Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 8/2019

21.05.2019

Network-Strengthened Ti-6Al-4V/(TiC+TiB) Composites: Powder Metallurgy Processing and Enhanced Tensile Properties at Elevated Temperatures

verfasst von: Shaolou Wei, Lujun Huang, Xinting Li, Yang Jiao, Wei Ren, Lin Geng

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Starting with graphite, TiB2, and Ti-6Al-4V powders, the present work demonstrated that hybrid (TiC+TiB) network-strengthened Ti-6Al-4V—based composites can be fabricated via an integrated low-energy ball-milling and reaction hot-pressing-sintering technique. With the aid of phase equilibrium and powder densification kinetic calculations, the corresponding sintering parameters were optimized and tunable network microstructures were subsequently achieved. Tensile properties for these composites were examined at elevated temperatures of 500 °C, 550 °C, 600 °C, and 650 °C, the results of which indicated that the 50-μm network configuration with 5 vol pct reinforcer content led to the most enhanced tensile strength compared to both Ti-6Al-4V alloys and solely TiB-reinforced Ti-6Al-4V composites. The underlying strengthening mechanisms were mainly ascribed to carbon interstitial dissolution, reinforcer-assisted grain refinement, and extensive dispersoids. It was recognized from fractographic analyses that the matrix/reinforce interface contributed to the major crack propagation source at temperatures below 550 °C, leading to brittlelike fracture along the network boundary; however, once testing temperatures rose above 600 °C, matrix tearing and reinforcer cut-through mechanisms took place, giving rise to ductile fracture. Based on the experimental observations and theoretical calculations, future perspectives regarding the processing and microstructural manipulation for advanced high-temperature titanium matrix composites were also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
INSTRON-1186 is a trademark of Materials Testing Company, Norwood, MA
 
2
Zeiss SUPRA 55 Sapphire is a trademark of One Zeiss Drive, Thornwood, NY
 
3
INCA 300 is a trademark of Tubney Woods, Abingdon, UK
 
4
JMatPro is a trademark of Sente Software Ltd., UK.
 
Literatur
1.
Zurück zum Zitat 1.T.M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–15. 1.T.M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–15.
2.
Zurück zum Zitat 2.A.L. Pilchak, G.A. Sargent, and S.L. Semiatin: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 908–19. 2.A.L. Pilchak, G.A. Sargent, and S.L. Semiatin: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 908–19.
3.
Zurück zum Zitat 3.R.J. Bennett, R. Krakow, A.S. Eggeman, C.N. Jones, H. Murakami, and C.M.F. Rae: Acta Mater., 2015, vol. 92, pp. 278–89. 3.R.J. Bennett, R. Krakow, A.S. Eggeman, C.N. Jones, H. Murakami, and C.M.F. Rae: Acta Mater., 2015, vol. 92, pp. 278–89.
4.
Zurück zum Zitat 4.A.M. Birt, V.K. Champagne, R.D. Sisson, and D. Apelian: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1931–43. 4.A.M. Birt, V.K. Champagne, R.D. Sisson, and D. Apelian: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1931–43.
5.
Zurück zum Zitat 5.S.L. Wei, L.J. Huang, X.T. Li, Q. An, and L. Geng: J. Alloys Compd., 2018, vol. 752, pp. 164–78. 5.S.L. Wei, L.J. Huang, X.T. Li, Q. An, and L. Geng: J. Alloys Compd., 2018, vol. 752, pp. 164–78.
6.
Zurück zum Zitat 6.D.A. Brice, P. Samimi, I. Ghamarian, Y. Liu, R.M. Brice, R.F. Reidy, J.D. Cotton, M.J. Kaufman, and P.C. Collins: Corros. Sci., 2016, vol. 112, pp. 338–46. 6.D.A. Brice, P. Samimi, I. Ghamarian, Y. Liu, R.M. Brice, R.F. Reidy, J.D. Cotton, M.J. Kaufman, and P.C. Collins: Corros. Sci., 2016, vol. 112, pp. 338–46.
7.
Zurück zum Zitat 7.Y. Niu, H. Hou, M. Li, and Z. Li: Mater. Sci. Eng. A, 2008, vol. 492, pp. 24–28. 7.Y. Niu, H. Hou, M. Li, and Z. Li: Mater. Sci. Eng. A, 2008, vol. 492, pp. 24–28.
8.
Zurück zum Zitat 8.P.L. Narayana, S.W. Kim, J.K. Hong, N.S. Reddy, and J.T. Yeom: Mater. Sci. Eng. A, 2018, vol. 718, pp. 287–91. 8.P.L. Narayana, S.W. Kim, J.K. Hong, N.S. Reddy, and J.T. Yeom: Mater. Sci. Eng. A, 2018, vol. 718, pp. 287–91.
9.
Zurück zum Zitat 9.I.V. Okulov, M. Bönisch, A.V. Okulov, A.S. Volegov, H. Attar, S. Ehtemam-Haghighi, M. Calin, Z. Wang, A. Hohenwarter, I. Kaban, K.G. Prashanth, and J. Eckert: Mater. Sci. Eng. A, 2018, vol. 733, pp. 80–86. 9.I.V. Okulov, M. Bönisch, A.V. Okulov, A.S. Volegov, H. Attar, S. Ehtemam-Haghighi, M. Calin, Z. Wang, A. Hohenwarter, I. Kaban, K.G. Prashanth, and J. Eckert: Mater. Sci. Eng. A, 2018, vol. 733, pp. 80–86.
10.
Zurück zum Zitat 10.L.Y. Du, L. Wang, W. Zhai, L. Hu, J.M. Liu, and B. Wei: Mater. Des., 2018, vol. 160, pp. 48–57. 10.L.Y. Du, L. Wang, W. Zhai, L. Hu, J.M. Liu, and B. Wei: Mater. Des., 2018, vol. 160, pp. 48–57.
11.
Zurück zum Zitat 11.T.M. Butler, C.A. Brice, W.A. Tayon, S.L. Semiatin, and A.L. Pilchak: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4441–46. 11.T.M. Butler, C.A. Brice, W.A. Tayon, S.L. Semiatin, and A.L. Pilchak: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4441–46.
12.
Zurück zum Zitat 12.I.N. Maliutina, H. Si-Mohand, R. Piolet, F. Missemer, A.I. Popelyukh, N.S. Belousova, and P. Bertrand: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 378–87. 12.I.N. Maliutina, H. Si-Mohand, R. Piolet, F. Missemer, A.I. Popelyukh, N.S. Belousova, and P. Bertrand: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 378–87.
13.
Zurück zum Zitat 13.I. Gurrappa and A.K. Gogia: Surf. Coat. Technol., 2001, vol. 139, pp. 216–21. 13.I. Gurrappa and A.K. Gogia: Surf. Coat. Technol., 2001, vol. 139, pp. 216–21.
14.
Zurück zum Zitat 14.C. Leyens, J.W. Van Liere, M. Peters, and W.A. Kaysser: Surf. Coat. Technol., 1998, vols. 108–109, pp. 30–35. 14.C. Leyens, J.W. Van Liere, M. Peters, and W.A. Kaysser: Surf. Coat. Technol., 1998, vols. 108–109, pp. 30–35.
15.
Zurück zum Zitat 15.L.J. Huang, L. Geng, and H.X. Peng: Progr. Mater. Sci., 2015, vol. 71, pp. 93–168. 15.L.J. Huang, L. Geng, and H.X. Peng: Progr. Mater. Sci., 2015, vol. 71, pp. 93–168.
16.
Zurück zum Zitat 16.C. Poletti, M. Balog, T. Schubert, V. Liedtke, and C. Edtmaier: Compos. Sci. Technol., 2008, vol. 68, pp. 2171–77. 16.C. Poletti, M. Balog, T. Schubert, V. Liedtke, and C. Edtmaier: Compos. Sci. Technol., 2008, vol. 68, pp. 2171–77.
17.
Zurück zum Zitat 17.S.C. Tjong and Y.W. Mai: Compos. Sci. Technol., 2008, vol. 68, pp. 583–601. 17.S.C. Tjong and Y.W. Mai: Compos. Sci. Technol., 2008, vol. 68, pp. 583–601.
18.
Zurück zum Zitat 18.K.B. Panda and K.S.R. Chandran: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1371–85. 18.K.B. Panda and K.S.R. Chandran: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1371–85.
19.
Zurück zum Zitat T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1995. T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1995.
20.
Zurück zum Zitat 20.J.C. Hanan, G.A. Swift, E. Üstündag, I.J. Beyerlein, J.D. Almer, U. Lienert, and D.R. Haeffner: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3839–45. 20.J.C. Hanan, G.A. Swift, E. Üstündag, I.J. Beyerlein, J.D. Almer, U. Lienert, and D.R. Haeffner: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3839–45.
21.
Zurück zum Zitat 21.K.M. Rahman, V.A. Vorontsov, S.M. Flitcroft, and D. Dye: Adv. Eng. Mater., 2017, vol. 19, pp. 3–8. 21.K.M. Rahman, V.A. Vorontsov, S.M. Flitcroft, and D. Dye: Adv. Eng. Mater., 2017, vol. 19, pp. 3–8.
22.
Zurück zum Zitat 22.S. Mahesh and A. Mishra: Eng. Fract. Mech., 2018, vol. 194, pp. 86–104. 22.S. Mahesh and A. Mishra: Eng. Fract. Mech., 2018, vol. 194, pp. 86–104.
23.
Zurück zum Zitat 23.Y. Jiao, L. Huang, and L. Geng: J. Alloys Compd., 2018, vol. 767, pp. 1196–1215. 23.Y. Jiao, L. Huang, and L. Geng: J. Alloys Compd., 2018, vol. 767, pp. 1196–1215.
24.
Zurück zum Zitat C. Leyens and M. Peters: Titanium and Titanium Alloys Fundamentals and Applications, John Wiley & Son, New York, 2003. C. Leyens and M. Peters: Titanium and Titanium Alloys Fundamentals and Applications, John Wiley & Son, New York, 2003.
25.
Zurück zum Zitat F. Appel, J.D.H. Paul, and M. Oehering: Gamma Titanium Aluminide Alloys Science and Technology. Wiley, New York, 2011. F. Appel, J.D.H. Paul, and M. Oehering: Gamma Titanium Aluminide Alloys Science and Technology. Wiley, New York, 2011.
26.
Zurück zum Zitat 26.Y. Li, L. Xiao, W. Lu, J. Qin, and D. Zhang: Mater. Sci. Eng. A, 2008, vol. 488, pp. 415–19. 26.Y. Li, L. Xiao, W. Lu, J. Qin, and D. Zhang: Mater. Sci. Eng. A, 2008, vol. 488, pp. 415–19.
27.
Zurück zum Zitat 27.B.J. Choi, I.Y. Kim, Y.Z. Lee, and Y.J. Kim: Wear, 2014, vol. 318, pp. 68–77. 27.B.J. Choi, I.Y. Kim, Y.Z. Lee, and Y.J. Kim: Wear, 2014, vol. 318, pp. 68–77.
28.
Zurück zum Zitat 28.J.P. Qu, C.J. Zhang, J.C. Han, S.Z. Zhang, F. Yang, and Y.Y. Chen: Vacuum, 2017, vol. 144, pp. 203–06. 28.J.P. Qu, C.J. Zhang, J.C. Han, S.Z. Zhang, F. Yang, and Y.Y. Chen: Vacuum, 2017, vol. 144, pp. 203–06.
29.
Zurück zum Zitat 29.L.J. Huang, L. Geng, A.B. Li, F.Y. Yang, and H.X. Peng: Scripta Mater., 2009, vol. 60, pp. 996–99. 29.L.J. Huang, L. Geng, A.B. Li, F.Y. Yang, and H.X. Peng: Scripta Mater., 2009, vol. 60, pp. 996–99.
30.
Zurück zum Zitat 30.S. Wang, L.J. Huang, L. Geng, F. Scarpa, Y. Jiao, and H.X. Peng: Sci. Rep., 2017, vol. 7, pp. 1–13. 30.S. Wang, L.J. Huang, L. Geng, F. Scarpa, Y. Jiao, and H.X. Peng: Sci. Rep., 2017, vol. 7, pp. 1–13.
31.
Zurück zum Zitat 31.Y. Jiao, L.J. Huang, S.L. Wei, L. Geng, M.F. Qian, and S. Yue: Corros. Sci., 2018, vol. 140, pp. 223–30. 31.Y. Jiao, L.J. Huang, S.L. Wei, L. Geng, M.F. Qian, and S. Yue: Corros. Sci., 2018, vol. 140, pp. 223–30.
32.
Zurück zum Zitat 32.H. Rastegari and S.M. Abbasi: Mater. Sci. Eng. A, 2013, vol. 564, pp. 473–77. 32.H. Rastegari and S.M. Abbasi: Mater. Sci. Eng. A, 2013, vol. 564, pp. 473–77.
33.
Zurück zum Zitat 33.Z. Yang, H. Huan, C. Jiang, W. Li, X. Liu, and S. Lyu: Thin Solid Films, 2011, vol. 519, pp. 4804–08. 33.Z. Yang, H. Huan, C. Jiang, W. Li, X. Liu, and S. Lyu: Thin Solid Films, 2011, vol. 519, pp. 4804–08.
34.
Zurück zum Zitat 34.L. Xie, Q. Zhou, X. Jin, Z. Wang, C. Jiang, W. Lu, J. Wang, and Q. Jane Wang: Int. J. Fatigue, 2014, vol. 66, pp. 127–37. 34.L. Xie, Q. Zhou, X. Jin, Z. Wang, C. Jiang, W. Lu, J. Wang, and Q. Jane Wang: Int. J. Fatigue, 2014, vol. 66, pp. 127–37.
35.
Zurück zum Zitat S.J. Kang: Sintering: Densification, Grain Growth, and Microstructure. Elsevier, Anmsterdam, 2005. S.J. Kang: Sintering: Densification, Grain Growth, and Microstructure. Elsevier, Anmsterdam, 2005.
36.
Zurück zum Zitat R.W. Balluffi, S.M. Allen, and W.C. Carter: Kinetics of Materials, Wiley, Cambridge, 2005. R.W. Balluffi, S.M. Allen, and W.C. Carter: Kinetics of Materials, Wiley, Cambridge, 2005.
37.
Zurück zum Zitat 37.L.J. Huang, L. Geng, H.X. Peng, and B. Kaveendran: Mater. Sci. Eng. A, 2012, vol. 534, pp. 688–92. 37.L.J. Huang, L. Geng, H.X. Peng, and B. Kaveendran: Mater. Sci. Eng. A, 2012, vol. 534, pp. 688–92.
38.
Zurück zum Zitat 38.S. Balachandran, S. Kumar, and D. Banerjee: Acta Mater., 2017, vol. 131, pp. 423–34. 38.S. Balachandran, S. Kumar, and D. Banerjee: Acta Mater., 2017, vol. 131, pp. 423–34.
39.
Zurück zum Zitat 39.S.L. Wei, L.J. Huang, J. Chang, W. Zhai, S.J. Yang, and L. Geng: Mater. Lett., 2016, vol. 175, pp. 291–95. 39.S.L. Wei, L.J. Huang, J. Chang, W. Zhai, S.J. Yang, and L. Geng: Mater. Lett., 2016, vol. 175, pp. 291–95.
40.
Zurück zum Zitat 40.E. Nes, N. Ryum, and O. Hunderi: Acta Mater., 1985, vol. 33, pp. 11–22. 40.E. Nes, N. Ryum, and O. Hunderi: Acta Mater., 1985, vol. 33, pp. 11–22.
41.
Zurück zum Zitat 41.A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 45, pp. 2817–29. 41.A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 45, pp. 2817–29.
42.
Zurück zum Zitat 42.R.L. Fleischer: Acta Metall., 1962, vol. 10, pp. 835–42. 42.R.L. Fleischer: Acta Metall., 1962, vol. 10, pp. 835–42.
43.
Zurück zum Zitat 43.E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, p. 747. 43.E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, p. 747.
44.
Zurück zum Zitat 44.R.L. Jones and H. Conrad: Trans. AIME, 1969, vol. 245, pp. 779–89. 44.R.L. Jones and H. Conrad: Trans. AIME, 1969, vol. 245, pp. 779–89.
45.
Zurück zum Zitat 45.K.Y. Wang, T.D. Shen, M.X. Quan, and W.D. Wei: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1818–20. 45.K.Y. Wang, T.D. Shen, M.X. Quan, and W.D. Wei: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1818–20.
46.
Zurück zum Zitat 46.A.A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva, and R.Z. Valiev: Scripta Mater., 1997, vol. 37, pp. 1089–94. 46.A.A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva, and R.Z. Valiev: Scripta Mater., 1997, vol. 37, pp. 1089–94.
47.
Zurück zum Zitat 47.R.J. Lederich, S.M.L. Sastry, E.J. O’Neal, and B.B. Rath: Mater. Sci. Eng., 1978, vol. 33, pp. 183–88. 47.R.J. Lederich, S.M.L. Sastry, E.J. O’Neal, and B.B. Rath: Mater. Sci. Eng., 1978, vol. 33, pp. 183–88.
48.
Zurück zum Zitat A. Argon: Strengthening Mechanisms in Crystal Plasticity. Oxford University Press, Oxford, 2012. A. Argon: Strengthening Mechanisms in Crystal Plasticity. Oxford University Press, Oxford, 2012.
49.
Zurück zum Zitat M.R. Akbarpour, E. Salahi, F. A. Hesari, H.S. Kim, and A. Simchi: Mater. Des., 2013, vol. 52, pp. 881–87. M.R. Akbarpour, E. Salahi, F. A. Hesari, H.S. Kim, and A. Simchi: Mater. Des., 2013, vol. 52, pp. 881–87.
50.
Zurück zum Zitat 50.A.A. Griffith: Phil. Trans. Ser. A, 1920, vol. 221, pp. 163–98. 50.A.A. Griffith: Phil. Trans. Ser. A, 1920, vol. 221, pp. 163–98.
51.
Zurück zum Zitat 51.M. Wang, Z. Yang, B. Ji, F. Zhu, L. Xiao, W. Lu, J. Qin, and D. Zhang: Mater. Sci. Eng. A, 2008, vol. 491, pp. 192–98. 51.M. Wang, Z. Yang, B. Ji, F. Zhu, L. Xiao, W. Lu, J. Qin, and D. Zhang: Mater. Sci. Eng. A, 2008, vol. 491, pp. 192–98.
52.
Zurück zum Zitat 52.C.J. Zhang, F.T. Kong, S.L. Xiao, E.T. Zhao, L.J. Xu, and Y.Y. Chen: Mater. Sci. Eng. A, 2012, vol. 548, pp. 152–60. 52.C.J. Zhang, F.T. Kong, S.L. Xiao, E.T. Zhao, L.J. Xu, and Y.Y. Chen: Mater. Sci. Eng. A, 2012, vol. 548, pp. 152–60.
Metadaten
Titel
Network-Strengthened Ti-6Al-4V/(TiC+TiB) Composites: Powder Metallurgy Processing and Enhanced Tensile Properties at Elevated Temperatures
verfasst von
Shaolou Wei
Lujun Huang
Xinting Li
Yang Jiao
Wei Ren
Lin Geng
Publikationsdatum
21.05.2019
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 8/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05244-7

Weitere Artikel der Ausgabe 8/2019

Metallurgical and Materials Transactions A 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.