Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2013

01.02.2013

Neural encoding schemes of tactile information in afferent activity of the vibrissal system

verfasst von: Fernando D. Farfán, Ana L. Albarracín, Carmelo J. Felice

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When rats acquire sensory information by actively moving their vibrissae, a neural code is manifested at different levels of the sensory system. Behavioral studies in tactile discrimination agree that rats can distinguish different roughness surfaces by whisking their vibrissae. The present study explores the existence of neural encoding in the afferent activity of one vibrissal nerve. Two neural encoding schemes based on “events” were proposed (cumulative event count and median inter-event time). The events were detected by using an event detection algorithm based on multiscale decomposition of the signal (Continuous Wavelet Transform). The encoding schemes were quantitatively evaluated through the maximum amount of information which was obtained by the Shannon’s mutual information formula. Moreover, the effect of difference distances between rat snout and swept surfaces on the information values was also studied. We found that roughness information was encoded by events of 0.8 ms duration in the cumulative event count and event of 1.0 to 1.6 ms duration in the median inter-event count. It was also observed that an extreme decrease of the distance between rat snout and swept surfaces significantly reduces the information values and the capacity to discriminate among the sweep situations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Albarracín, A. L., Farfán, F. D., Felice, C. J., & Décima, E. E. (2006). Texture discrimination and multi-unit recording in the rat vibrissal nerve. BMC Neuroscience, 7, 42.PubMedCrossRef Albarracín, A. L., Farfán, F. D., Felice, C. J., & Décima, E. E. (2006). Texture discrimination and multi-unit recording in the rat vibrissal nerve. BMC Neuroscience, 7, 42.PubMedCrossRef
Zurück zum Zitat Albarracín, A. L. (2008). Estudio fisiológico y anatómico del control motor de las vibrisas de la rata. PhD Thesis. Albarracín, A. L. (2008). Estudio fisiológico y anatómico del control motor de las vibrisas de la rata. PhD Thesis.
Zurück zum Zitat Arabzadeh, E., Panzeri, S., & Diamond, M. E. (2006). Deciphering the spike train of a sensory neuron: counts and temporal patterns in the rat whisker pathway. The Journal of Neuroscience, 26(36), 9216–9226.PubMedCrossRef Arabzadeh, E., Panzeri, S., & Diamond, M. E. (2006). Deciphering the spike train of a sensory neuron: counts and temporal patterns in the rat whisker pathway. The Journal of Neuroscience, 26(36), 9216–9226.PubMedCrossRef
Zurück zum Zitat Arabzadeh, E., Zorzin, E., & Diamond, M. E. (2005). Neuronal encoding of texture in the whisker sensory pathway. PLoS Biology, 3, e17.PubMedCrossRef Arabzadeh, E., Zorzin, E., & Diamond, M. E. (2005). Neuronal encoding of texture in the whisker sensory pathway. PLoS Biology, 3, e17.PubMedCrossRef
Zurück zum Zitat Berg, R. W., & Kleinfeld, D. (2003). Rhythmic whisking by rat: retraction as well protraction of the vibrissae is under active muscular control. Journal of Neurophysiology, 89, 104–117.PubMedCrossRef Berg, R. W., & Kleinfeld, D. (2003). Rhythmic whisking by rat: retraction as well protraction of the vibrissae is under active muscular control. Journal of Neurophysiology, 89, 104–117.PubMedCrossRef
Zurück zum Zitat Carvell, G. E., & Simons, D. J. (1990). Biometric analyses of vibrissal tactile discrimination in the rat. Journal of Neuroscience, 10, 2638–2648.PubMed Carvell, G. E., & Simons, D. J. (1990). Biometric analyses of vibrissal tactile discrimination in the rat. Journal of Neuroscience, 10, 2638–2648.PubMed
Zurück zum Zitat Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.CrossRef Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.CrossRef
Zurück zum Zitat Diamond, M. E., von Heimendahl, M., & Arabzadeh, E. (2008). Whisker-mediated texture discrimination. PLoS Biol, 6(8), e220.PubMedCrossRef Diamond, M. E., von Heimendahl, M., & Arabzadeh, E. (2008). Whisker-mediated texture discrimination. PLoS Biol, 6(8), e220.PubMedCrossRef
Zurück zum Zitat Donoho, D. L. (1994). Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. Proc Sympos Appl Math. 173–205. Donoho, D. L. (1994). Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. Proc Sympos Appl Math. 173–205.
Zurück zum Zitat Dürig, F., Albarracín, A. L., Farfán, F. D., & Felice, C. J. (2009). Design and construction of a photoresistive sensor for monitoring the rat vibrissal displacement. Journal of Neuroscience Methods, 80(1), 71–76.CrossRef Dürig, F., Albarracín, A. L., Farfán, F. D., & Felice, C. J. (2009). Design and construction of a photoresistive sensor for monitoring the rat vibrissal displacement. Journal of Neuroscience Methods, 80(1), 71–76.CrossRef
Zurück zum Zitat Farfán, F. D., Albarracín, A. L., & Felice, C. J. (2011). Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve. BMC Neuroscience, 12, 32.PubMedCrossRef Farfán, F. D., Albarracín, A. L., & Felice, C. J. (2011). Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve. BMC Neuroscience, 12, 32.PubMedCrossRef
Zurück zum Zitat Golomb, D., Hertz, J., Panzeri, S., Treves, A., & Richmond, B. (1997). How well can we estimate the information carried in neuronal responses from limited samples? Neural Computation, 9, 649–665.PubMedCrossRef Golomb, D., Hertz, J., Panzeri, S., Treves, A., & Richmond, B. (1997). How well can we estimate the information carried in neuronal responses from limited samples? Neural Computation, 9, 649–665.PubMedCrossRef
Zurück zum Zitat Hartmann, M. J., Johnson, N. J., Towal, R. B., & Assad, C. (2003). Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neuroscience, 23(16), 6510–6519. Hartmann, M. J., Johnson, N. J., Towal, R. B., & Assad, C. (2003). Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neuroscience, 23(16), 6510–6519.
Zurück zum Zitat Ito, M. (1985). Processing of vibrissa sensory information within the rat neocortex. Journal of Neurophysiology, 54, 479–490.PubMed Ito, M. (1985). Processing of vibrissa sensory information within the rat neocortex. Journal of Neurophysiology, 54, 479–490.PubMed
Zurück zum Zitat Magri, C., Whittingstall, K., Singh, V., Logothetis, N. K., & Panzeri, S. (2009). A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neuroscience, 10(1), 81.PubMedCrossRef Magri, C., Whittingstall, K., Singh, V., Logothetis, N. K., & Panzeri, S. (2009). A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neuroscience, 10(1), 81.PubMedCrossRef
Zurück zum Zitat Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Trans Inform Theory, 38(2), 617–643.CrossRef Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Trans Inform Theory, 38(2), 617–643.CrossRef
Zurück zum Zitat McDonnell, M. D., Ikeda, S., & Manton, J. H. (2011). An introductory review of information theory in the context of computational neuroscience. Biological Cybernetics, 105, 55–70.PubMedCrossRef McDonnell, M. D., Ikeda, S., & Manton, J. H. (2011). An introductory review of information theory in the context of computational neuroscience. Biological Cybernetics, 105, 55–70.PubMedCrossRef
Zurück zum Zitat Mehta, S. B., & Kleinfeld, D. (2004). Frisking the whiskers: patterned sensory input in the rat vibrissae system. Neuron, 41, 181–184.PubMedCrossRef Mehta, S. B., & Kleinfeld, D. (2004). Frisking the whiskers: patterned sensory input in the rat vibrissae system. Neuron, 41, 181–184.PubMedCrossRef
Zurück zum Zitat Mitchinson, B., Gurney, K. N., Redgrave, P., Melhuish, C., Pipe, A. G., Pearson, M., Gilhespy, I., & Prescott, T. J. (2004). Empirically inspired simulated electromechanical model of the rat mystacial follicle-sinus complex. Proceedings of the Royal Society of London, 271, 2509–2516.CrossRef Mitchinson, B., Gurney, K. N., Redgrave, P., Melhuish, C., Pipe, A. G., Pearson, M., Gilhespy, I., & Prescott, T. J. (2004). Empirically inspired simulated electromechanical model of the rat mystacial follicle-sinus complex. Proceedings of the Royal Society of London, 271, 2509–2516.CrossRef
Zurück zum Zitat Nemenman, I., Bialek, W., & van Steveninck, R. (2004). Entropy and information in neural spike trains: progree on the sampling problem. Physical Review E, 69, 056111. Nemenman, I., Bialek, W., & van Steveninck, R. (2004). Entropy and information in neural spike trains: progree on the sampling problem. Physical Review E, 69, 056111.
Zurück zum Zitat Nenadic, Z., & Burdick, J. W. (2005). Spike detection the continuous wavelet transform. IEEE Transactions on Biomedical Engineering, 52(1), 74–87.PubMedCrossRef Nenadic, Z., & Burdick, J. W. (2005). Spike detection the continuous wavelet transform. IEEE Transactions on Biomedical Engineering, 52(1), 74–87.PubMedCrossRef
Zurück zum Zitat Optican, L. M., Gawne, T. J., Richmond, B. J., & Joseph, P. J. (1991). Unbiased measures of transmitted information and channel capacity from multivariate neuronal data. Biological Cybernetics, 65, 305–310.PubMedCrossRef Optican, L. M., Gawne, T. J., Richmond, B. J., & Joseph, P. J. (1991). Unbiased measures of transmitted information and channel capacity from multivariate neuronal data. Biological Cybernetics, 65, 305–310.PubMedCrossRef
Zurück zum Zitat Paninski, L. (2003). Convergence properties of three spike-triggered analysis techniques. Network, 14, 437–464.PubMedCrossRef Paninski, L. (2003). Convergence properties of three spike-triggered analysis techniques. Network, 14, 437–464.PubMedCrossRef
Zurück zum Zitat Panzeri, S., & Diamond, M. E. (2010). Information carried by population spike times in the whisker sensory cortex can be decoded without knowledge of stimulus time. Frontiers in Synaptic Neuroscience, 2(17). Panzeri, S., & Diamond, M. E. (2010). Information carried by population spike times in the whisker sensory cortex can be decoded without knowledge of stimulus time. Frontiers in Synaptic Neuroscience, 2(17).
Zurück zum Zitat Panzeri, S., Petersen, R. S., Schultz, S., Lebedev, M., & Diamond, M. E. (2001). The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 29, 769–777.PubMedCrossRef Panzeri, S., Petersen, R. S., Schultz, S., Lebedev, M., & Diamond, M. E. (2001). The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 29, 769–777.PubMedCrossRef
Zurück zum Zitat Panzeri, S., & Treves, A. (1996). Analytical estimates of limited sampling biases in different information measures. Network, 7, 87–107.CrossRef Panzeri, S., & Treves, A. (1996). Analytical estimates of limited sampling biases in different information measures. Network, 7, 87–107.CrossRef
Zurück zum Zitat Petersen, R. S., Panzeri, S., & Diamond, M. E. (2001). Population coding of stimulus location in rat somatosensory cortex. Neuron, 32, 503–514.PubMedCrossRef Petersen, R. S., Panzeri, S., & Diamond, M. E. (2001). Population coding of stimulus location in rat somatosensory cortex. Neuron, 32, 503–514.PubMedCrossRef
Zurück zum Zitat Petersen, R. S., Panzeri, S., & Diamond, M. E. (2002). Population coding in somatosensory cortex. Current Opinion in Neurobiology, 12, 441–447.PubMedCrossRef Petersen, R. S., Panzeri, S., & Diamond, M. E. (2002). Population coding in somatosensory cortex. Current Opinion in Neurobiology, 12, 441–447.PubMedCrossRef
Zurück zum Zitat Petersen, R. S., Panzeri, S., & Maravall, M. (2009). Neural coding and contextual influences in the whisker system. Biological Cybernetics, 100(6), 427–446.PubMedCrossRef Petersen, R. S., Panzeri, S., & Maravall, M. (2009). Neural coding and contextual influences in the whisker system. Biological Cybernetics, 100(6), 427–446.PubMedCrossRef
Zurück zum Zitat Rieke, F., Warland, D., Ruyter, D., van Steveninck, R., & Bialek, W. (1997). Spikes: exploring the neural code. Cambridge: MIT Press. Rieke, F., Warland, D., Ruyter, D., van Steveninck, R., & Bialek, W. (1997). Spikes: exploring the neural code. Cambridge: MIT Press.
Zurück zum Zitat Rogers, R. F., Runyan, J. D., Vaidyanathan, G., & Schwaber, J. S. (2001). Information theoretic analysis of pulmonary stretch receptor spike trains. Journal of Neurophysiology, 85, 448–461.PubMed Rogers, R. F., Runyan, J. D., Vaidyanathan, G., & Schwaber, J. S. (2001). Information theoretic analysis of pulmonary stretch receptor spike trains. Journal of Neurophysiology, 85, 448–461.PubMed
Zurück zum Zitat Sachdev, R. N. S., Berg, R. W., Champney, G., Kleinfeld, D., & Ebner, F. F. (2003). Unilateral vibrissa contact: changes in amplitude but not timing of rhythmic whisking. Somatosensory & Motor Research, 20, 163–169.CrossRef Sachdev, R. N. S., Berg, R. W., Champney, G., Kleinfeld, D., & Ebner, F. F. (2003). Unilateral vibrissa contact: changes in amplitude but not timing of rhythmic whisking. Somatosensory & Motor Research, 20, 163–169.CrossRef
Zurück zum Zitat Shoykhet, M., Doherty, D., & Simons, D. (2000). Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens Motor Res, 17, 171–180.CrossRef Shoykhet, M., Doherty, D., & Simons, D. (2000). Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens Motor Res, 17, 171–180.CrossRef
Zurück zum Zitat Shoham, S., Fellows, M. R., & Normann, R. A. (2003). Robust, automatic spike sorting using mixtures of multivariate t-distributions. Journal of Neuroscience Methods, 127, 111–122. Shoham, S., Fellows, M. R., & Normann, R. A. (2003). Robust, automatic spike sorting using mixtures of multivariate t-distributions. Journal of Neuroscience Methods, 127, 111–122.
Zurück zum Zitat Smith, L. S., & Mtetwa, N. (2007). A tool for synthesizing spike trains with realistic interference. Journal of Neuroscience Methods, 159(1), 170–180.PubMedCrossRef Smith, L. S., & Mtetwa, N. (2007). A tool for synthesizing spike trains with realistic interference. Journal of Neuroscience Methods, 159(1), 170–180.PubMedCrossRef
Zurück zum Zitat Strong, S. P., Koberle, R., van Steveninck, R., & Bialek, W. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80, 197–200. Strong, S. P., Koberle, R., van Steveninck, R., & Bialek, W. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80, 197–200.
Zurück zum Zitat Szwed, M., Bagdasarian, K., & Ahissar, E. (2003). Encoding of vibrissal active touch. Neuron, 40(3), 621–630.PubMedCrossRef Szwed, M., Bagdasarian, K., & Ahissar, E. (2003). Encoding of vibrissal active touch. Neuron, 40(3), 621–630.PubMedCrossRef
Zurück zum Zitat Victor, J. D. (2000). Asymptotic bias in information estimates and the exponential (Bell) polynomials. Neural Computation, 12, 2797–2804.PubMedCrossRef Victor, J. D. (2000). Asymptotic bias in information estimates and the exponential (Bell) polynomials. Neural Computation, 12, 2797–2804.PubMedCrossRef
Zurück zum Zitat Vincent, S. B. (1912). The function of the vibrissae in the behavior of the white rat. Behav Monog, 1, 1–181. Vincent, S. B. (1912). The function of the vibrissae in the behavior of the white rat. Behav Monog, 1, 1–181.
Zurück zum Zitat Wang, Z., & Willett, P. K. (2001). All-purpose plug-in power-law detectors for transients signals. IEEE Trans Signal Processing, 49(11), 2454–2466.CrossRef Wang, Z., & Willett, P. K. (2001). All-purpose plug-in power-law detectors for transients signals. IEEE Trans Signal Processing, 49(11), 2454–2466.CrossRef
Zurück zum Zitat Wolfe, J., Hill, D. N., Pahlavan, S., Drew, P. J., Kleinfeld, D., et al. (2008). Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biology, 6(8), e215.PubMedCrossRef Wolfe, J., Hill, D. N., Pahlavan, S., Drew, P. J., Kleinfeld, D., et al. (2008). Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biology, 6(8), e215.PubMedCrossRef
Metadaten
Titel
Neural encoding schemes of tactile information in afferent activity of the vibrissal system
verfasst von
Fernando D. Farfán
Ana L. Albarracín
Carmelo J. Felice
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2013
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-012-0408-6

Weitere Artikel der Ausgabe 1/2013

Journal of Computational Neuroscience 1/2013 Zur Ausgabe

Premium Partner