Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2019

19.01.2019

Network structure and input integration in competing firing rate models for decision-making

verfasst von: Victor J. Barranca, Han Huang, Genji Kawakita

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Making a decision among numerous alternatives is a pervasive and central undertaking encountered by mammals in natural settings. While decision making for two-option tasks has been studied extensively both experimentally and theoretically, characterizing decision making in the face of a large set of alternatives remains challenging. We explore this issue by formulating a scalable mechanistic network model for decision making and analyzing the dynamics evoked given various potential network structures. In the case of a fully-connected network, we provide an analytical characterization of the model fixed points and their stability with respect to winner-take-all behavior for fair tasks. We compare several means of input integration, demonstrating a more gradual sigmoidal transfer function is likely evolutionarily advantageous relative to binary gain commonly utilized in engineered systems. We show via asymptotic analysis and numerical simulation that sigmoidal transfer functions with smaller steepness yield faster response times but depreciation in accuracy. However, in the presence of noise or degradation of connections, a sigmoidal transfer function garners significantly more robust and accurate decision-making dynamics. For fair tasks and sigmoidal gain, our model network also exhibits a stable parameter regime that produces high accuracy and persists across tasks with diverse numbers of alternatives and difficulties, satisfying physiological energetic constraints. In the case of more sparse and structured network topologies, including random, regular, and small-world connectivity, we show the high-accuracy parameter regime persists for biologically realistic connection densities. Our work shows how neural system architecture is potentially optimal in making economic, reliable, and advantageous decisions across tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahmed, B., Anderson, J.C., Douglas, R.J., Martin, K.A., Whitteridge, D. (1998). Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cereb Cortex, 8(5), 462–476.PubMedCrossRef Ahmed, B., Anderson, J.C., Douglas, R.J., Martin, K.A., Whitteridge, D. (1998). Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cereb Cortex, 8(5), 462–476.PubMedCrossRef
Zurück zum Zitat Andronov, A.A. (1973). Qualitative theory of second-order dynamic systems. A Halsted Press book. Wiley. ISBN 9780706512922. Andronov, A.A. (1973). Qualitative theory of second-order dynamic systems. A Halsted Press book. Wiley. ISBN 9780706512922.
Zurück zum Zitat Barranca, V.J., Zhou, D., Cai, D. (2015a). A novel characterization of amalgamated networks in natural systems. Scientific Reports, 5, 10611. Barranca, V.J., Zhou, D., Cai, D. (2015a). A novel characterization of amalgamated networks in natural systems. Scientific Reports, 5, 10611.
Zurück zum Zitat Barranca, V.J., Zhou, D., Cai, D. (2015b). Low-rank network decomposition reveals structural characteristics of small-world networks. Phys rev e stat nonlin soft matter phys, 92(6), 062822. Barranca, V.J., Zhou, D., Cai, D. (2015b). Low-rank network decomposition reveals structural characteristics of small-world networks. Phys rev e stat nonlin soft matter phys, 92(6), 062822.
Zurück zum Zitat Binas, J., Rutishauser, U., Indiveri, G., Pfeiffer, M. (2014). Learning and stabilization of winner-take-all dynamics through interacting excitatory and inhibitory plasticity. Frontiers in Computational Neuroscience, 8, 68.PubMedPubMedCentralCrossRef Binas, J., Rutishauser, U., Indiveri, G., Pfeiffer, M. (2014). Learning and stabilization of winner-take-all dynamics through interacting excitatory and inhibitory plasticity. Frontiers in Computational Neuroscience, 8, 68.PubMedPubMedCentralCrossRef
Zurück zum Zitat Bogacz, R., Usher, M., Zhang, J., McClelland, J.L. (2007). Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1485), 1655–1670.PubMedPubMedCentralCrossRef Bogacz, R., Usher, M., Zhang, J., McClelland, J.L. (2007). Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1485), 1655–1670.PubMedPubMedCentralCrossRef
Zurück zum Zitat Bogacz, R., Wagenmakers, E.J., Forstmann, B.U., Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33(1), 10–16.PubMedCrossRef Bogacz, R., Wagenmakers, E.J., Forstmann, B.U., Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33(1), 10–16.PubMedCrossRef
Zurück zum Zitat Brody, C.D., Romo, R., Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13(2), 204–211.PubMedCrossRef Brody, C.D., Romo, R., Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13(2), 204–211.PubMedCrossRef
Zurück zum Zitat Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51–56.PubMedPubMedCentralCrossRef Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51–56.PubMedPubMedCentralCrossRef
Zurück zum Zitat Cohen, J.Y., Crowder, E.A., Heitz, R.P., Subraveti, C.R., Thompson, K.G., Woodman, G.F., Schall, J.D. (2010). Cooperation and competition among frontal eye field neurons during visual target selection. The Journal of Neuroscience, 30(9), 3227– 3238.PubMedPubMedCentralCrossRef Cohen, J.Y., Crowder, E.A., Heitz, R.P., Subraveti, C.R., Thompson, K.G., Woodman, G.F., Schall, J.D. (2010). Cooperation and competition among frontal eye field neurons during visual target selection. The Journal of Neuroscience, 30(9), 3227– 3238.PubMedPubMedCentralCrossRef
Zurück zum Zitat Craik, F.I., & Bialystok, E. (2006). Cognition through the lifespan: mechanisms of change. Trends in Cognitive Sciences (Regul. Ed.), 10(3), 131–138.CrossRef Craik, F.I., & Bialystok, E. (2006). Cognition through the lifespan: mechanisms of change. Trends in Cognitive Sciences (Regul. Ed.), 10(3), 131–138.CrossRef
Zurück zum Zitat Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience. Cambridge: MIT press. Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience. Cambridge: MIT press.
Zurück zum Zitat de Lafuente, V., & Romo, R. (2006). Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proceedings of the National Academy of Sciences of the USA, 103(39), 14266–14271.PubMedCrossRef de Lafuente, V., & Romo, R. (2006). Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proceedings of the National Academy of Sciences of the USA, 103(39), 14266–14271.PubMedCrossRef
Zurück zum Zitat Deco, G., Jirsa, V.K., McIntosh, A.R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews. Neuroscience, 12(1), 43–56.PubMedCrossRef Deco, G., Jirsa, V.K., McIntosh, A.R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews. Neuroscience, 12(1), 43–56.PubMedCrossRef
Zurück zum Zitat Douglas, R.J., & Martin, K.A. (2007). Recurrent neuronal circuits in the neocortex. Current Biology, 17(13), 496–500.CrossRef Douglas, R.J., & Martin, K.A. (2007). Recurrent neuronal circuits in the neocortex. Current Biology, 17(13), 496–500.CrossRef
Zurück zum Zitat Dunn, F.A., & Rieke, F. (2006). The impact of photoreceptor noise on retinal gain controls. Current Opinion in Neurobiology, 16(4), 363–370.PubMedCrossRef Dunn, F.A., & Rieke, F. (2006). The impact of photoreceptor noise on retinal gain controls. Current Opinion in Neurobiology, 16(4), 363–370.PubMedCrossRef
Zurück zum Zitat Erdos, P., & Renyi, A. (1959). On random graphs i. Publicationes Mathematicae Debrecen, 6, 290. Erdos, P., & Renyi, A. (1959). On random graphs i. Publicationes Mathematicae Debrecen, 6, 290.
Zurück zum Zitat Fellows, L.K. (2004). The cognitive neuroscience of human decision making: a review and conceptual framework. Behavioral and Cognitive Neuroscience Reviews, 3(3), 159–172.PubMedCrossRef Fellows, L.K. (2004). The cognitive neuroscience of human decision making: a review and conceptual framework. Behavioral and Cognitive Neuroscience Reviews, 3(3), 159–172.PubMedCrossRef
Zurück zum Zitat Fitts, P.M. (1966). Cognitive aspects of information processing. 3. Set for speed versus accuracy. Journal of Experimental Psychology, 71(6), 849–857.PubMedCrossRef Fitts, P.M. (1966). Cognitive aspects of information processing. 3. Set for speed versus accuracy. Journal of Experimental Psychology, 71(6), 849–857.PubMedCrossRef
Zurück zum Zitat Fukai, T., & Tanaka, S. (1997). A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Computation, 9(1), 77–97.PubMedCrossRef Fukai, T., & Tanaka, S. (1997). A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Computation, 9(1), 77–97.PubMedCrossRef
Zurück zum Zitat Ganguli, S., Bisley, J.W., Roitman, J.D., Shadlen, M.N., Goldberg, M.E., Miller, K.D. (2008). One-dimensional dynamics of attention and decision making in lIP. Neuron, 58(1), 15–25.PubMedCrossRef Ganguli, S., Bisley, J.W., Roitman, J.D., Shadlen, M.N., Goldberg, M.E., Miller, K.D. (2008). One-dimensional dynamics of attention and decision making in lIP. Neuron, 58(1), 15–25.PubMedCrossRef
Zurück zum Zitat Gold, J.I., & Shadlen, M.N. (2002). Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36(2), 299–308.PubMedCrossRef Gold, J.I., & Shadlen, M.N. (2002). Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36(2), 299–308.PubMedCrossRef
Zurück zum Zitat Harvey, C.D., Coen, P., Tank, D.W. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 484(7392), 62–68.PubMedPubMedCentralCrossRef Harvey, C.D., Coen, P., Tank, D.W. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 484(7392), 62–68.PubMedPubMedCentralCrossRef
Zurück zum Zitat He, Y., Chen, Z.J., Evans, A.C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 17(10), 2407–2419.PubMedCrossRef He, Y., Chen, Z.J., Evans, A.C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 17(10), 2407–2419.PubMedCrossRef
Zurück zum Zitat Heekeren, H.R., Marrett, S., Ungerleider, L.G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews. Neuroscience, 9(6), 467–479.PubMedCrossRef Heekeren, H.R., Marrett, S., Ungerleider, L.G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews. Neuroscience, 9(6), 467–479.PubMedCrossRef
Zurück zum Zitat Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology (Lond.), 117(4), 500– 544.CrossRef Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology (Lond.), 117(4), 500– 544.CrossRef
Zurück zum Zitat Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA, 79(8), 2554–2558.PubMedCrossRef Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA, 79(8), 2554–2558.PubMedCrossRef
Zurück zum Zitat La Camera, G., Rauch, A., Thurbon, D., Luscher, H.R., Senn, W., Fusi, S. (2006). Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. Journal of Neurophysiology, 96(6), 3448–3464.PubMedCrossRef La Camera, G., Rauch, A., Thurbon, D., Luscher, H.R., Senn, W., Fusi, S. (2006). Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. Journal of Neurophysiology, 96(6), 3448–3464.PubMedCrossRef
Zurück zum Zitat London, M., Roth, A., Beeren, L., Hausser, M., Latham, P.E. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature, 466(7302), 123–127.PubMedPubMedCentralCrossRef London, M., Roth, A., Beeren, L., Hausser, M., Latham, P.E. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature, 466(7302), 123–127.PubMedPubMedCentralCrossRef
Zurück zum Zitat Maass, W. (2000). On the computational power of winner-take-all. Neural Computation, 12(11), 2519–2535.PubMedCrossRef Maass, W. (2000). On the computational power of winner-take-all. Neural Computation, 12(11), 2519–2535.PubMedCrossRef
Zurück zum Zitat Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain: A Journal of Neurology, 125(Pt 3), 624–639.CrossRef Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain: A Journal of Neurology, 125(Pt 3), 624–639.CrossRef
Zurück zum Zitat Markov, N.T., Ercsey-Ravasz, M., Van Essen, D.C., Knoblauch, K., Toroczkai, Z., Kennedy, H. (2013). Cortical high-density counterstream architectures. Science, 342(6158), 1238406.PubMedPubMedCentralCrossRef Markov, N.T., Ercsey-Ravasz, M., Van Essen, D.C., Knoblauch, K., Toroczkai, Z., Kennedy, H. (2013). Cortical high-density counterstream architectures. Science, 342(6158), 1238406.PubMedPubMedCentralCrossRef
Zurück zum Zitat Markram, H., Lubke, J., Frotscher, M., Roth, A., Sakmann, B. (1997). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. Journal of Physiology, 500(Pt 2), 409–440. ISSN 0022-3751 (Print); 0022-3751 (Linking).PubMedCrossRef Markram, H., Lubke, J., Frotscher, M., Roth, A., Sakmann, B. (1997). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. Journal of Physiology, 500(Pt 2), 409–440. ISSN 0022-3751 (Print); 0022-3751 (Linking).PubMedCrossRef
Zurück zum Zitat Marreiros, A.C., Daunizeau, J., Kiebel, S.J., Friston, K.J. (2008). Population dynamics: variance and the sigmoid activation function. NeuroImage, 42(1), 147–157.PubMedCrossRef Marreiros, A.C., Daunizeau, J., Kiebel, S.J., Friston, K.J. (2008). Population dynamics: variance and the sigmoid activation function. NeuroImage, 42(1), 147–157.PubMedCrossRef
Zurück zum Zitat Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. The Journal of Neuroscience, 10(5), 1415–1428.PubMedCrossRef Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. The Journal of Neuroscience, 10(5), 1415–1428.PubMedCrossRef
Zurück zum Zitat Mason, A., Nicoll, A., Stratford, K. (1991). Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. Journal of Neuroscience, 11(1), 72–84.PubMedCrossRef Mason, A., Nicoll, A., Stratford, K. (1991). Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. Journal of Neuroscience, 11(1), 72–84.PubMedCrossRef
Zurück zum Zitat McKinstry, J.L., Fleischer, J.G., Chen, Y., Gall, W.E., Edelman, G.M. (2016). Imagery may arise from associations formed through sensory experience: a network of spiking neurons controlling a robot learns visual sequences in order to perform a mental rotation task. PLos ONE, 11(9), e0162155.PubMedPubMedCentralCrossRef McKinstry, J.L., Fleischer, J.G., Chen, Y., Gall, W.E., Edelman, G.M. (2016). Imagery may arise from associations formed through sensory experience: a network of spiking neurons controlling a robot learns visual sequences in order to perform a mental rotation task. PLos ONE, 11(9), e0162155.PubMedPubMedCentralCrossRef
Zurück zum Zitat Miller, P., & Katz, D.B. (2013). Accuracy and response-time distributions for decision-making: linear perfect integrators versus nonlinear attractor-based neural circuits. Journal of Computational Neuroscience, 35(3), 261–294.PubMedPubMedCentralCrossRef Miller, P., & Katz, D.B. (2013). Accuracy and response-time distributions for decision-making: linear perfect integrators versus nonlinear attractor-based neural circuits. Journal of Computational Neuroscience, 35(3), 261–294.PubMedPubMedCentralCrossRef
Zurück zum Zitat Munakata, Y., Herd, S.A., Chatham, C.H., Depue, B.E., Banich, M.T., O’Reilly, R.C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences (Regul. Ed.), 15(10), 453–459.CrossRef Munakata, Y., Herd, S.A., Chatham, C.H., Depue, B.E., Banich, M.T., O’Reilly, R.C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences (Regul. Ed.), 15(10), 453–459.CrossRef
Zurück zum Zitat Patel, M., & Rangan, A. (2017). Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy. Journal of Theoretical Biology, 426, 82–95.PubMedCrossRef Patel, M., & Rangan, A. (2017). Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy. Journal of Theoretical Biology, 426, 82–95.PubMedCrossRef
Zurück zum Zitat Perin, R., Berger, T.K., Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. Proceedings of the National Academy of Sciences of the USA, 108(13), 5419– 5424.PubMedCrossRef Perin, R., Berger, T.K., Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. Proceedings of the National Academy of Sciences of the USA, 108(13), 5419– 5424.PubMedCrossRef
Zurück zum Zitat Platt, M.L., & Glimcher, P.W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400 (6741), 233–238.PubMedCrossRef Platt, M.L., & Glimcher, P.W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400 (6741), 233–238.PubMedCrossRef
Zurück zum Zitat Polsky, A., Mel, B.W., Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature Neuroscience, 7(6), 621–627.PubMedCrossRef Polsky, A., Mel, B.W., Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature Neuroscience, 7(6), 621–627.PubMedCrossRef
Zurück zum Zitat Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.CrossRef Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.CrossRef
Zurück zum Zitat Ratcliff, R., Smith, P.L., Brown, S.D., McKoon, G. (2016). Diffusion decision model current issues and history. Trends in Cognitive Sciences (Regul. Ed.), 20(4), 260–281.CrossRef Ratcliff, R., Smith, P.L., Brown, S.D., McKoon, G. (2016). Diffusion decision model current issues and history. Trends in Cognitive Sciences (Regul. Ed.), 20(4), 260–281.CrossRef
Zurück zum Zitat Rutishauser, U., Douglas, R.J., Slotine, J.J. (2011). Collective stability of networks of winner-take-all circuits. Neural Computation, 23(3), 735–773.PubMedCrossRef Rutishauser, U., Douglas, R.J., Slotine, J.J. (2011). Collective stability of networks of winner-take-all circuits. Neural Computation, 23(3), 735–773.PubMedCrossRef
Zurück zum Zitat Sachdev, P.S., & Malhi, G.S. (2005). Obsessive-compulsive behaviour: a disorder of decision-making. The Australian and New Zealand Journal of Psychiatry, 39(9), 757–763.PubMed Sachdev, P.S., & Malhi, G.S. (2005). Obsessive-compulsive behaviour: a disorder of decision-making. The Australian and New Zealand Journal of Psychiatry, 39(9), 757–763.PubMed
Zurück zum Zitat Schall, J.D. (2001). Neural basis of deciding, choosing and acting. Nature Reviews. Neuroscience, 2(1), 33–42.PubMedCrossRef Schall, J.D. (2001). Neural basis of deciding, choosing and acting. Nature Reviews. Neuroscience, 2(1), 33–42.PubMedCrossRef
Zurück zum Zitat Shadlen, M.N., & Newsome, W.T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LI,P) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916–1936.PubMedCrossRef Shadlen, M.N., & Newsome, W.T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LI,P) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916–1936.PubMedCrossRef
Zurück zum Zitat Shpiro, A., Curtu, R., Rinzel, J., Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97(1), 462–473.PubMedCrossRef Shpiro, A., Curtu, R., Rinzel, J., Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97(1), 462–473.PubMedCrossRef
Zurück zum Zitat Taube, J.S. (2007). The head direction signal: origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207.PubMedCrossRef Taube, J.S. (2007). The head direction signal: origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207.PubMedCrossRef
Zurück zum Zitat Thomas, N.W., & Pare, M. (2007). Temporal processing of saccade targets in parietal cortex area LI,P during visual search. Journal of Neurophysiology, 97(1), 942–947.PubMedCrossRef Thomas, N.W., & Pare, M. (2007). Temporal processing of saccade targets in parietal cortex area LI,P during visual search. Journal of Neurophysiology, 97(1), 942–947.PubMedCrossRef
Zurück zum Zitat Usher, M., & McClelland, J.L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological Review, 108(3), 550–592.PubMedCrossRef Usher, M., & McClelland, J.L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological Review, 108(3), 550–592.PubMedCrossRef
Zurück zum Zitat Wang, X.J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36(5), 955–968.PubMedCrossRef Wang, X.J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36(5), 955–968.PubMedCrossRef
Zurück zum Zitat Wei, W., & Wang, X.J. (2016). Inhibitory control in the cortico-basal ganglia-thalamocortical loop complex regulation and interplay with memory and decision processes. Neuron, 92(5), 1093–1105.PubMedPubMedCentralCrossRef Wei, W., & Wang, X.J. (2016). Inhibitory control in the cortico-basal ganglia-thalamocortical loop complex regulation and interplay with memory and decision processes. Neuron, 92(5), 1093–1105.PubMedPubMedCentralCrossRef
Zurück zum Zitat Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.PubMedPubMedCentralCrossRef Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.PubMedPubMedCentralCrossRef
Zurück zum Zitat Xie, X., Hahnloser, R., Seung, S.H. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 041902.CrossRef Xie, X., Hahnloser, R., Seung, S.H. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 041902.CrossRef
Zurück zum Zitat Yamada, W., Koch, C., Adams, P. (1989). Multiple channels and calcium dynamics. In Methods in neuronal modeling: from synapses to networks (pp. 97–133). Cambridge: MIT Press. Yamada, W., Koch, C., Adams, P. (1989). Multiple channels and calcium dynamics. In Methods in neuronal modeling: from synapses to networks (pp. 97–133). Cambridge: MIT Press.
Metadaten
Titel
Network structure and input integration in competing firing rate models for decision-making
verfasst von
Victor J. Barranca
Han Huang
Genji Kawakita
Publikationsdatum
19.01.2019
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2019
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-018-0708-6

Weitere Artikel der Ausgabe 2/2019

Journal of Computational Neuroscience 2/2019 Zur Ausgabe