Skip to main content

2023 | OriginalPaper | Buchkapitel

Network Structure Versus Chemical Information in Drug-Drug Interaction Prediction

verfasst von : George Kefalas, Dimitrios Vogiatzis

Erschienen in: Complex Networks and Their Applications XI

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We apply two embedding mechanisms, node2vec & mol2vec, on the problem of predicting Drug-Drug Interactions (DDIs). These mechanisms, respectively, convert drugs into vectors using the chemical information of the underlying chemical compound and the network information from the graph of drug interactions. Our goal is to compare Single Link Prediction models that are based on each embedding method by exploring the topological features of the drug interactions graph that make each approach more efficient in making correct predictions. We base our experiments on the DrugBank data set and use various computational chemistry tools such RDKit and PubChem, along with NetworkX, in order to create the chemical and structural embeddings for each drug.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
We consider the core difference of a sample interaction as the absolute difference of the k-core values of two nodes that are connected by the corresponding graph edge.
 
Literatur
1.
Zurück zum Zitat Bagherian, M., Sabeti, E., Wang, K., Sartor, M.A., Nikolovska-Coleska, Z., Najarian, K.: Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Briefings Bioinformatics 22(1), 247–269 (2021)CrossRef Bagherian, M., Sabeti, E., Wang, K., Sartor, M.A., Nikolovska-Coleska, Z., Najarian, K.: Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Briefings Bioinformatics 22(1), 247–269 (2021)CrossRef
2.
Zurück zum Zitat Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Networks 29(4), 555–564 (2007)CrossRef Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Networks 29(4), 555–564 (2007)CrossRef
3.
Zurück zum Zitat Cheng, F., Kovács, I.A., Barabási, A.L.: Network-based prediction of drug combinations. Nature Commun. 10(1), 1–11 (2019)CrossRef Cheng, F., Kovács, I.A., Barabási, A.L.: Network-based prediction of drug combinations. Nature Commun. 10(1), 1–11 (2019)CrossRef
4.
Zurück zum Zitat Crystal, A.S., Shaw, A.T., Sequist, L.V., Friboulet, L., Niederst, M.J., Lockerman, E.L., Frias, R.L., Gainor, J.F., Amzallag, A., Greninger, P., et al.: Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346(6216), 1480–1486 (2014)CrossRef Crystal, A.S., Shaw, A.T., Sequist, L.V., Friboulet, L., Niederst, M.J., Lockerman, E.L., Frias, R.L., Gainor, J.F., Amzallag, A., Greninger, P., et al.: Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346(6216), 1480–1486 (2014)CrossRef
5.
Zurück zum Zitat Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowledge Discovery From Data (TKDD) 5(2), 1–27 (2011)CrossRef Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowledge Discovery From Data (TKDD) 5(2), 1–27 (2011)CrossRef
6.
Zurück zum Zitat Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Networks 1(3), 215–239 (1978)CrossRef Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Networks 1(3), 215–239 (1978)CrossRef
7.
Zurück zum Zitat Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 855–864 (2016) Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 855–864 (2016)
10.
Zurück zum Zitat Kantor, E.D., Rehm, C.D., Haas, J.S., Chan, A.T., Giovannucci, E.L.: Trends in prescription drug use among adults in the united states from 1999–2012. JAMA 314(17), 1818–1830 (2015)CrossRef Kantor, E.D., Rehm, C.D., Haas, J.S., Chan, A.T., Giovannucci, E.L.: Trends in prescription drug use among adults in the united states from 1999–2012. JAMA 314(17), 1818–1830 (2015)CrossRef
11.
Zurück zum Zitat Kastrin, A., Ferk, P., Leskošek, B.: Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning. PloS one 13(5), e0196865 (2018)CrossRef Kastrin, A., Ferk, P., Leskošek, B.: Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning. PloS one 13(5), e0196865 (2018)CrossRef
12.
Zurück zum Zitat Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. Advan. Neural Inf. Proc. Syst. 31 (2018) Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. Advan. Neural Inf. Proc. Syst. 31 (2018)
13.
Zurück zum Zitat Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., et al.: Pubchem 2019 update: improved access to chemical data. Nucleic Acids Res. 47(D1), D1102–D1109 (2019)CrossRef Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., et al.: Pubchem 2019 update: improved access to chemical data. Nucleic Acids Res. 47(D1), D1102–D1109 (2019)CrossRef
14.
Zurück zum Zitat Koge, D., Ono, N., Huang, M., Altaf-Ul-Amin, M., Kanaya, S.: Embedding of molecular structure using molecular hypergraph variational autoencoder with metric learning. Molecular Informatics 40(2), 2000203 (2021)CrossRef Koge, D., Ono, N., Huang, M., Altaf-Ul-Amin, M., Kanaya, S.: Embedding of molecular structure using molecular hypergraph variational autoencoder with metric learning. Molecular Informatics 40(2), 2000203 (2021)CrossRef
15.
Zurück zum Zitat Kotnis, B., Nastase, V.: Analysis of the impact of negative sampling on link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816 (2017) Kotnis, B., Nastase, V.: Analysis of the impact of negative sampling on link prediction in knowledge graphs. arXiv preprint arXiv:​1708.​06816 (2017)
16.
Zurück zum Zitat Landrum, G., et al.: Rdkit: A Software Suite for Cheminformatics, Computational Chemistry, and Predictive Modeling (2013) Landrum, G., et al.: Rdkit: A Software Suite for Cheminformatics, Computational Chemistry, and Predictive Modeling (2013)
17.
Zurück zum Zitat Long, Y., Wu, M., Liu, Y., Fang, Y., Kwoh, C.K., Chen, J., Luo, J., Li, X.: Pre-training graph neural networks for link prediction in biomedical networks. Bioinformatics 38(8), 2254–2262 (2022)CrossRef Long, Y., Wu, M., Liu, Y., Fang, Y., Kwoh, C.K., Chen, J., Luo, J., Li, X.: Pre-training graph neural networks for link prediction in biomedical networks. Bioinformatics 38(8), 2254–2262 (2022)CrossRef
18.
Zurück zum Zitat Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 437–452. Springer (2011) Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 437–452. Springer (2011)
19.
Zurück zum Zitat Qato, D.M., Wilder, J., Schumm, L.P., Gillet, V., Alexander, G.C.: Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 versus 2011. JAMA Internal Med. 176(4), 473–482 (2016)CrossRef Qato, D.M., Wilder, J., Schumm, L.P., Gillet, V., Alexander, G.C.: Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 versus 2011. JAMA Internal Med. 176(4), 473–482 (2016)CrossRef
20.
Zurück zum Zitat Ryu, J.Y., Kim, H.U., Lee, S.Y.: Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Nat. Acad. Sci. 115(18), E4304–E4311 (2018)CrossRef Ryu, J.Y., Kim, H.U., Lee, S.Y.: Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Nat. Acad. Sci. 115(18), E4304–E4311 (2018)CrossRef
21.
Zurück zum Zitat Segura-Bedmar, I., Martínez, P., Herrero-Zazo, M.: Lessons learnt from the DDIExtraction-2013 shared task. J. Biomed. Inf. 51, 152–164 (2014)CrossRef Segura-Bedmar, I., Martínez, P., Herrero-Zazo, M.: Lessons learnt from the DDIExtraction-2013 shared task. J. Biomed. Inf. 51, 152–164 (2014)CrossRef
22.
Zurück zum Zitat Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)CrossRef Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)CrossRef
23.
Zurück zum Zitat Wasserman, S., Faust, K., et al.: Social Network Analysis: Methods and Applications (1994) Wasserman, S., Faust, K., et al.: Social Network Analysis: Methods and Applications (1994)
24.
Zurück zum Zitat Weininger, D.: Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988) Weininger, D.: Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)
25.
Zurück zum Zitat Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., Wilson, M.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (Nov 2017). https://doi.org/10.1093/nar/gkx1037 Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., Wilson, M.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (Nov 2017). https://​doi.​org/​10.​1093/​nar/​gkx1037
26.
Zurück zum Zitat Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods. Knowl. Inf. Syst. 45(3), 751–782 (2015)CrossRef Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods. Knowl. Inf. Syst. 45(3), 751–782 (2015)CrossRef
27.
Zurück zum Zitat Yuliansyah, H., Othman, Z.A., Bakar, A.A.: Taxonomy of link prediction for social network analysis: a review. IEEE Access 8, 183470–183487 (2020)CrossRef Yuliansyah, H., Othman, Z.A., Bakar, A.A.: Taxonomy of link prediction for social network analysis: a review. IEEE Access 8, 183470–183487 (2020)CrossRef
28.
Zurück zum Zitat Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Advances in Neural Information Processing Systems 31 (2018) Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Advances in Neural Information Processing Systems 31 (2018)
29.
Zurück zum Zitat Zhang, W., Hou, T., Qiao, X., Xu, X.: Some basic data structures and algorithms for chemical generic programming. J. Chem. Inf. Comput. Sci. 44(5), 1571–1575 (2004)CrossRef Zhang, W., Hou, T., Qiao, X., Xu, X.: Some basic data structures and algorithms for chemical generic programming. J. Chem. Inf. Comput. Sci. 44(5), 1571–1575 (2004)CrossRef
30.
Zurück zum Zitat Zhang, W., Chen, Y., Liu, F., Luo, F., Tian, G., Li, X.: Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinf. 18(1), 1–12 (2017)CrossRef Zhang, W., Chen, Y., Liu, F., Luo, F., Tian, G., Li, X.: Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinf. 18(1), 1–12 (2017)CrossRef
31.
Zurück zum Zitat Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018)CrossRef Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018)CrossRef
Metadaten
Titel
Network Structure Versus Chemical Information in Drug-Drug Interaction Prediction
verfasst von
George Kefalas
Dimitrios Vogiatzis
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-21127-0_33

Premium Partner