Skip to main content

2021 | OriginalPaper | Buchkapitel

3. New Developments on Ionic Liquid-Tolerant Microorganisms Leading Toward a More Sustainable Biorefinery

verfasst von : André M. da Costa Lopes, Leonardo da Costa Sousa, Rafał M. Łukasik, Ana Rita C. Morais

Erschienen in: Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The growing concerns about climate change and energy security are driving the development of bio-based technologies to produce renewable liquid fuels and chemicals. Ionic liquids (ILs) have demonstrated to be promising solvents to pretreat lignocellulosic residues, promoting efficient enzymatic hydrolysis of lignocellulosic carbohydrates into sugars, which can be further used by microorganisms to produce biofuels and other value-added chemicals. Despite their unique properties to effectively deconstruct plant cell walls, ILs show strong interactions with the pretreated biomass, and their presence is often inhibitory to cellulolytic enzymes and microorganisms. The most advanced biorefinery concepts based on IL pretreatments focus on the development of more biocompatible ILs and more robust microbial strains with higher tolerance to ILs. This chapter provides an overview and a discussion over the main efforts performed on the screening and development of IL-tolerant microbial strains, as well as in more biocompatible IL pretreatment methods. These early research advancements in this field offer a baseline and a platform for future research with the goal of improving the sustainability and economic viability of IL pretreatment-based biorefineries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
4.
Zurück zum Zitat Silveira, M. H. L., Morais, A. R. C., da Costa Lopes, A. M., et al. (2015). Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem, 8, 3366–3390. Silveira, M. H. L., Morais, A. R. C., da Costa Lopes, A. M., et al. (2015). Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem, 8, 3366–3390.
6.
Zurück zum Zitat Da Silva, A. S. A., Teixeira, R. S. S., Endo, T., et al. (2013). Continuous pretreatment of sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. Green Chemistry, 15, 1991–2001. https://doi.org/10.1039/c3gc40352a. Da Silva, A. S. A., Teixeira, R. S. S., Endo, T., et al. (2013). Continuous pretreatment of sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. Green Chemistry, 15, 1991–2001. https://​doi.​org/​10.​1039/​c3gc40352a.
7.
Zurück zum Zitat Klein-Marcuschamer, D., Simmons, B. A., & Blanch, H. W. (2011). Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining, 5, 562–569. https://doi.org/10.1002/bbb.303. Klein-Marcuschamer, D., Simmons, B. A., & Blanch, H. W. (2011). Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining, 5, 562–569. https://​doi.​org/​10.​1002/​bbb.​303.
9.
Zurück zum Zitat Sun, J., Murthy Konda, N. V. S. N., Shi, J., et al. (2016). CO2 enabled process integration for the production of cellulosic ethanol using bionic liquids. Energy & Environmental Science, 9, 2822–2834. https://doi.org/10.1039/c6ee00913a. Sun, J., Murthy Konda, N. V. S. N., Shi, J., et al. (2016). CO2 enabled process integration for the production of cellulosic ethanol using bionic liquids. Energy & Environmental Science, 9, 2822–2834. https://​doi.​org/​10.​1039/​c6ee00913a.
10.
12.
15.
Zurück zum Zitat Yang, Z. H., Zeng, R., Wang, Y., et al. (2009). Tolerance of immobilized yeast cells in imidazolium-based ionic liquids. Food Technology and Biotechnology, 47, 62–66. Yang, Z. H., Zeng, R., Wang, Y., et al. (2009). Tolerance of immobilized yeast cells in imidazolium-based ionic liquids. Food Technology and Biotechnology, 47, 62–66.
16.
Zurück zum Zitat Reddy, A. P., Simmons, C. W., Claypool, J., et al. (2012). Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate. Journal of Applied Microbiology, 113, 1362–1370. https://doi.org/10.1111/jam.12002. Reddy, A. P., Simmons, C. W., Claypool, J., et al. (2012). Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate. Journal of Applied Microbiology, 113, 1362–1370. https://​doi.​org/​10.​1111/​jam.​12002.
17.
Zurück zum Zitat Simmons, C. W., Reddy, A. P., Vandergheynst, J. S., et al. (2014). Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture. Biotechnology Progress, 30, 311–316. https://doi.org/10.1002/btpr.1859. Simmons, C. W., Reddy, A. P., Vandergheynst, J. S., et al. (2014). Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture. Biotechnology Progress, 30, 311–316. https://​doi.​org/​10.​1002/​btpr.​1859.
19.
20.
Zurück zum Zitat Ryu, S., Labbé, N., & Trinh, C. T. (2015). Simultaneous saccharification and fermentation of cellulose in ionic liquid for efficient production of α-ketoglutaric acid by Yarrowia lipolytica. Applied Microbiology and Biotechnology, 99, 4237–4244. https://doi.org/10.1007/s00253-015-6521-5. Ryu, S., Labbé, N., & Trinh, C. T. (2015). Simultaneous saccharification and fermentation of cellulose in ionic liquid for efficient production of α-ketoglutaric acid by Yarrowia lipolytica. Applied Microbiology and Biotechnology, 99, 4237–4244. https://​doi.​org/​10.​1007/​s00253-015-6521-5.
24.
Zurück zum Zitat Nakashima, K., Yamaguchi, K., Taniguchi, N., et al. (2011). Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chemistry, 13, 2948–2953. https://doi.org/10.1039/c1gc15688h. Nakashima, K., Yamaguchi, K., Taniguchi, N., et al. (2011). Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chemistry, 13, 2948–2953. https://​doi.​org/​10.​1039/​c1gc15688h.
26.
Zurück zum Zitat Xu, F., Sun, J., Konda, N. V. S. N. M., et al. (2016). Transforming biomass conversion with ionic liquids: Process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy & Environmental Science, 9, 1042–1049. https://doi.org/10.1039/c5ee02940f. Xu, F., Sun, J., Konda, N. V. S. N. M., et al. (2016). Transforming biomass conversion with ionic liquids: Process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy & Environmental Science, 9, 1042–1049. https://​doi.​org/​10.​1039/​c5ee02940f.
28.
Zurück zum Zitat Sundstrom, E., Yaegashi, J., Yan, J., et al. (2018). Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with: Rhodosporidium toruloides to produce advanced biofuels. Green Chemistry, 20, 2870–2879. https://doi.org/10.1039/c8gc00518d. Sundstrom, E., Yaegashi, J., Yan, J., et al. (2018). Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with: Rhodosporidium toruloides to produce advanced biofuels. Green Chemistry, 20, 2870–2879. https://​doi.​org/​10.​1039/​c8gc00518d.
30.
Zurück zum Zitat Fujita, Y., Ito, J., Ueda, M., et al. (2004). Synergistic Saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Applied and Environmental Microbiology, 70, 1207–1212. https://doi.org/10.1128/AEM.70.2.1207-1212.2004. Fujita, Y., Ito, J., Ueda, M., et al. (2004). Synergistic Saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Applied and Environmental Microbiology, 70, 1207–1212. https://​doi.​org/​10.​1128/​AEM.​70.​2.​1207-1212.​2004.
31.
Zurück zum Zitat Bechthold, I., Bretz, K., Kabasci, S., et al. (2008). Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chemical Engineering and Technology, 31, 647–654. Bechthold, I., Bretz, K., Kabasci, S., et al. (2008). Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chemical Engineering and Technology, 31, 647–654.
32.
Metadaten
Titel
New Developments on Ionic Liquid-Tolerant Microorganisms Leading Toward a More Sustainable Biorefinery
verfasst von
André M. da Costa Lopes
Leonardo da Costa Sousa
Rafał M. Łukasik
Ana Rita C. Morais
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_3