:513–519CrossRef
Zurück zum Zitat Hancock PE, Pascheke F (2010) Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow. In: 10th EMS annual meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, September 13–17, 2010 in Zurich, Switzerland Hancock PE, Pascheke F (2010) Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow. In: 10th EMS annual meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, September 13–17, 2010 in Zurich, Switzerland
Zurück zum Zitat Hansen AC, Butterfield CP (1993) Aerodynamics of horizontal-axis wind turbines. Annu Rev Fluid Mech 25:115–149CrossRef Hansen AC, Butterfield CP (1993) Aerodynamics of horizontal-axis wind turbines. Annu Rev Fluid Mech 25:115–149CrossRef
Zurück zum Zitat Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136MATHCrossRef Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136MATHCrossRef
Zurück zum Zitat Jorgensen FE (1996) The computer-controlled constant temperature ameometer: aspectes of the set-up, probe calibration, data acquisition, and data collection turbulence. Meas Sci Technol 12:1378–1387CrossRef Jorgensen FE (1996) The computer-controlled constant temperature ameometer: aspectes of the set-up, probe calibration, data acquisition, and data collection turbulence. Meas Sci Technol 12:1378–1387CrossRef
Zurück zum Zitat Katul GG, Chu CR, Parlange MB, Albertson JD, Ortenburger TA (1995) Low-wave-number spectral characteristics of velocity and temperature in the atmospheric surface-layer. J Geophys Res Atmos 100:14243–14255 Katul GG, Chu CR, Parlange MB, Albertson JD, Ortenburger TA (1995) Low-wave-number spectral characteristics of velocity and temperature in the atmospheric surface-layer. J Geophys Res Atmos 100:14243–14255
Zurück zum Zitat Khurshudyan LH, Snyder WH, Nekrasov IV (1981) Flow and dispersion of pollutants over two-dimensional hills. Env Prot Agency Rpt No EPA-600/4-81-067 Research Triangle Park, NC Khurshudyan LH, Snyder WH, Nekrasov IV (1981) Flow and dispersion of pollutants over two-dimensional hills. Env Prot Agency Rpt No EPA-600/4-81-067 Research Triangle Park, NC
Zurück zum Zitat Larson GC, Madsen HA, Thomsen K, Larson TJ (2008) Wake meandering: a pragmatic approach. Wind Energ 11:377–395CrossRef Larson GC, Madsen HA, Thomsen K, Larson TJ (2008) Wake meandering: a pragmatic approach. Wind Energ 11:377–395CrossRef
Zurück zum Zitat Lebrón J, Castillo L, Cal RB, Kang HS, Meneveau C (2010) Interaction between a wind turbine array and a turbulent boundary layer. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 4–7 January 2010, Orlando, Florida Lebrón J, Castillo L, Cal RB, Kang HS, Meneveau C (2010) Interaction between a wind turbine array and a turbulent boundary layer. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 4–7 January 2010, Orlando, Florida
Zurück zum Zitat Lu H, Porté-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids 23, 065101:1–065101:19. doi:10.1063/1.3589857 Lu H, Porté-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids 23, 065101:1–065101:19. doi:10.​1063/​1.​3589857
Zurück zum Zitat Medici D, Alfredsson PH (2006) Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9:219–236CrossRef Medici D, Alfredsson PH (2006) Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9:219–236CrossRef
Zurück zum Zitat Medici D, Alfredsson PH (2008) Measurements behind model wind turbines: further evidence of wake meandering. Wind Energ 11:211–217CrossRef Medici D, Alfredsson PH (2008) Measurements behind model wind turbines: further evidence of wake meandering. Wind Energ 11:211–217CrossRef
Zurück zum Zitat Pedersen TF, Antoniou I (1989) Visualisation of flow through a stall-regulated wind turbine rotor. Wind Eng 13:239–245 Pedersen TF, Antoniou I (1989) Visualisation of flow through a stall-regulated wind turbine rotor. Wind Eng 13:239–245
Zurück zum Zitat Porté-Agel F, Wu YT, Lu H, Conzemius RJ (2011) Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J Wind Eng Ind Aerodyn 99:154–168CrossRef Porté-Agel F, Wu YT, Lu H, Conzemius RJ (2011) Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J Wind Eng Ind Aerodyn 99:154–168CrossRef
Zurück zum Zitat Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide. 2nd edn. Springer, Berlin Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide. 2nd edn. Springer, Berlin
Zurück zum Zitat Sherry M, Sheridan J, Jacono DL (2010) Horizontal axis wind turbine tip and root vortex measurements. In: 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal Sherry M, Sheridan J, Jacono DL (2010) Horizontal axis wind turbine tip and root vortex measurements. In: 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal
Zurück zum Zitat Simms D, Schreck S, Hand M, Fingersh LJ (2001) NREL unsteady aerodynamics experiment in the NASA-AMES wind tunnel: a comparison of predictions to measurements. NREL/TP-500-29494 Simms D, Schreck S, Hand M, Fingersh LJ (2001) NREL unsteady aerodynamics experiment in the NASA-AMES wind tunnel: a comparison of predictions to measurements. NREL/TP-500-29494
Zurück zum Zitat Snel H, Schepers JG, Montgomerie B (2007) The MEXICO project (model experiments in controlled conditions): the database and first results of data processing and interpretation. J Phys Conf Ser 75:012–014CrossRef Snel H, Schepers JG, Montgomerie B (2007) The MEXICO project (model experiments in controlled conditions): the database and first results of data processing and interpretation. J Phys Conf Ser 75:012–014CrossRef
Zurück zum Zitat Sørensen JN (2011) Aerodynamic aspects of wind energy conversion. Annu Rev Fluid Mech 43:427–448CrossRef Sørensen JN (2011) Aerodynamic aspects of wind energy conversion. Annu Rev Fluid Mech 43:427–448CrossRef
Zurück zum Zitat Vermeer LJ (2001) A review of wind turbine wake research at tudelft. In: Proceedings of ASME wind energy symposium, ASME, New York, AIAA-2001-0030, vol 39, pp 103–113 Vermeer LJ (2001) A review of wind turbine wake research at tudelft. In: Proceedings of ASME wind energy symposium, ASME, New York, AIAA-2001-0030, vol 39, pp 103–113
Zurück zum Zitat Vermeer LJ, Sørensen JN, Crespo A (2003) Wind turbine wake aerodynamics. Progr Aero Sci 39:467–510CrossRef Vermeer LJ, Sørensen JN, Crespo A (2003) Wind turbine wake aerodynamics. Progr Aero Sci 39:467–510CrossRef
Zurück zum Zitat Whale J, Papadopoulos KH, Anderson CG, Helmis CG, Skyner DJ (1997) A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments. Sol Energy 56:621–633CrossRef Whale J, Papadopoulos KH, Anderson CG, Helmis CG, Skyner DJ (1997) A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments. Sol Energy 56:621–633CrossRef
Zurück zum Zitat Whale J, Anderson CG, Bareiss R, Wagner S (2000) An experimental and numerical study of the vortex structure in the wake of a wind turbine. J Wind Eng Ind Aerodyn 84:1–21CrossRef Whale J, Anderson CG, Bareiss R, Wagner S (2000) An experimental and numerical study of the vortex structure in the wake of a wind turbine. J Wind Eng Ind Aerodyn 84:1–21CrossRef
Zurück zum Zitat Wu YT, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrizations. Boundary-Layer Meteorol 132:129–149 Wu YT, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrizations. Boundary-Layer Meteorol 132:129–149
Zurück zum Zitat Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–359MathSciNetMATHCrossRef Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–359MathSciNetMATHCrossRef
Metadaten
Titel
Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer
verfasst von
Wei Zhang
Corey D. Markfort
Fernando Porté-Agel
Publikationsdatum
01.05.2012
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 5/2012
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-011-1250-8

Weitere Artikel der Ausgabe 5/2012

Experiments in Fluids 5/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.