Skip to main content
Erschienen in: Innovative Infrastructure Solutions 3/2020

01.12.2020 | Review

New horizons in practical liquefaction prediction and mitigation measures for existing structures

verfasst von: Shinji Sassa

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents some recent research advances on practical liquefaction prediction and mitigation measures for existing structures. A new simplified generalized liquefaction prediction and assessment method that is capable of considering the influence of the waveforms and durations of earthquakes has been developed. The validity of this method adopting the effective number of waves concept has been comprehensively verified using the case histories of past major earthquakes for the cases of liquefaction and no liquefaction. A unique feature of the new simplified method is its universality, allowing it to be applied to all types of liquefaction charts based on SPT N-values, CPT q-values, and shear-wave velocities. The paper also presents a new compaction grouting that can reduce the ground upheaval quantity, which has remained an issue for more than 50 years, by 80–90%. The new compaction grouting, up-and-down method, has substantially higher efficiency of upheaval/uplift control and higher efficacy as liquefaction countermeasures around existing structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Sassa S (2020) Cascading mechanisms behind the 2018 Indonesia Sulawesi earthquake and tsunami disasters: inland/coastal liquefaction, landslides and tsunami. Springer series in geomechanics and geoengineering, Keynote Paper. https://doi.org/10.1007/978-3-030-46351-9_4 Sassa S (2020) Cascading mechanisms behind the 2018 Indonesia Sulawesi earthquake and tsunami disasters: inland/coastal liquefaction, landslides and tsunami. Springer series in geomechanics and geoengineering, Keynote Paper. https://​doi.​org/​10.​1007/​978-3-030-46351-9_​4
3.
Zurück zum Zitat Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Geotech Eng ASCE 97(9):1249–1273 Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Geotech Eng ASCE 97(9):1249–1273
4.
Zurück zum Zitat Seed HB, Tokimatsu K, Harder LF, Chung RM (1985) The influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng ASCE 111(12):1425–1445CrossRef Seed HB, Tokimatsu K, Harder LF, Chung RM (1985) The influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng ASCE 111(12):1425–1445CrossRef
5.
Zurück zum Zitat Tokimatsu K, Yoshimi Y (1983) Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils Found 23(4):56–74CrossRef Tokimatsu K, Yoshimi Y (1983) Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils Found 23(4):56–74CrossRef
6.
Zurück zum Zitat Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF Jr, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF III, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH II (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenv Eng ASCE 127(10):817–833CrossRef Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF Jr, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF III, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH II (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenv Eng ASCE 127(10):817–833CrossRef
7.
Zurück zum Zitat Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF, Kayen RE, Moss RES (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenv Eng ASCE 130(12):1314–1340CrossRef Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF, Kayen RE, Moss RES (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenv Eng ASCE 130(12):1314–1340CrossRef
8.
Zurück zum Zitat Boulanger R, Wilson D, Idriss IM (2012) Examination and Reevalaution of SPT-Based Liquefaction Triggering Case Histories. J Geotech Geoenv Eng ASCE 138(8):898–909CrossRef Boulanger R, Wilson D, Idriss IM (2012) Examination and Reevalaution of SPT-Based Liquefaction Triggering Case Histories. J Geotech Geoenv Eng ASCE 138(8):898–909CrossRef
10.
Zurück zum Zitat Robertson PK, Wride CE (1998) Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J 35(3):442–459CrossRef Robertson PK, Wride CE (1998) Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J 35(3):442–459CrossRef
11.
Zurück zum Zitat Moss RES, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A, Cetin KO (2006) CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J Geotech Geoenv Eng ASCE 132(8):1032–1051CrossRef Moss RES, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A, Cetin KO (2006) CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J Geotech Geoenv Eng ASCE 132(8):1032–1051CrossRef
13.
Zurück zum Zitat Andrus RD, Stokoe KH (2000) Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng ASCE 126(11):1015–1025CrossRef Andrus RD, Stokoe KH (2000) Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng ASCE 126(11):1015–1025CrossRef
14.
Zurück zum Zitat Kayen R, Moss RES, Thompson EM, Seed RB, Cetin KO, Der Kiureghian A, Tanaka Y, Tokimatsu K (2013) Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng ASCE 139(3):407–419CrossRef Kayen R, Moss RES, Thompson EM, Seed RB, Cetin KO, Der Kiureghian A, Tanaka Y, Tokimatsu K (2013) Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng ASCE 139(3):407–419CrossRef
15.
Zurück zum Zitat Aki K, Richards PG (2009) Quantitative seismology, 2nd edn. Univ. Science Books Aki K, Richards PG (2009) Quantitative seismology, 2nd edn. Univ. Science Books
16.
Zurück zum Zitat Kokusho T, Ito F, Nagao Y, Green A (2012) Influence of non/low-plastic fines and associated aging effects on liquefaction resistance. J Geotech Geoenviron Eng ASCE 138(6):747–756CrossRef Kokusho T, Ito F, Nagao Y, Green A (2012) Influence of non/low-plastic fines and associated aging effects on liquefaction resistance. J Geotech Geoenviron Eng ASCE 138(6):747–756CrossRef
19.
Zurück zum Zitat Sassa S, Yamazaki H, Konishi T, Adachi M, Shinsaka T, Takenouchi K, Morohashi H, Saito H, Okada H, Takada K, Watanabe S, Kaneko C, Takahashi T (2019) Development of a new compaction grouting method with improved upheaval control and efficacy of liquefaction countermeasures. Tech Note PARI 1354 Sassa S, Yamazaki H, Konishi T, Adachi M, Shinsaka T, Takenouchi K, Morohashi H, Saito H, Okada H, Takada K, Watanabe S, Kaneko C, Takahashi T (2019) Development of a new compaction grouting method with improved upheaval control and efficacy of liquefaction countermeasures. Tech Note PARI 1354
20.
Zurück zum Zitat Takenouchi K, Sassa S (2020) The new compaction grouting method with improved upheaval control. lecture notes civil eng 62: Geotechnics for sustainable infrastructure development, pp 611–618 Takenouchi K, Sassa S (2020) The new compaction grouting method with improved upheaval control. lecture notes civil eng 62: Geotechnics for sustainable infrastructure development, pp 611–618
21.
Zurück zum Zitat Takenouchi K, Sassa S, Yamazaki H, Konishi T, Shinsaka T, Kanno Y, Okada H, Takahashi T (2018) Development and field verification of a new compaction grouting method with improved upheaval control. ASCE Geotech Spec Publ 296:283–293 Takenouchi K, Sassa S, Yamazaki H, Konishi T, Shinsaka T, Kanno Y, Okada H, Takahashi T (2018) Development and field verification of a new compaction grouting method with improved upheaval control. ASCE Geotech Spec Publ 296:283–293
22.
Zurück zum Zitat Dobry R, Abdoun T (2011) An investigation into why liquefaction charts work: a necessary step toward integrating the states of art and practice. In: Proceedings of 5th international conference on earthquake geotechnical engineering, Santiago, pp 13–45 Dobry R, Abdoun T (2011) An investigation into why liquefaction charts work: a necessary step toward integrating the states of art and practice. In: Proceedings of 5th international conference on earthquake geotechnical engineering, Santiago, pp 13–45
23.
Zurück zum Zitat Schnabel PB, Lysmer J, Seed HB (1972) SHAKE—a computer program for earthquake response analysis of horizontally layered sites. University of California, Berkeley. Report EERC, pp 72–12 Schnabel PB, Lysmer J, Seed HB (1972) SHAKE—a computer program for earthquake response analysis of horizontally layered sites. University of California, Berkeley. Report EERC, pp 72–12
24.
Zurück zum Zitat Liu AH, Stewart JP, Abrahamson NA, Moriwaki Y (2001) Equivalent number of uniform stress cycles for soil liquefaction analysis. J Geotech Geoenviron Eng ASCE 127(12):1017–1026CrossRef Liu AH, Stewart JP, Abrahamson NA, Moriwaki Y (2001) Equivalent number of uniform stress cycles for soil liquefaction analysis. J Geotech Geoenviron Eng ASCE 127(12):1017–1026CrossRef
25.
Zurück zum Zitat MLIT: Ministry of Land, Infrastructure, Transport and Tourism, Japan (2007) Ground liquefaction. Technical standards and commentaries for port and harbor facilities of Japan MLIT: Ministry of Land, Infrastructure, Transport and Tourism, Japan (2007) Ground liquefaction. Technical standards and commentaries for port and harbor facilities of Japan
26.
Zurück zum Zitat MLIT: Ministry of Land, Infrastructure, Transport and Tourism, Japan (2018) Ground liquefaction. Technical standards and commentaries for port and harbor facilities of Japan MLIT: Ministry of Land, Infrastructure, Transport and Tourism, Japan (2018) Ground liquefaction. Technical standards and commentaries for port and harbor facilities of Japan
27.
Zurück zum Zitat Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes. Monograph MNO-12, Earthquake Engineering Research Institute. Oakland, CA Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes. Monograph MNO-12, Earthquake Engineering Research Institute. Oakland, CA
28.
Zurück zum Zitat Sassa S, Sekiguchi H (2001) Analysis of wave-induced liquefaction of sand beds. Géotechnique 51(2):115–126CrossRef Sassa S, Sekiguchi H (2001) Analysis of wave-induced liquefaction of sand beds. Géotechnique 51(2):115–126CrossRef
29.
Zurück zum Zitat Ishihara K, Yasuda S (1973) Sand liquefaction under random earthquake loading. In: Proceedings of 5th international conference on earthquake engineering, Rome, vol 1, pp 329–338 Ishihara K, Yasuda S (1973) Sand liquefaction under random earthquake loading. In: Proceedings of 5th international conference on earthquake engineering, Rome, vol 1, pp 329–338
30.
Zurück zum Zitat Ishihara K, Yasuda S (1975) Sand liquefaction in hollow cylinder torsion under irregular excitation. Soils Found 15(1):45–59CrossRef Ishihara K, Yasuda S (1975) Sand liquefaction in hollow cylinder torsion under irregular excitation. Soils Found 15(1):45–59CrossRef
31.
Zurück zum Zitat Meyerhof GG (1957) Discussion of session 1. In: Proceedings of 4th international conference on soil mechanics and foundation engineering, London, vol 3, p 110 Meyerhof GG (1957) Discussion of session 1. In: Proceedings of 4th international conference on soil mechanics and foundation engineering, London, vol 3, p 110
32.
Zurück zum Zitat Ishihara K (1996) Soil behaviour in earthquake geotechnics. Oxford engineering science series. Oxford University Press, Oxford Ishihara K (1996) Soil behaviour in earthquake geotechnics. Oxford engineering science series. Oxford University Press, Oxford
33.
Zurück zum Zitat Sassa S, Sekiguchi H, Miyamoto J (2001) Analysis of progressive liquefaction as a moving boundary problem. Géotechnique 51(10):847–857CrossRef Sassa S, Sekiguchi H, Miyamoto J (2001) Analysis of progressive liquefaction as a moving boundary problem. Géotechnique 51(10):847–857CrossRef
34.
Zurück zum Zitat ASCE (American Society of Civil Engineers) (2019) Compaction grouting consensus guide. ASCE/G-I 53–19:1–67 ASCE (American Society of Civil Engineers) (2019) Compaction grouting consensus guide. ASCE/G-I 53–19:1–67
35.
Zurück zum Zitat Warner J (1982) Compaction grouting—first thirty years. In: Proceedings of grouting in geotechnical engineering, pp 694–707 Warner J (1982) Compaction grouting—first thirty years. In: Proceedings of grouting in geotechnical engineering, pp 694–707
36.
Zurück zum Zitat Nichols SC, Goodings DJ (2000) Physical model testing of compaction grouting in cohesionless soil. J Geotech Geoenv Eng ASCE 126(9):848–852CrossRef Nichols SC, Goodings DJ (2000) Physical model testing of compaction grouting in cohesionless soil. J Geotech Geoenv Eng ASCE 126(9):848–852CrossRef
37.
Zurück zum Zitat Essler RD, Drooff ER, Falk E (2000) Compensation grouting: concept, theory and practice. ASCE Geotech Spec Publ 104:1–15 Essler RD, Drooff ER, Falk E (2000) Compensation grouting: concept, theory and practice. ASCE Geotech Spec Publ 104:1–15
38.
Zurück zum Zitat Baez JI, Henry JP (1993) Reduction of liquefaction potential by compaction grouting at Pinopolis West Dam, SC. ASCE Geotech Spec Publ 35:493–506 Baez JI, Henry JP (1993) Reduction of liquefaction potential by compaction grouting at Pinopolis West Dam, SC. ASCE Geotech Spec Publ 35:493–506
39.
Zurück zum Zitat Boulanger RW, Hayden RF (1995) Aspects of compaction grouting of liquefiable soil. J Geotech Eng 121(12):845–855 Boulanger RW, Hayden RF (1995) Aspects of compaction grouting of liquefiable soil. J Geotech Eng 121(12):845–855
40.
Zurück zum Zitat Miller EA, Roycroft GA (2004) Compaction grouting test program for liquefaction control. J Geotech Geoenviron Eng ASCE 130(4):355–361CrossRef Miller EA, Roycroft GA (2004) Compaction grouting test program for liquefaction control. J Geotech Geoenviron Eng ASCE 130(4):355–361CrossRef
41.
Zurück zum Zitat El-Kelesh AM, Matsui T, Tokida K (2012) Field investigation into effectiveness of compaction grouting. J Geotech Geoenviron Eng ASCE 138(4):451–460CrossRef El-Kelesh AM, Matsui T, Tokida K (2012) Field investigation into effectiveness of compaction grouting. J Geotech Geoenviron Eng ASCE 138(4):451–460CrossRef
42.
Zurück zum Zitat Brown DR, Warner J (1973) Compaction grouting. J Soil Mech Found Div 99(8):589–601 Brown DR, Warner J (1973) Compaction grouting. J Soil Mech Found Div 99(8):589–601
43.
Zurück zum Zitat Warner J (1992) Compaction grout: rheology vs effectiveness. ASCE Geotech Spec Publ 30:229–239 Warner J (1992) Compaction grout: rheology vs effectiveness. ASCE Geotech Spec Publ 30:229–239
44.
Zurück zum Zitat El-Kelesh AM, Mossaad ME, Basha IM (2001) Model of compaction grouting. J Geotech Geoenviron Eng ASCE 127(11):955–964CrossRef El-Kelesh AM, Mossaad ME, Basha IM (2001) Model of compaction grouting. J Geotech Geoenviron Eng ASCE 127(11):955–964CrossRef
45.
Zurück zum Zitat Graf ED (1969) Compaction grouting technique and observations. J Soil Mech Found Div 95(5):1151–1158 Graf ED (1969) Compaction grouting technique and observations. J Soil Mech Found Div 95(5):1151–1158
46.
Zurück zum Zitat Geraci J (2005) Compaction grouting for in-situ ground improvement. In: Structure magazine, pp 30–33 Geraci J (2005) Compaction grouting for in-situ ground improvement. In: Structure magazine, pp 30–33
Metadaten
Titel
New horizons in practical liquefaction prediction and mitigation measures for existing structures
verfasst von
Shinji Sassa
Publikationsdatum
01.12.2020
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 3/2020
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-020-00324-9

Weitere Artikel der Ausgabe 3/2020

Innovative Infrastructure Solutions 3/2020 Zur Ausgabe