Skip to main content
Erschienen in: Neuroinformatics 3/2009

01.09.2009

NETMORPH: A Framework for the Stochastic Generation of Large Scale Neuronal Networks With Realistic Neuron Morphologies

verfasst von: Randal A. Koene, Betty Tijms, Peter van Hees, Frank Postma, Alexander de Ridder, Ger J. A. Ramakers, Jaap van Pelt, Arjen van Ooyen

Erschienen in: Neuroinformatics | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal or dendritic tree, its actions of elongation, branching and turning are described in a stochastic, phenomenological manner. In this way, neurons with realistic axonal and dendritic morphologies, including neurite curvature, can be generated. Synapses are formed as neurons grow out and axonal and dendritic branches come in close proximity of each other. NETMORPH is a flexible tool that can be applied to a wide variety of research questions regarding morphology and connectivity. Research applications include studying the complex relationship between neuronal morphology and global patterns of synaptic connectivity. Possible future developments of NETMORPH are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aeschlimann, M. (2000). Biophysical models of axonal pathfinding. Ph.D. thesis, University of Lausanne. Aeschlimann, M. (2000). Biophysical models of axonal pathfinding. Ph.D. thesis, University of Lausanne.
Zurück zum Zitat Ascoli, G., & Krichmar, J. (2000). L-neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRef Ascoli, G., & Krichmar, J. (2000). L-neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRef
Zurück zum Zitat Ascoli, G., Krichmar, J., Nasuto, S., & Senft, S. (2001a). Generation, description and storage of dendritic morphology data. Philosophical Transactions of the Royal Society of London B, 356, 1131–1145.CrossRef Ascoli, G., Krichmar, J., Nasuto, S., & Senft, S. (2001a). Generation, description and storage of dendritic morphology data. Philosophical Transactions of the Royal Society of London B, 356, 1131–1145.CrossRef
Zurück zum Zitat Ascoli, G., Krichmar, J., Scorcioni, R., Nasuto, S., & Senft, S. (2001b). Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology, 204, 283–301.CrossRef Ascoli, G., Krichmar, J., Scorcioni, R., Nasuto, S., & Senft, S. (2001b). Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology, 204, 283–301.CrossRef
Zurück zum Zitat Bamburg, J. (2003). Introduction to cytoskeletal dynamics and pathfinding of neuronal growth cones. Journal of Histochemistry & Cytochemistry, 51(4), 407–409. Bamburg, J. (2003). Introduction to cytoskeletal dynamics and pathfinding of neuronal growth cones. Journal of Histochemistry & Cytochemistry, 51(4), 407–409.
Zurück zum Zitat Belmonte, M., & Bourgeron, T. (2006). Fragile x syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9, 1221–1225.PubMedCrossRef Belmonte, M., & Bourgeron, T. (2006). Fragile x syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9, 1221–1225.PubMedCrossRef
Zurück zum Zitat Braitenberg, V., & Schütz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer. Braitenberg, V., & Schütz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.
Zurück zum Zitat Butz, M., Lehmann, K., Dammasch, I., & Teuchert-Noodt, G. (2006). A theoretical network model to analyse neurogenesis and synaptogenesis in the dentate gyrus. Neural Networks, 19, 1490–1505.PubMedCrossRef Butz, M., Lehmann, K., Dammasch, I., & Teuchert-Noodt, G. (2006). A theoretical network model to analyse neurogenesis and synaptogenesis in the dentate gyrus. Neural Networks, 19, 1490–1505.PubMedCrossRef
Zurück zum Zitat da Costa, L. F., Manoel, E., Faucereau, J., Chelly, J., Van Pelt, J., & Ramakers, G. (2002). A shape analysis framework for neuromorphometry. Network, 13(3), 283–310.CrossRef da Costa, L. F., Manoel, E., Faucereau, J., Chelly, J., Van Pelt, J., & Ramakers, G. (2002). A shape analysis framework for neuromorphometry. Network, 13(3), 283–310.CrossRef
Zurück zum Zitat Dityatev, A. E., Chmykhova, N. M., Studer, L., Karamian, O. A., Kozhanov, V. M., & Clamann, H. P. (1995). Comparison of the topology and growth rules of motoneuronal dendrites. J. Comp Neurol., 363, 505–516.PubMedCrossRef Dityatev, A. E., Chmykhova, N. M., Studer, L., Karamian, O. A., Kozhanov, V. M., & Clamann, H. P. (1995). Comparison of the topology and growth rules of motoneuronal dendrites. J. Comp Neurol., 363, 505–516.PubMedCrossRef
Zurück zum Zitat Douglas, R., & Martin, K. (2004). Neuronal circuits in the neocortex. Annual Review of Neuroscience, 27, 419–451.PubMedCrossRef Douglas, R., & Martin, K. (2004). Neuronal circuits in the neocortex. Annual Review of Neuroscience, 27, 419–451.PubMedCrossRef
Zurück zum Zitat Eberhard, J. P., Wanner, A., & Wittum, G. (2006). NeuGen: A tool for the generation of realistic morphology of cortical neurons and neuronal networks in 3D. Neurocomputing, 70(1–3), 327–342.CrossRef Eberhard, J. P., Wanner, A., & Wittum, G. (2006). NeuGen: A tool for the generation of realistic morphology of cortical neurons and neuronal networks in 3D. Neurocomputing, 70(1–3), 327–342.CrossRef
Zurück zum Zitat Fields, R., & Itoh, K. (1996). Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends in Neurosciences, 19, 473–480.PubMedCrossRef Fields, R., & Itoh, K. (1996). Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends in Neurosciences, 19, 473–480.PubMedCrossRef
Zurück zum Zitat Gleeson, P., Steuber, V., & Silver, R. (2007). neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron, 54, 219–235.PubMedCrossRef Gleeson, P., Steuber, V., & Silver, R. (2007). neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron, 54, 219–235.PubMedCrossRef
Zurück zum Zitat Goldberg, D., & Burmeister, D. (1989). Looking into growth cones. Trends in Neurosciences, 12(12), 503–506.PubMedCrossRef Goldberg, D., & Burmeister, D. (1989). Looking into growth cones. Trends in Neurosciences, 12(12), 503–506.PubMedCrossRef
Zurück zum Zitat Goodhill, J. G. (1998). Mathematical guidance for axons. Trends in Neurosciences, 21, 226–231.PubMedCrossRef Goodhill, J. G. (1998). Mathematical guidance for axons. Trends in Neurosciences, 21, 226–231.PubMedCrossRef
Zurück zum Zitat Gordon-Weeks, P. R. (2000). Neuronal Growth Cones. Cambridge, United Kingdom: Cambridge University Press. Gordon-Weeks, P. R. (2000). Neuronal Growth Cones. Cambridge, United Kingdom: Cambridge University Press.
Zurück zum Zitat Graham, B., & Van Ooyen, A. (2004). Transport limited effects in a model of dendritic branching. Journal of Theoretical Biology, 230, 421–432.PubMedCrossRef Graham, B., & Van Ooyen, A. (2004). Transport limited effects in a model of dendritic branching. Journal of Theoretical Biology, 230, 421–432.PubMedCrossRef
Zurück zum Zitat Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern., 82, 111–121.PubMedCrossRef Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern., 82, 111–121.PubMedCrossRef
Zurück zum Zitat Hely, T., Graham, B., & Van Ooyen, A. (2001). A computational model of dendrite elongation and branching based on map2 phosphorylation. Journal of Theoretical Biology, 210, 375–384.PubMedCrossRef Hely, T., Graham, B., & Van Ooyen, A. (2001). A computational model of dendrite elongation and branching based on map2 phosphorylation. Journal of Theoretical Biology, 210, 375–384.PubMedCrossRef
Zurück zum Zitat Hentschel, H. G. E., & Van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London Series B, 266, 2231–2238.PubMedCrossRef Hentschel, H. G. E., & Van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London Series B, 266, 2231–2238.PubMedCrossRef
Zurück zum Zitat Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F. Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). Cambridge: MIT. Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F. Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). Cambridge: MIT.
Zurück zum Zitat Hillman, D. E. (1988). Parameters of dendritic shape and substructure: intrinsic and extrinsic determination? In R. Lasek & M. Black (Eds.), Intrinsic determinants of neuronal form and function (pp. 83–113). New York: Alan R. Liss, Inc. Hillman, D. E. (1988). Parameters of dendritic shape and substructure: intrinsic and extrinsic determination? In R. Lasek & M. Black (Eds.), Intrinsic determinants of neuronal form and function (pp. 83–113). New York: Alan R. Liss, Inc.
Zurück zum Zitat Hines, M., & Carnevale, N. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef Hines, M., & Carnevale, N. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef
Zurück zum Zitat Hines, M., & Moore, J. (1993). A NEURON simulation program. In 23 rd Annual Meeting of the Society for Neuroscience. Hines, M., & Moore, J. (1993). A NEURON simulation program. In 23 rd Annual Meeting of the Society for Neuroscience.
Zurück zum Zitat Isbister, C., & O’Connor, T. (1999). Filopodial adhesion does not predict growth cone steering events in vivo. Journal of Neuroscience, 20, 2589–2600. Isbister, C., & O’Connor, T. (1999). Filopodial adhesion does not predict growth cone steering events in vivo. Journal of Neuroscience, 20, 2589–2600.
Zurück zum Zitat Kaiser, M., & Hilgetag, C. (2007). Development of multi-cluster cortical networks by time windows for spatial growth. Neurocomputing, 70, 1829–1832.CrossRef Kaiser, M., & Hilgetag, C. (2007). Development of multi-cluster cortical networks by time windows for spatial growth. Neurocomputing, 70, 1829–1832.CrossRef
Zurück zum Zitat Kater, S. B. & Guthrie, P. B. (1990). Neuronal growth cone as an integrator of complex environmental information. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. LV, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 35. Kater, S. B. & Guthrie, P. B. (1990). Neuronal growth cone as an integrator of complex environmental information. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. LV, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 35.
Zurück zum Zitat Kiddie, G., McLean, D., van Ooyen, A., & Graham, B. (2005). Biologically plausible models of neurite outgrowth. In J. van Pelt, M. Kamermans, C. Levelt, A. van Ooyen, G. Ramakers, and P. Roelfsema, (Eds.), Development, dynamics and pathology of neuronal networks: from molecules to functional circuits, Progress in Brain Research, 147, 67–80. Elsevier. Kiddie, G., McLean, D., van Ooyen, A., & Graham, B. (2005). Biologically plausible models of neurite outgrowth. In J. van Pelt, M. Kamermans, C. Levelt, A. van Ooyen, G. Ramakers, and P. Roelfsema, (Eds.), Development, dynamics and pathology of neuronal networks: from molecules to functional circuits, Progress in Brain Research, 147, 67–80. Elsevier.
Zurück zum Zitat Konur, S., & Ghosh, A. (2005). Calcium signaling and the control of dendritic development. Neuron, 46, 401–405.PubMedCrossRef Konur, S., & Ghosh, A. (2005). Calcium signaling and the control of dendritic development. Neuron, 46, 401–405.PubMedCrossRef
Zurück zum Zitat Kowalski, R. J., & Williams, R. J. (1993). Microtubule-associated protein 2 alters the dynamic properties of microtubule assembly and disassembly. Journal Biological Chemistry, 268, 9847–9855. Kowalski, R. J., & Williams, R. J. (1993). Microtubule-associated protein 2 alters the dynamic properties of microtubule assembly and disassembly. Journal Biological Chemistry, 268, 9847–9855.
Zurück zum Zitat Lamoureux, P., Buxbaum, R. E., & Heidemann, S. R. (1998). Axonal outgrowth of cultured neurons is not limited by growth cone competition. Journal of Cell Science, 111, 3245–3252.PubMed Lamoureux, P., Buxbaum, R. E., & Heidemann, S. R. (1998). Axonal outgrowth of cultured neurons is not limited by growth cone competition. Journal of Cell Science, 111, 3245–3252.PubMed
Zurück zum Zitat Larkman, A. U. (1991). Dendritic morphology of pyramidal neurons of the visual cortex of the rat I. Branching patterns. Journal of Comparative Neurology, 306, 307–319.PubMedCrossRef Larkman, A. U. (1991). Dendritic morphology of pyramidal neurons of the visual cortex of the rat I. Branching patterns. Journal of Comparative Neurology, 306, 307–319.PubMedCrossRef
Zurück zum Zitat Larkman, A. U., Major, G., Stratford, K. J., & Jack, J. J. B. (1992). Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry. Journal of Comparative Neurology, 323, 137–152.PubMedCrossRef Larkman, A. U., Major, G., Stratford, K. J., & Jack, J. J. B. (1992). Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry. Journal of Comparative Neurology, 323, 137–152.PubMedCrossRef
Zurück zum Zitat Le Bé, J.-V., Silberberg, G., Wang, Y., & Markram, H. (2007). Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cerebral Cortex, 17, 2204–2213.PubMedCrossRef Le Bé, J.-V., Silberberg, G., Wang, Y., & Markram, H. (2007). Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cerebral Cortex, 17, 2204–2213.PubMedCrossRef
Zurück zum Zitat Letourneau, P., Kater, S., & Macagno, E. (eds). (1991). The Nerve Growth Cone. New York: Raven. Letourneau, P., Kater, S., & Macagno, E. (eds). (1991). The Nerve Growth Cone. New York: Raven.
Zurück zum Zitat Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157, 132–141.PubMedCrossRef Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157, 132–141.PubMedCrossRef
Zurück zum Zitat Maskery, S. M., Buettner, H. M., & Shinbrot, T. (2004). Growth Cone Pathfinding: a competition between deterministic and stochastic events. BMC Neuroscience, 5, 22.PubMedCrossRef Maskery, S. M., Buettner, H. M., & Shinbrot, T. (2004). Growth Cone Pathfinding: a competition between deterministic and stochastic events. BMC Neuroscience, 5, 22.PubMedCrossRef
Zurück zum Zitat Nowakowski, R. S., Hayes, N. L., & Egger, M. D. (1992). Competitive interactions during dendritic growth: a simple stochastic growth algorithm. Brain Research, 576, 152.PubMedCrossRef Nowakowski, R. S., Hayes, N. L., & Egger, M. D. (1992). Competitive interactions during dendritic growth: a simple stochastic growth algorithm. Brain Research, 576, 152.PubMedCrossRef
Zurück zum Zitat Peters, A. (1979). Thalamic input to the cerebral cortex. Trends in Neurosciences, 2, 1183–1185.CrossRef Peters, A. (1979). Thalamic input to the cerebral cortex. Trends in Neurosciences, 2, 1183–1185.CrossRef
Zurück zum Zitat Polinsky, M., Balzovich, K., & Tosney, K. (2000). Identification of an invariant response: Stable contact with schwann cells induces veil extension in sensory growth cones. Journal of Neuroscience, 20, 1044–1055.PubMed Polinsky, M., Balzovich, K., & Tosney, K. (2000). Identification of an invariant response: Stable contact with schwann cells induces veil extension in sensory growth cones. Journal of Neuroscience, 20, 1044–1055.PubMed
Zurück zum Zitat Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.PubMedCrossRef Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.PubMedCrossRef
Zurück zum Zitat Ramakers, G. J. A., Winter, J., Hoogland, T., Lequin, M. B., Van Pelt, J., & Pool, C. W. (1998). Depolarization stimulates lamellipodia formation and axonal but not dendritic branching in cultured rat cerebral cortex neurons. Development Brain Research, 108, 205–216.CrossRef Ramakers, G. J. A., Winter, J., Hoogland, T., Lequin, M. B., Van Pelt, J., & Pool, C. W. (1998). Depolarization stimulates lamellipodia formation and axonal but not dendritic branching in cultured rat cerebral cortex neurons. Development Brain Research, 108, 205–216.CrossRef
Zurück zum Zitat Samsonovich, A., & Ascoli, G. (2007). Computational models of dendritic morphology: From parsimonious description to biological insight. In M. Laubichler & G. Müller (Eds.), Modeling Biology, Structures, Behaviors, Evolution (pp. 91–113). Cambridge, Massachusetts: MIT. Samsonovich, A., & Ascoli, G. (2007). Computational models of dendritic morphology: From parsimonious description to biological insight. In M. Laubichler & G. Müller (Eds.), Modeling Biology, Structures, Behaviors, Evolution (pp. 91–113). Cambridge, Massachusetts: MIT.
Zurück zum Zitat Sánchez, C. J., Díaz-Nido, J., & Avila, J. (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Progress in Neurobiology, 61, 133–168.PubMedCrossRef Sánchez, C. J., Díaz-Nido, J., & Avila, J. (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Progress in Neurobiology, 61, 133–168.PubMedCrossRef
Zurück zum Zitat Scheff, S. W., Prince, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. F. (2007). Synaptic alterations in CA1 mild Alzheimer’s disease and mild cognitive impairment. Neurology, 68, 1501–1508.PubMedCrossRef Scheff, S. W., Prince, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. F. (2007). Synaptic alterations in CA1 mild Alzheimer’s disease and mild cognitive impairment. Neurology, 68, 1501–1508.PubMedCrossRef
Zurück zum Zitat Schierwagen, A., & Grantyn, R. (1986). Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. J Hirnforsch, 27, 611–623.PubMed Schierwagen, A., & Grantyn, R. (1986). Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. J Hirnforsch, 27, 611–623.PubMed
Zurück zum Zitat Schubert, D., Kötter, R., Luhmann, H. J., & Staiger, J. F. (2006). Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex, 16(2), 223–36.PubMedCrossRef Schubert, D., Kötter, R., Luhmann, H. J., & Staiger, J. F. (2006). Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex, 16(2), 223–36.PubMedCrossRef
Zurück zum Zitat Segev, R., & Ben-Jacob, E. (2000). Generic modeling of chemotactic based self-wiring of neural networks. Neural Networks, 13(2), 185–199.PubMedCrossRef Segev, R., & Ben-Jacob, E. (2000). Generic modeling of chemotactic based self-wiring of neural networks. Neural Networks, 13(2), 185–199.PubMedCrossRef
Zurück zum Zitat Senft, S., & Ascoli, G. (1999). Reconstruction of brain networks by algorithmic amplification of morphometry data. Lecture Notes in Computer Science, 1606, 25–33.CrossRef Senft, S., & Ascoli, G. (1999). Reconstruction of brain networks by algorithmic amplification of morphometry data. Lecture Notes in Computer Science, 1606, 25–33.CrossRef
Zurück zum Zitat Shepherd, G. M., & Svoboda, K. (2005). Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. Journal of Neuroscience, 25(24), 5670–5679.PubMedCrossRef Shepherd, G. M., & Svoboda, K. (2005). Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. Journal of Neuroscience, 25(24), 5670–5679.PubMedCrossRef
Zurück zum Zitat Sporns, O., Chialvo, D., Kaiser, M., & Hilgetag, C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.PubMedCrossRef Sporns, O., Chialvo, D., Kaiser, M., & Hilgetag, C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.PubMedCrossRef
Zurück zum Zitat Stepanyants, A., & Chklovskii, D. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neurosciences, 28(7), 387–394.PubMedCrossRef Stepanyants, A., & Chklovskii, D. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neurosciences, 28(7), 387–394.PubMedCrossRef
Zurück zum Zitat Stepanyants, A., Tamas, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.PubMedCrossRef Stepanyants, A., Tamas, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.PubMedCrossRef
Zurück zum Zitat Uylings, H., & Smit, G. (1975). Three dimensional branching structure of pyramidal cell dendrites. Brain Research, 87, 55–60.PubMedCrossRef Uylings, H., & Smit, G. (1975). Three dimensional branching structure of pyramidal cell dendrites. Brain Research, 87, 55–60.PubMedCrossRef
Zurück zum Zitat Uylings, H. B. M., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation Neural System, 13, 397–414.CrossRef Uylings, H. B. M., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation Neural System, 13, 397–414.CrossRef
Zurück zum Zitat Uylings, H. B. M., Kuypers, K. & Veltman, W. A. M. (1978). Environmental influences on the neocortex in later life. In M. A. Corner (Ed.) Maturation of the nervous system. Progress in Brain Research, Vol 48, pp. 261–273. Elsevier, Amsterdam. Uylings, H. B. M., Kuypers, K. & Veltman, W. A. M. (1978). Environmental influences on the neocortex in later life. In M. A. Corner (Ed.) Maturation of the nervous system. Progress in Brain Research, Vol 48, pp. 261–273. Elsevier, Amsterdam.
Zurück zum Zitat Uylings, H. B. M., Van Pelt, J., Parnavelas, J. G., & Ruiz-Marcos, A. (1994). Geometrical and topological characteristics in the dendritic development of cortical pyramidal and nonpyramidal neurons. In J. van Pelt, M. A. Corner, H. B. M. Uylings & F. H. Lopes da Silva (Eds.), Progress in Brain Research, Vol. 102, the self-organizing brain: from growth cones to functional networks (pp. 109–123). Amsterdam: Elsevier.CrossRef Uylings, H. B. M., Van Pelt, J., Parnavelas, J. G., & Ruiz-Marcos, A. (1994). Geometrical and topological characteristics in the dendritic development of cortical pyramidal and nonpyramidal neurons. In J. van Pelt, M. A. Corner, H. B. M. Uylings & F. H. Lopes da Silva (Eds.), Progress in Brain Research, Vol. 102, the self-organizing brain: from growth cones to functional networks (pp. 109–123). Amsterdam: Elsevier.CrossRef
Zurück zum Zitat Van Ooyen, A., & Van Pelt, J. (1994). Activity-dependent outgrowth of neurons and overshoot phenomena in developing neural networks. Journal of Theoretical Biology, 167, 27–43.CrossRef Van Ooyen, A., & Van Pelt, J. (1994). Activity-dependent outgrowth of neurons and overshoot phenomena in developing neural networks. Journal of Theoretical Biology, 167, 27–43.CrossRef
Zurück zum Zitat Van Ooyen, A., & Van Pelt, J. (1996). Complex periodic behavior in a neural network model with activity-dependent neurite outgrowth. Journal of Theoretical Biology, 179, 229–242.PubMedCrossRef Van Ooyen, A., & Van Pelt, J. (1996). Complex periodic behavior in a neural network model with activity-dependent neurite outgrowth. Journal of Theoretical Biology, 179, 229–242.PubMedCrossRef
Zurück zum Zitat Van Ooyen, A., Van Pelt, J., & Corner, M. (1995). Implications of activity dependent neurite outgrowth for neuronal morphology and network development. Journal of Theoretical Biology, 172, 63–82.PubMedCrossRef Van Ooyen, A., Van Pelt, J., & Corner, M. (1995). Implications of activity dependent neurite outgrowth for neuronal morphology and network development. Journal of Theoretical Biology, 172, 63–82.PubMedCrossRef
Zurück zum Zitat Van Ooyen, A., Pakdaman, K., Houweling, A., Van Pelt, J., & Vibert, J.-F. (1996). Networks connectivity changes through activity-dependent neurite outgrowth. Neural Processing Letters, 3, 123–130.CrossRef Van Ooyen, A., Pakdaman, K., Houweling, A., Van Pelt, J., & Vibert, J.-F. (1996). Networks connectivity changes through activity-dependent neurite outgrowth. Neural Processing Letters, 3, 123–130.CrossRef
Zurück zum Zitat Van Ooyen, A., Graham, B., & Ramakers, G. (2001). Competition for tubulin between growing neurites during development. Neurocomputing, 38–40, 73–78.CrossRef Van Ooyen, A., Graham, B., & Ramakers, G. (2001). Competition for tubulin between growing neurites during development. Neurocomputing, 38–40, 73–78.CrossRef
Zurück zum Zitat Van Pelt, J., & Uylings, H. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311. Van Pelt, J., & Uylings, H. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311.
Zurück zum Zitat Van Pelt, J., & Uylings, H. (2002). Branching rates and growth functions in the outgrowth of dendritic branching patterns. Network: Computational Neural Systems, 13, 261–281.CrossRef Van Pelt, J., & Uylings, H. (2002). Branching rates and growth functions in the outgrowth of dendritic branching patterns. Network: Computational Neural Systems, 13, 261–281.CrossRef
Zurück zum Zitat Van Pelt, J., & Uylings, H. (2003). Growth functions in dendritic outgrowth. Brain and Mind, 4:51–65. In A. van Ooyen, (Ed.), Modeling Neural Development, 75–94. Cambridge, MA: MIT Press. Van Pelt, J., & Uylings, H. (2003). Growth functions in dendritic outgrowth. Brain and Mind, 4:51–65. In A. van Ooyen, (Ed.), Modeling Neural Development, 75–94. Cambridge, MA: MIT Press.
Zurück zum Zitat Van Pelt, J., & Uylings, H. B. M. (2005). Natural variability in the geometry of dendritic branching patterns. In: G. N. Reeke, R. R. Poznanski, K. A. Lindsay, J. R. Rosenberg, & O. Sporns (Eds.), Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics. CRC Press, 2005, pp. 89–115. Van Pelt, J., & Uylings, H. B. M. (2005). Natural variability in the geometry of dendritic branching patterns. In: G. N. Reeke, R. R. Poznanski, K. A. Lindsay, J. R. Rosenberg, & O. Sporns (Eds.), Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics. CRC Press, 2005, pp. 89–115.
Zurück zum Zitat Van Pelt J. and Uylings H.B.M. (2007) Modeling neuronal growth and shape. In Modeling Biology—Structures, Behaviors, Evolution, Manfred D. Laubichler and Gerd B. Müller (Eds). The MIT Press, 2007, Cambridge, pp. 195–215. Van Pelt J. and Uylings H.B.M. (2007) Modeling neuronal growth and shape. In Modeling Biology—Structures, Behaviors, Evolution, Manfred D. Laubichler and Gerd B. Müller (Eds). The MIT Press, 2007, Cambridge, pp. 195–215.
Zurück zum Zitat Van Pelt, J., Uylings, H. B. M., Verwer, R. W. H., Pentney, R. J., & Woldenberg, M. J. (1992). Tree asymmetry—a sensitive and practical measure for binary topological trees. Bulletin of Mathematical Biology, 54, 759–784.PubMedCrossRef Van Pelt, J., Uylings, H. B. M., Verwer, R. W. H., Pentney, R. J., & Woldenberg, M. J. (1992). Tree asymmetry—a sensitive and practical measure for binary topological trees. Bulletin of Mathematical Biology, 54, 759–784.PubMedCrossRef
Zurück zum Zitat Van Pelt, J., Dityatev, A. E., & Uylings, H. B. M. (1997). Natural variability in the number of dendritic segments: Model-based inferences about branching during neurite outgrowth. Journal of Comparative Neurology, 387, 325–340.PubMedCrossRef Van Pelt, J., Dityatev, A. E., & Uylings, H. B. M. (1997). Natural variability in the number of dendritic segments: Model-based inferences about branching during neurite outgrowth. Journal of Comparative Neurology, 387, 325–340.PubMedCrossRef
Zurück zum Zitat Van Pelt, J., Van Ooyen, A., & Uylings, H. B. M. (2001a). Modeling dendritic geometry and the development of nerve connections. In: De Schutter E (Ed.), Cannon RC (CD-ROM) Computational Neuroscience: Realistic modeling for experimentalist, Chapter 7, CRC Press. pp 179–208. Van Pelt, J., Van Ooyen, A., & Uylings, H. B. M. (2001a). Modeling dendritic geometry and the development of nerve connections. In: De Schutter E (Ed.), Cannon RC (CD-ROM) Computational Neuroscience: Realistic modeling for experimentalist, Chapter 7, CRC Press. pp 179–208.
Zurück zum Zitat Van Pelt, J., Van Ooyen, A., & Uylings, H. (2001b). The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function. Anatomy and Embryology, 204, 255–265.CrossRef Van Pelt, J., Van Ooyen, A., & Uylings, H. (2001b). The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function. Anatomy and Embryology, 204, 255–265.CrossRef
Zurück zum Zitat Van Pelt, J., Schierwagen, A., & Uylings, H. B. M. (2001c). Modeling dendritic morphological complexity of deep layer cat superior colliculus neurons. Neurocomputing, 38–40, 403–408.CrossRef Van Pelt, J., Schierwagen, A., & Uylings, H. B. M. (2001c). Modeling dendritic morphological complexity of deep layer cat superior colliculus neurons. Neurocomputing, 38–40, 403–408.CrossRef
Zurück zum Zitat Van Pelt, J., Graham, B., & Uylings, H. (2003). Formation of dendritic branching patterns. In A. van Ooyen (Ed.), Modeling neural development (pp. 75–94). Cambridge, Massachusets: The MIT. Van Pelt, J., Graham, B., & Uylings, H. (2003). Formation of dendritic branching patterns. In A. van Ooyen (Ed.), Modeling neural development (pp. 75–94). Cambridge, Massachusets: The MIT.
Zurück zum Zitat Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.PubMedCrossRef Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.PubMedCrossRef
Zurück zum Zitat Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., & Markram, H. (2002). Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex, 12(4), 395–410.PubMedCrossRef Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., & Markram, H. (2002). Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex, 12(4), 395–410.PubMedCrossRef
Metadaten
Titel
NETMORPH: A Framework for the Stochastic Generation of Large Scale Neuronal Networks With Realistic Neuron Morphologies
verfasst von
Randal A. Koene
Betty Tijms
Peter van Hees
Frank Postma
Alexander de Ridder
Ger J. A. Ramakers
Jaap van Pelt
Arjen van Ooyen
Publikationsdatum
01.09.2009
Verlag
Humana Press Inc
Erschienen in
Neuroinformatics / Ausgabe 3/2009
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-009-9052-3

Weitere Artikel der Ausgabe 3/2009

Neuroinformatics 3/2009 Zur Ausgabe

Premium Partner