Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2024

01.03.2024

New analytical and numerical solutions to the (2+1)-dimensional conformable cpKP–BKP equation arising in fluid dynamics, plasma physics, and nonlinear optics

verfasst von: Mehmet Şenol, Mehmet Gençyiğit, Mehmet Emir Koksal, Sania Qureshi

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the \((2+1)\)-dimensional conformable combined potential Kadomtsev–Petviashvili-B-type Kadomtsev–Petviashvili (cpKP–BKP) equation. It is a linear combination of potential KP and BKP systems. This equation sheds light on hydrodynamics, plasma physics, and nonlinear optics. Firstly, conformable derivative definitions and their characteristics are provided. Next, using the modified extended tanh-function approach, accurate analytical solutions to this problem are obtained. The residual power series method (RPSM) was then used to investigate the approximate solutions to the model. A table compares the obtained findings with absolute errors. The 3D and 2D surfaces and the corresponding contour plot surfaces of specifically gathered data illustrate the obtained findings’ physical aspect. The physical activity of the problem can only be tracked with explicit solutions that have been accomplished. The results illustrate how the under-investigation and other nonlinear physical models from mathematical physics are applied in real life. All of the solutions obtained are new and do not exist in the literature. Consequently, these methods might produce notable outcomes in obtaining the exact and approximate solutions of fractional differential equations (FDEs) in various circumstances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdou, M.A.: The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190(1), 988–996 (2007)MathSciNet Abdou, M.A.: The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190(1), 988–996 (2007)MathSciNet
Zurück zum Zitat Abu Arqub, O., El-Ajou, A., Bataineh, A. S., & Hashim, I. A representation of the exact solution of generalized Lane-Emden equations using a new analytical method. Abstract and Applied Analysis. Vol. 2013. Hindawi (2013) Abu Arqub, O., El-Ajou, A., Bataineh, A. S., & Hashim, I. A representation of the exact solution of generalized Lane-Emden equations using a new analytical method. Abstract and Applied Analysis. Vol. 2013. Hindawi (2013)
Zurück zum Zitat Adel, M., Khader, M.M., Ahmad, H., Assiri, T.A.: Approximate analytical solutions for the blood ethanol concentration system and predator-prey equations by using variational iteration method. AIMS Math. 8(8), 19083–19096 (2023)MathSciNetCrossRef Adel, M., Khader, M.M., Ahmad, H., Assiri, T.A.: Approximate analytical solutions for the blood ethanol concentration system and predator-prey equations by using variational iteration method. AIMS Math. 8(8), 19083–19096 (2023)MathSciNetCrossRef
Zurück zum Zitat Ahmad, H., Khan, M.N., Ahmad, I., Omri, M., Alotaibi, M.F.: A meshless method for numerical solutions of linear and nonlinear time-fractional Black–Scholes models. AIMS Math. 8(8), 19677–19698 (2023)MathSciNetCrossRef Ahmad, H., Khan, M.N., Ahmad, I., Omri, M., Alotaibi, M.F.: A meshless method for numerical solutions of linear and nonlinear time-fractional Black–Scholes models. AIMS Math. 8(8), 19677–19698 (2023)MathSciNetCrossRef
Zurück zum Zitat Akinyemi, L., Veeresha, P., Şenol, M., & Rezazadeh, H. An efficient technique for generalized conformable Pochhammer–Chree models of longitudinal wave propagation of elastic rod. Indian J. Phys. (2022): 1–10 Akinyemi, L., Veeresha, P., Şenol, M., & Rezazadeh, H. An efficient technique for generalized conformable Pochhammer–Chree models of longitudinal wave propagation of elastic rod. Indian J. Phys. (2022): 1–10
Zurück zum Zitat Akinyemi, L., Şenol, M., Osman, M.S.: Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime. J. Ocean Eng. Sci. 7(2), 143–154 (2022)CrossRef Akinyemi, L., Şenol, M., Osman, M.S.: Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime. J. Ocean Eng. Sci. 7(2), 143–154 (2022)CrossRef
Zurück zum Zitat Akram, G., Sadaf, M., Arshed, S., Sabir, H.: Optical soliton solutions of fractional Sasa–Satsuma equation with beta and conformable derivatives. Opt. Quantum Electron. 54(11), 741 (2022) Akram, G., Sadaf, M., Arshed, S., Sabir, H.: Optical soliton solutions of fractional Sasa–Satsuma equation with beta and conformable derivatives. Opt. Quantum Electron. 54(11), 741 (2022)
Zurück zum Zitat Akram, G., Sadaf, M., Zainab, I.: Effect of a new local derivative on space-time fractional nonlinear Schrödinger equation and its stability analysis. Opt. Quantum Electron. 55(9), 834 (2023a) Akram, G., Sadaf, M., Zainab, I.: Effect of a new local derivative on space-time fractional nonlinear Schrödinger equation and its stability analysis. Opt. Quantum Electron. 55(9), 834 (2023a)
Zurück zum Zitat Akram, G., Arshed, S., Sadaf, M., Maqbool, M.: Comparison of fractional effects for Phi-4 equation using beta and M-truncated derivatives. Opt. Quantum Electron. 55(3), 282 (2023b) Akram, G., Arshed, S., Sadaf, M., Maqbool, M.: Comparison of fractional effects for Phi-4 equation using beta and M-truncated derivatives. Opt. Quantum Electron. 55(3), 282 (2023b)
Zurück zum Zitat Alam, L.M.B., Jiang, X.: Exact and explicit traveling wave solution to the time-fractional phi-four and (2+ 1) dimensional CBS equations using the modified extended tanh-function method in mathematical physics. Partial Differ. Equations Appl. Math. 4, 100039 (2021) Alam, L.M.B., Jiang, X.: Exact and explicit traveling wave solution to the time-fractional phi-four and (2+ 1) dimensional CBS equations using the modified extended tanh-function method in mathematical physics. Partial Differ. Equations Appl. Math. 4, 100039 (2021)
Zurück zum Zitat Al-Deiakeh, R., Ali, M., Alquran, M., Sulaiman, T. A., Momani, S., & Al-Smadi, M.. On finding closed-form solutions to some nonlinear fractional systems via the combination of multi-Laplace transform and the Adomian decomposition method. (2022) Al-Deiakeh, R., Ali, M., Alquran, M., Sulaiman, T. A., Momani, S., & Al-Smadi, M.. On finding closed-form solutions to some nonlinear fractional systems via the combination of multi-Laplace transform and the Adomian decomposition method. (2022)
Zurück zum Zitat Alquran, M.: Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method. J. Appl. Anal. Comput. 5(4), 589–599 (2015)MathSciNet Alquran, M.: Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method. J. Appl. Anal. Comput. 5(4), 589–599 (2015)MathSciNet
Zurück zum Zitat Alquran, M.: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay. Rom. J. Phys. 68, 106 (2023) Alquran, M.: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay. Rom. J. Phys. 68, 106 (2023)
Zurück zum Zitat Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering. Partial Differ. Equations Appl. Math. 7, 100506 (2023) Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering. Partial Differ. Equations Appl. Math. 7, 100506 (2023)
Zurück zum Zitat Alquran, M., Alsukhour, M., Ali, M., Jaradat, I.: Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems. Nonlinear Eng. 10(1), 282–292 (2021)ADSCrossRef Alquran, M., Alsukhour, M., Ali, M., Jaradat, I.: Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems. Nonlinear Eng. 10(1), 282–292 (2021)ADSCrossRef
Zurück zum Zitat Arefin, M. A., Nishu, M. A., Dhali, M. N., & Uddin, M. H.: Analysis of reliable solutions to the boundary value problems by using shooting method. Math. Probl. Eng. 2022 (2022) Arefin, M. A., Nishu, M. A., Dhali, M. N., & Uddin, M. H.: Analysis of reliable solutions to the boundary value problems by using shooting method. Math. Probl. Eng. 2022 (2022)
Zurück zum Zitat Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quantum Electron. 54(5), 309 (2022) Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quantum Electron. 54(5), 309 (2022)
Zurück zum Zitat Arefin, M.A., Saeed, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of weakly dispersive surface and internal waves in the ocean. J. Ocean Eng. Sci. 7(4), 305–312 (2022)CrossRef Arefin, M.A., Saeed, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of weakly dispersive surface and internal waves in the ocean. J. Ocean Eng. Sci. 7(4), 305–312 (2022)CrossRef
Zurück zum Zitat Arefin, M.A., Khatun, M.A., Islam, M.S., Akbar, M.A., Uddin, M.H.: Explicit soliton solutions to the fractional order nonlinear models through the Atangana beta derivative. Int. J. Theor. Phys. 62(6), 134 (2023)MathSciNetCrossRef Arefin, M.A., Khatun, M.A., Islam, M.S., Akbar, M.A., Uddin, M.H.: Explicit soliton solutions to the fractional order nonlinear models through the Atangana beta derivative. Int. J. Theor. Phys. 62(6), 134 (2023)MathSciNetCrossRef
Zurück zum Zitat Arqub, O.A.: Series solution of fuzzy differential equations under strongly generalized differentiability. J. Adv. Res. Appl. Math. 5(1), 31–52 (2013)MathSciNetCrossRef Arqub, O.A.: Series solution of fuzzy differential equations under strongly generalized differentiability. J. Adv. Res. Appl. Math. 5(1), 31–52 (2013)MathSciNetCrossRef
Zurück zum Zitat Arqub, O.A., El-Ajou, A., Momani, S.: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 293, 385–399 (2015)ADSMathSciNetCrossRef Arqub, O.A., El-Ajou, A., Momani, S.: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 293, 385–399 (2015)ADSMathSciNetCrossRef
Zurück zum Zitat Az-Zo’bi, E.A., Alzoubi, W.A., Akinyemi, L., Şenol, M., Masaedeh, B.S.: A variety of wave amplitudes for the conformable fractional (2+1)-dimensional Ito equation. Mod. Phys. Lett. B 35(15), 2150254 (2021) Az-Zo’bi, E.A., Alzoubi, W.A., Akinyemi, L., Şenol, M., Masaedeh, B.S.: A variety of wave amplitudes for the conformable fractional (2+1)-dimensional Ito equation. Mod. Phys. Lett. B 35(15), 2150254 (2021)
Zurück zum Zitat Butt, A. R., Raza, N., Ahmad, H., Ozsahin, D. U., & Tchier, F. Different solitary wave solutions and bilinear form for modified mixed-KDV equation. Optik. 287, 171031 (2023) Butt, A. R., Raza, N., Ahmad, H., Ozsahin, D. U., & Tchier, F. Different solitary wave solutions and bilinear form for modified mixed-KDV equation. Optik. 287, 171031 (2023)
Zurück zum Zitat Cenesiz, Y., Kurt, A.: New fractional complex transform for conformable fractional partial differential equations (2016) Cenesiz, Y., Kurt, A.: New fractional complex transform for conformable fractional partial differential equations (2016)
Zurück zum Zitat Grosse, H., Opelt, G.: Fractional charges in external field problems and the inverse scattering method. Nuclear Phys. B 285, 143–161 (1987)ADSMathSciNetCrossRef Grosse, H., Opelt, G.: Fractional charges in external field problems and the inverse scattering method. Nuclear Phys. B 285, 143–161 (1987)ADSMathSciNetCrossRef
Zurück zum Zitat Jafari, H., Tajadodi, H., Baleanu, D.: Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. J. Comput. Nonlinear Dyn. 9(2), 021019 (2014) Jafari, H., Tajadodi, H., Baleanu, D.: Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. J. Comput. Nonlinear Dyn. 9(2), 021019 (2014)
Zurück zum Zitat Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRef Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRef
Zurück zum Zitat Khatun, M. A., Arefin, M. A., Uddin, M. H., Inc, M., & Akbar, M. A. An analytical approach to the solution of fractional-coupled modified equal width and fractional-coupled Burgers equations. J. Ocean Eng. Sci. (2022) Khatun, M. A., Arefin, M. A., Uddin, M. H., Inc, M., & Akbar, M. A. An analytical approach to the solution of fractional-coupled modified equal width and fractional-coupled Burgers equations. J. Ocean Eng. Sci. (2022)
Zurück zum Zitat Koksal, M.E., Senol, M., Unver, A.K.: Numerical simulation of power transmission lines. Chin. J. Phys. 59, 507–524 (2019)MathSciNetCrossRef Koksal, M.E., Senol, M., Unver, A.K.: Numerical simulation of power transmission lines. Chin. J. Phys. 59, 507–524 (2019)MathSciNetCrossRef
Zurück zum Zitat Kurt, A., Şenol, M., Tasbozan, O., Chand, M.: Two reliable methods for the solution of fractional coupled Burgers’ equation arising as a model of polydispersive sedimentation. Appl. Math. Nonlinear Sci. 4(2), 523–534 (2019)MathSciNetCrossRef Kurt, A., Şenol, M., Tasbozan, O., Chand, M.: Two reliable methods for the solution of fractional coupled Burgers’ equation arising as a model of polydispersive sedimentation. Appl. Math. Nonlinear Sci. 4(2), 523–534 (2019)MathSciNetCrossRef
Zurück zum Zitat Latif, S., Sabir, Z., Raja, M.A.Z., Altamirano, G.C., Núñez, R.A.S., Gago, D.O., et al.: IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model. Multimed. Tools Appl. 82(12), 18851–18866 (2023)CrossRef Latif, S., Sabir, Z., Raja, M.A.Z., Altamirano, G.C., Núñez, R.A.S., Gago, D.O., et al.: IoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito model. Multimed. Tools Appl. 82(12), 18851–18866 (2023)CrossRef
Zurück zum Zitat Li, Y., Hao, X., Yao, R., Xia, Y., Shen, Y.: Nonlinear superposition among lump soliton, stripe solitons and other nonlinear localized waves of the (2+ 1)-dimensional cpKP-BKP equation. Math. Comput. Simul. 208, 57–70 (2023)MathSciNetCrossRef Li, Y., Hao, X., Yao, R., Xia, Y., Shen, Y.: Nonlinear superposition among lump soliton, stripe solitons and other nonlinear localized waves of the (2+ 1)-dimensional cpKP-BKP equation. Math. Comput. Simul. 208, 57–70 (2023)MathSciNetCrossRef
Zurück zum Zitat Ma, W.X.: N-soliton solution of a combined pKP–BKP equation. J. Geom. Phys. 165, 104191 (2021) Ma, W.X.: N-soliton solution of a combined pKP–BKP equation. J. Geom. Phys. 165, 104191 (2021)
Zurück zum Zitat Mamun, A. A., Ananna, S. N., An, T., Shahen, N. H. M., & Asaduzzaman, M. Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics. Heliyon 7.8, 1–10 (2021) Mamun, A. A., Ananna, S. N., An, T., Shahen, N. H. M., & Asaduzzaman, M. Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics. Heliyon 7.8, 1–10 (2021)
Zurück zum Zitat Mamun, A.A., An, T., Shahen, N.H.M., Ananna, S.N., Hossain, M.F., Muazu, T.: Exact and explicit travelling-wave solutions to the family of new 3D fractional WBBM equations in mathematical physics. Results Phys. 19, 103517 (2020) Mamun, A.A., An, T., Shahen, N.H.M., Ananna, S.N., Hossain, M.F., Muazu, T.: Exact and explicit travelling-wave solutions to the family of new 3D fractional WBBM equations in mathematical physics. Results Phys. 19, 103517 (2020)
Zurück zum Zitat Mamun, A.A., Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, M.: The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations. Results Phys. 41, 105969 (2022) Mamun, A.A., Ananna, S.N., Gharami, P.P., An, T., Asaduzzaman, M.: The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations. Results Phys. 41, 105969 (2022)
Zurück zum Zitat Mirzazadeh, M., Akinyemi, L., Şenol, M., Hosseini, K.: A variety of solitons to the sixth-order dispersive (3+ 1)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities. Optik 241, 166318 (2021) Mirzazadeh, M., Akinyemi, L., Şenol, M., Hosseini, K.: A variety of solitons to the sixth-order dispersive (3+ 1)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities. Optik 241, 166318 (2021)
Zurück zum Zitat Nisar, K.S., Akinyemi, L., Inc, M., Şenol, M., Mirzazadeh, M., Houwe, A., Abbagari, S., Rezazadeh, H.: New perturbed conformable Boussinesq-like equation: soliton and other solutions. Results Phys. 33, 105200 (2022) Nisar, K.S., Akinyemi, L., Inc, M., Şenol, M., Mirzazadeh, M., Houwe, A., Abbagari, S., Rezazadeh, H.: New perturbed conformable Boussinesq-like equation: soliton and other solutions. Results Phys. 33, 105200 (2022)
Zurück zum Zitat Ntiamoah, D., Ofori-Atta, W., & Akinyemi, L. The higher-order modified Korteweg-de Vries equation: its soliton, breather and approximate solutions. J. Ocean Eng. Sci. (2022) Ntiamoah, D., Ofori-Atta, W., & Akinyemi, L. The higher-order modified Korteweg-de Vries equation: its soliton, breather and approximate solutions. J. Ocean Eng. Sci. (2022)
Zurück zum Zitat Ozisik, M., Secer, A., Bayram, M., Yusuf, A., & Sulaiman, T. A.: Soliton solutions of the (2+ 1)-dimensional Kadomtsev–Petviashvili equation via two different integration schemes. Int. J. Mod Phys. B 2350212 (2023) Ozisik, M., Secer, A., Bayram, M., Yusuf, A., & Sulaiman, T. A.: Soliton solutions of the (2+ 1)-dimensional Kadomtsev–Petviashvili equation via two different integration schemes. Int. J. Mod Phys. B 2350212 (2023)
Zurück zum Zitat Qayyum, M., Ismail, F., Ali Shah, S. I., Sohail, M., El-Zahar, E. R., & Gokul, K. C. An application of homotopy perturbation method to fractional-order thin film flow of the Johnson–Segalman fluid model. Math. Probl. Eng. 2022 (2022) Qayyum, M., Ismail, F., Ali Shah, S. I., Sohail, M., El-Zahar, E. R., & Gokul, K. C. An application of homotopy perturbation method to fractional-order thin film flow of the Johnson–Segalman fluid model. Math. Probl. Eng. 2022 (2022)
Zurück zum Zitat Raslan, K.R., Ali, K.K., Shallal, M.A.: The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations. Chaos Solitons Fractals 103, 404–409 (2017)ADSMathSciNetCrossRef Raslan, K.R., Ali, K.K., Shallal, M.A.: The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations. Chaos Solitons Fractals 103, 404–409 (2017)ADSMathSciNetCrossRef
Zurück zum Zitat Ray, S.S., Sahoo, S.: A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada–Kotera equation. Reports Math. Phys. 75(1), 63–72 (2015)MathSciNetCrossRef Ray, S.S., Sahoo, S.: A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada–Kotera equation. Reports Math. Phys. 75(1), 63–72 (2015)MathSciNetCrossRef
Zurück zum Zitat Sabir, Z., Guirao, J.L.: A soft computing scaled conjugate gradient procedure for the fractional order majnun and layla romantic story. Mathematics 11(4), 835 (2023) Sabir, Z., Guirao, J.L.: A soft computing scaled conjugate gradient procedure for the fractional order majnun and layla romantic story. Mathematics 11(4), 835 (2023)
Zurück zum Zitat Sadiya, U., Inc, M., Arefin, M.A., Uddin, M.H.: Consistent travelling waves solutions to the non-linear time fractional Klein-Gordon and Sine-Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 16(1), 594–607 (2022)CrossRef Sadiya, U., Inc, M., Arefin, M.A., Uddin, M.H.: Consistent travelling waves solutions to the non-linear time fractional Klein-Gordon and Sine-Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 16(1), 594–607 (2022)CrossRef
Zurück zum Zitat Şenol, M., Akinyemi, L., Nkansah, H., & Adel, W. New solutions for four novel generalized nonlinear fractional fifth-order equations. J Ocean Eng Sci (2022) Şenol, M., Akinyemi, L., Nkansah, H., & Adel, W. New solutions for four novel generalized nonlinear fractional fifth-order equations. J Ocean Eng Sci (2022)
Zurück zum Zitat Senol, M.: New analytical solutions of fractional symmetric regularized-long-wave equation. Revista mexicana de física 66(3), 297–307 (2020)MathSciNetCrossRef Senol, M.: New analytical solutions of fractional symmetric regularized-long-wave equation. Revista mexicana de física 66(3), 297–307 (2020)MathSciNetCrossRef
Zurück zum Zitat Senol, M., Kurt, A., Atilgan, E., Tasbozan, O.: Numerical solutions of fractional Boussinesq–Whitham–Broer–Kaup and diffusive Predator–Prey equations with conformable derivative. New Trends Math. Sci. 7(3), 286–300 (2019)CrossRef Senol, M., Kurt, A., Atilgan, E., Tasbozan, O.: Numerical solutions of fractional Boussinesq–Whitham–Broer–Kaup and diffusive Predator–Prey equations with conformable derivative. New Trends Math. Sci. 7(3), 286–300 (2019)CrossRef
Zurück zum Zitat Senol, M., Tasbozan, O., Kurt, A.: Comparison of two reliable methods to solve fractional Rosenau–Hyman equation. Math. Methods Appl. Sci. 44(10), 7904–7914 (2021)ADSMathSciNetCrossRef Senol, M., Tasbozan, O., Kurt, A.: Comparison of two reliable methods to solve fractional Rosenau–Hyman equation. Math. Methods Appl. Sci. 44(10), 7904–7914 (2021)ADSMathSciNetCrossRef
Zurück zum Zitat Souayeh, B., Sabir, Z.: Designing hyperbolic tangent sigmoid function for solving the Williamson nanofluid model. Fractal Fract/ 7(5), 350 (2023) Souayeh, B., Sabir, Z.: Designing hyperbolic tangent sigmoid function for solving the Williamson nanofluid model. Fractal Fract/ 7(5), 350 (2023)
Zurück zum Zitat Tasbozan, O., Çenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV–mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus 131, 1–14 (2016)CrossRef Tasbozan, O., Çenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV–mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus 131, 1–14 (2016)CrossRef
Zurück zum Zitat Tuluce Demiray, S., Pandir, Y., & Bulut, H. Generalized Kudryashov method for time-fractional differential equations. Abstract and applied analysis. Vol. 2014. Hindawi, 2014 Tuluce Demiray, S., Pandir, Y., & Bulut, H. Generalized Kudryashov method for time-fractional differential equations. Abstract and applied analysis. Vol. 2014. Hindawi, 2014
Zurück zum Zitat Veeresha, P., Akinyemi, L., Oluwasegun, K., Şenol, M., Oduro, B.: Numerical surfaces of fractional Zika virus model with diffusion effect of mosquito-borne and sexually transmitted disease. Math. Methods Appl. Sci. 45(5), 2994–3013 (2022)ADSMathSciNetCrossRef Veeresha, P., Akinyemi, L., Oluwasegun, K., Şenol, M., Oduro, B.: Numerical surfaces of fractional Zika virus model with diffusion effect of mosquito-borne and sexually transmitted disease. Math. Methods Appl. Sci. 45(5), 2994–3013 (2022)ADSMathSciNetCrossRef
Zurück zum Zitat Zahran, E.H., Khater, M.M.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Modell. 40(3), 1769–1775 (2016)MathSciNetCrossRef Zahran, E.H., Khater, M.M.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Modell. 40(3), 1769–1775 (2016)MathSciNetCrossRef
Zurück zum Zitat Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Utilizing the extended tanh-function technique to scrutinize fractional order nonlinear partial differential equations. Partial Differ. Equ. Appl. Math. 8, 100563 (2023) Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Utilizing the extended tanh-function technique to scrutinize fractional order nonlinear partial differential equations. Partial Differ. Equ. Appl. Math. 8, 100563 (2023)
Zurück zum Zitat Zarin, R., Khan, M., Khan, A., & Yusuf, A.: Deterministic and fractional analysis of a newly developed dengue epidemic model. Waves Random Complex Media (2023): 1–34 Zarin, R., Khan, M., Khan, A., & Yusuf, A.: Deterministic and fractional analysis of a newly developed dengue epidemic model. Waves Random Complex Media (2023): 1–34
Zurück zum Zitat Zhang, X.T., He, J.M., Luo, S.K.: A new type of fractional Lie symmetrical method and its applications. Int. J. Theor. Phys. 56, 971–990 (2017)ADSCrossRef Zhang, X.T., He, J.M., Luo, S.K.: A new type of fractional Lie symmetrical method and its applications. Int. J. Theor. Phys. 56, 971–990 (2017)ADSCrossRef
Zurück zum Zitat Zheng, B. Exp-function method for solving fractional partial differential equations. Sci. World J. 2013 (2013) Zheng, B. Exp-function method for solving fractional partial differential equations. Sci. World J. 2013 (2013)
Metadaten
Titel
New analytical and numerical solutions to the (2+1)-dimensional conformable cpKP–BKP equation arising in fluid dynamics, plasma physics, and nonlinear optics
verfasst von
Mehmet Şenol
Mehmet Gençyiğit
Mehmet Emir Koksal
Sania Qureshi
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05935-x

Weitere Artikel der Ausgabe 3/2024

Optical and Quantum Electronics 3/2024 Zur Ausgabe