Skip to main content

2013 | OriginalPaper | Buchkapitel

New Ultrasonic Methodology for Determining Temperature Gradient and Its Application to Heated Materials Monitoring

verfasst von : I. Ihara, M. Takahashi, H. Yamada

Erschienen in: Nondestructive Testing of Materials and Structures

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In various fields of science and engineering, temperature measurement has become one of the most fundamental and important issues. For example, in industrial materials processing, it is required to measure the temperature gradient and its transient variation in the material being processed at high temperatures because the temperature state during processing crucially influences the quality of final products. Such temperature measurements are also required for making structural health monitoring at high temperature environments. In this work, a new ultrasonic method for monitoring temperature gradient of a material being heated or cooled is presented. The principle of the method is based on the temperature dependence of the velocity of ultrasonic wave propagating through a material. An effective analysis method coupled with a finite difference calculation is developed to determine one-dimensional temperature distributions in a heated material. To verify the practical feasibility of the method, some experiments have been made. A single side of a steel plate of 30 mm thickness is heated by contacting with a heater and subsequently cooled down by water. Ultrasonic pulse-echo measurements are performed during heating and cooling, and the measured transit time of ultrasound across the steel is used for the analysis to determine the temperature gradient in the steel. Furthermore, rapid heating by contacting with molten aluminium at 700 degree C and rapid cooling by contacting with an ice are evaluated and the transient variations of the temperature gradient in the steel have successfully been monitored.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
[1].
Zurück zum Zitat Simon, C., VanBaren, P., and Ebbini, E. (1998), IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 45, no. 4, p.1088.CrossRef Simon, C., VanBaren, P., and Ebbini, E. (1998), IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 45, no. 4, p.1088.CrossRef
[2].
Zurück zum Zitat Chen, T.-F., Nguyen, K.-T., Wen, S.-S., and Jen, C.-K. (1999), Meas. Sci. Technol., vol. 10, p. 139.CrossRef Chen, T.-F., Nguyen, K.-T., Wen, S.-S., and Jen, C.-K. (1999), Meas. Sci. Technol., vol. 10, p. 139.CrossRef
[3].
Zurück zum Zitat Balasubramainiam, K., Shah, V. V., Costley, R. D., Boudreaux, G., and Singh, J. P. (1999), Rev. Sci. Instrum., vol. 70, no. 12, p.4618.CrossRef Balasubramainiam, K., Shah, V. V., Costley, R. D., Boudreaux, G., and Singh, J. P. (1999), Rev. Sci. Instrum., vol. 70, no. 12, p.4618.CrossRef
[4].
Zurück zum Zitat Tsai, W. -Y., Chen, H. -C., and Liao, T. -L. (2005), Meas. Sci. Technol., vol. 16, p. 548.CrossRef Tsai, W. -Y., Chen, H. -C., and Liao, T. -L. (2005), Meas. Sci. Technol., vol. 16, p. 548.CrossRef
[5].
Zurück zum Zitat Mizutani, K., Kawabe, S., Saito, I., and Masuyama, H. (2006), Jpn. J. Appl. Phys., vol. 45–5B, p. 4516.CrossRef Mizutani, K., Kawabe, S., Saito, I., and Masuyama, H. (2006), Jpn. J. Appl. Phys., vol. 45–5B, p. 4516.CrossRef
[6].
Zurück zum Zitat Huang, K. N., Huang, C. F., Li, Y. C., and Young, M. S. (2002), Rev. Sci. Instrum., vol. 73, no. 11, p. 4022.CrossRef Huang, K. N., Huang, C. F., Li, Y. C., and Young, M. S. (2002), Rev. Sci. Instrum., vol. 73, no. 11, p. 4022.CrossRef
[7].
Zurück zum Zitat Takahashi, M., and Ihara, I. (2008), Jpn. J. App. Phys., vol. 47, p. 3894.CrossRef Takahashi, M., and Ihara, I. (2008), Jpn. J. App. Phys., vol. 47, p. 3894.CrossRef
[8].
Zurück zum Zitat Takahashi, M., and Ihara, I. (2008), Mod. Phys. Lett. B, vol. 22, no. 11, p. 971.CrossRef Takahashi, M., and Ihara, I. (2008), Mod. Phys. Lett. B, vol. 22, no. 11, p. 971.CrossRef
[9].
Zurück zum Zitat Takahashi, M., and Ihara, I. (2009), Jpn. J. App. Phys., vol. 48, no. 7, GB04.CrossRef Takahashi, M., and Ihara, I. (2009), Jpn. J. App. Phys., vol. 48, no. 7, GB04.CrossRef
[10] .
Zurück zum Zitat Meyers, G. E. (1971), Analytical Methods in Conduction Heat Transfer, McGraw-Hill, New York, p. 10. Meyers, G. E. (1971), Analytical Methods in Conduction Heat Transfer, McGraw-Hill, New York, p. 10.
[11] .
Zurück zum Zitat Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (2003), Numerical Recipes in C++, Cambridge University, New York, p. 849. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (2003), Numerical Recipes in C++, Cambridge University, New York, p. 849.
Metadaten
Titel
New Ultrasonic Methodology for Determining Temperature Gradient and Its Application to Heated Materials Monitoring
verfasst von
I. Ihara
M. Takahashi
H. Yamada
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0723-8_76