Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

New upper bounds for \(\|A^{-1}\|_{\infty}\) of strictly diagonally dominant M-matrices

verfasst von: Feng Wang, De-shu Sun, Jian-xing Zhao

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new upper bound for the infinity norm of inverse matrix of a strictly diagonally dominant M-matrix is given, and the lower bound for the minimum eigenvalue of the matrix is obtained. Furthermore, an upper bound for the infinity norm of inverse matrix of a strictly α-diagonally dominant M-matrix is presented. Finally, we give numerical examples to illustrate our results.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors contributed equally to this work. All authors read and approved the final manuscript.

1 Introduction

Let \(R^{n\times n}\) denote the set of all \(n\times n\) real matrices, \(N=\{1, 2, \ldots, n\}\) and \(A=(a_{ij})\in R^{n\times n}\) (\(n\geq2\)). A matrix A is called a nonsingular M-matrix if there exist a nonnegative matrix B and some real number s such that
$$ A=sI-B,\quad s>\rho(B), $$
where I is the identity matrix, \(\rho(B)\) is the spectral radius of B. \(\tau(A)\) denotes the minimum of all real eigenvalues of the nonsingular M-matrix A.
Very often in numerical analysis, one needs a bound for the condition number of a square \(n\times n\) matrix A, \(\operatorname{Cond}(A)=\|A\|_{\infty}\cdot\|A^{-1}\|_{\infty}\). Bounding \(\|A\|_{\infty}\) is not usually difficult, but a bound of \(\|A^{-1}\|_{\infty}\) is not usually available unless \(A^{-1}\) is known explicitly.
However, if \(A=(a_{ij})\in R^{n\times n}\) is a strictly diagonally dominant matrix, Varah [1] bound \(\|A^{-1}\|_{\infty}\) quite easily by the following result:
$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq \frac{1}{\min_{i\in N} \{|a_{ii}|-\sum_{j\neq i}|a_{ij}| \}}. $$
(1)
Remark 1
[2]
If the diagonal dominance of A is weak, i.e., \(\min_{i\in N} \{|a_{ii}|-\sum_{j\neq i}|a_{ij}| \}\) is small, then using (1) in estimating \(\|A^{-1}\|_{\infty}\), the bound may yield a large value.
In 2007, Cheng and Huang [2] presented the following results.
If \(A=(a_{ij})\) is a strictly diagonally dominant M-matrix, then
$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq \frac{1}{a_{11}(1-u_{1}l_{1})}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}(1-u_{i}l_{i})} \prod_{j=1}^{i-1} \biggl(1+ \frac{u_{j}}{1-u_{j}l_{j}} \biggr) \Biggr]. $$
(2)
If \(A=(a_{ij})\) is a strictly diagonally dominant M-matrix, then the bound in (2) is sharper than that in Theorem 3.3 in [3], i.e.,
$$ \frac{1}{a_{11}(1-u_{1}l_{1})}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}(1-u_{i}l_{i})} \prod_{j=1}^{i-1} \biggl(1+ \frac{u_{j}}{1-u_{j}l_{j}} \biggr) \Biggr]< \sum_{i=1}^{n} \Biggl[a_{ii} \prod_{j=1}^{i}(1-u_{j}) \Biggr]^{-1} . $$
In 2009, Wang [4] obtained the better result: Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then
$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}< \frac{1}{a_{11}(1-u_{1}l_{1})}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}(1-u_{i}l_{i})} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. $$
(3)
In this paper, we present new upper bounds for \(\|A^{-1}\|_{\infty}\) of a strictly (α-)diagonally dominant M-matrix A, which improved the above results. As an application, a lower bound of \(\tau(A)\) is obtained.
For convenience, for \(i,j,k \in N\), \(j\neq i\), denote
$$\begin{aligned}& R_{i}(A)=\sum_{j\neq i} |a_{ij}|, \qquad C_{i}(A)=\sum_{j\neq i} |a_{ji}|,\qquad d_{i}=\frac{R_{i}(A)}{|a_{ii}|}, \\& J(A)=\{i\in N| d_{i}< 1\},\qquad u_{i}=\frac{\sum_{j=i+1}^{n} |a_{ij}|}{|a_{ii}|},\qquad l_{k}=\max _{k\leq i\leq n} \biggl\{ \frac{\sum_{k\leq j\leq n} |a_{ij}|}{|a_{ii}|} \biggr\} , \\& l_{n}=u_{n}=0, \qquad r_{ji}=\frac {|a_{ji}|}{|a_{jj}|-\sum_{k\neq{j,i}}|a_{jk}|},\qquad r_{i}=\max_{j\neq{i}}\{{r_{ji}}\}, \\& \sigma_{ji}=\frac{|a_{ji}|+\sum_{k\neq{j,i}}|a_{jk}|r_{i}}{|a_{jj}|},\qquad h_{i}=\max _{j\neq i } \biggl\{ \frac{|a_{ji}|}{ |a_{jj}|\sigma_{ji}-\sum_{k\neq j, i} |a_{jk}|\sigma_{ki}} \biggr\} , \\& u_{ji}=\frac{|a_{ji}|+\sum_{k\neq{j,i}}|a_{jk}|\sigma_{ki}h_{i}}{|a_{jj}|},\qquad \omega_{ji}= \frac{|a_{ji}|+\sum_{k\neq{j,i}}|a_{jk}|u_{ki}}{|a_{jj}|}. \end{aligned}$$
We will denote by \(A^{(n_{1},n_{2})}\) the principal submatrix of A formed from all rows and all columns with indices between \(n_{1}\) and \(n_{2}\) inclusively; e.g., \(A^{(2,n)}\) is the submatrix of A obtained by deleting the first row and the first column of A.
Definition 1
[3]
\(A=(a_{ij})\in R^{n\times n}\) is a weakly chained diagonally dominant if for all \(i\in N\), \(d_{i}\leq1\) and \(J(A)\neq\phi\), and for all \(i\in N\), \(i\notin J(A)\), there exist indices \(i_{1}, i_{2},\ldots,i_{k}\) in N with \(a_{i_{r},i_{r+1}}\neq0\), \(0\leq r\leq k-1\), where \(i_{0}=i\) and \(i_{k}\in J(A)\).
Definition 2
[5]
\(A=(a_{ij})\in R^{n\times n}\) is called a strictly α-diagonally dominant matrix if there exists \(\alpha\in[0,1]\) such that
$$ |a_{ii}|> \alpha R_{i}(A)+(1- \alpha)C_{i}(A),\quad \forall i\in N. $$

2 Upper bounds for \(\|A^{-1}\|_{\infty}\) of a strictly diagonally dominant M-matrix

In this section, we give several bounds of \(\|A^{-1}\|_{\infty}\) and \(\tau(A)\) for a strictly diagonally dominant M-matrix A.
Lemma 1
[2]
Let \(A=(a_{ij})\) be a weakly chained diagonally dominant M-matrix, \(B=A^{(2,n)}\), \(A^{-1}=(\alpha_{ij})\), and \(B^{-1}=(\beta_{ij})\). Then, for \(i,j=2,\ldots,n\),
$$\begin{aligned}& \alpha_{11}=\frac{1}{\triangle},\qquad \alpha_{i1}= \frac{1}{\triangle}\sum_{k=2}^{n} \beta_{ik}(-a_{k1}),\qquad \alpha_{1j}= \frac{1}{\triangle}\sum_{k=2}^{n} \beta_{kj}(-a_{1k}), \\& \alpha_{ij}=\beta_{ij}+\alpha_{1j}\sum _{k=2}^{n}\beta_{ik}(-a_{k1}), \qquad \triangle=a_{11}-\sum_{k=2}^{n}a_{1k} \Biggl(\sum_{i=2}^{n}\beta _{ki}a_{i1} \Biggr)>0. \end{aligned}$$
Furthermore, if \(J(A)=N\), then
$$ \triangle\geq a_{11}(1-d_{1}l_{1})\geq a_{11}(1-d_{1}). $$
Lemma 2
[2]
If \(A=(a_{ij})\) is a strictly diagonally dominant M-matrix, then
$$\triangle\geq a_{11}(1-d_{1}l_{1})> a_{11}(1-d_{1})>0. $$
Lemma 3
Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then, for \(A^{-1}=(\alpha_{ij})\),
$$ \alpha_{ji}\leq\omega_{ji}\alpha_{ii}, \quad i, j\in N, j\neq i. $$
Proof
This proof is similar to the one of Lemma 2 in [6]. □
Lemma 4
Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then, for \(A^{-1}=(\alpha_{ij})\),
$$ \frac{1}{a_{ii}}\leq\alpha_{ii}\leq \frac{1}{a_{ii}-\sum_{j\neq i}|a_{ij}|\omega_{ji}},\quad i\in N. $$
Proof
This proof is similar to the one of Lemma 2.3 in [7]. □
Lemma 5
[3]
Let \(A=(a_{ij})\) be a weakly chained diagonally dominant M-matrix, \(A^{-1}=(\alpha_{ij})\), and \(\tau=\tau(A)\). Then
$$ \tau\leq\min_{i\in N} \{a_{ii} \},\qquad \tau\leq\max _{i\in N} \biggl\{ \sum_{j\in N}a_{ij} \biggr\} ,\qquad \tau\geq\min_{i\in N} \biggl\{ \sum _{j\in N}a_{ij} \biggr\} ,\quad \frac{1}{M}\leq \tau\leq\frac{1}{m}, $$
where
$$M=\max_{i\in N} \biggl\{ \sum_{j\in N} \alpha_{ij} \biggr\} =\bigl\Vert A^{-1}\bigr\Vert _{\infty},\qquad m=\min_{i\in N} \biggl\{ \sum _{j\in N}\alpha_{ij} \biggr\} . $$
Theorem 1
Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix, \(B=A^{(2,n)}\), \(A^{-1}=(\alpha_{ij})\), and \(B^{-1}=(\beta_{ij})\). Then
$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq \frac{1}{a_{11}-\sum_{j=2}^{n}|a_{1j}|\omega_{j1}}+\frac{1}{1-d_{1}l_{1}}\bigl\Vert B^{-1}\bigr\Vert _{\infty}. $$
Proof
Let
$$\eta_{i}=\sum_{j=1}^{n} \alpha_{ij},\qquad M_{A}=\bigl\Vert A^{-1}\bigr\Vert _{\infty}, \qquad M_{B}=\bigl\Vert B^{-1}\bigr\Vert _{\infty}. $$
Then
$$M_{A}=\max_{i\in N}\{\eta_{i}\}, \qquad M_{B}=\max_{2\leq i\leq n} \Biggl\{ \sum _{j=2}^{n}\beta_{ij} \Biggr\} . $$
By Lemma 1, Lemma 2, and Lemma 4,
$$\begin{aligned} \eta_{1} =&\alpha_{11}+\sum _{j=2}^{n}\alpha_{1j} =\frac{1}{\triangle}+ \frac{1}{\triangle}\sum_{k=2}^{n}(-a_{1k}) \sum_{j=2}^{n}\beta_{kj} \leq \frac{1}{\triangle}+\frac{1}{\triangle}a_{11}d_{1}M_{B} \\ \leq&\frac{1}{\triangle}+\frac{d_{1}M_{B}}{1-d_{1}l_{1}} \leq\frac{1}{a_{11}-\sum_{j=2}^{n}|a_{1j}|\omega_{j1}}+ \frac{M_{B}}{1-d_{1}l_{1}}. \end{aligned}$$
(4)
Let \(2\leq i\leq n\). Then, by Lemma 1 and Lemma 3,
$$\begin{aligned}& \sum_{k=2}^{n}\beta_{ik}(-a_{k1})= \triangle\cdot\alpha_{i1}\leq \triangle \omega_{i1} \alpha_{11}=\omega_{i1}< 1, \\& \alpha_{ij}=\beta_{ij}+\alpha_{1j}\sum _{k=2}^{n}\beta_{ik}(-a_{k1})\leq \beta_{ij}+\alpha_{1j}\omega_{i1}< \beta_{ij}+\alpha_{1j}. \end{aligned}$$
Therefore, for \(2\leq i\leq n\), we have
$$\begin{aligned} \eta_{i} =&\alpha_{i1}+\sum _{j=2}^{n}\alpha_{ij} \leq \alpha_{11}\omega_{i1}+\sum_{j=2}^{n} (\beta_{ij}+\alpha_{1j}\omega _{i1} ) = \eta_{1}\omega_{i1}+M_{B} \leq \eta_{1}l_{1}+M_{B} \\ \leq& \biggl(\frac{1}{\triangle}+\frac{d_{1}M_{B}}{1-d_{1}l_{1}} \biggr)l_{1}+M_{B} \leq\frac{1}{\triangle}+\frac{M_{B}}{1-d_{1}l_{1}} \leq\frac{1}{a_{11}-\sum_{j=2}^{n}|a_{1j}|\omega_{j1}}+ \frac{M_{B}}{1-d_{1}l_{1}}. \end{aligned}$$
(5)
Furthermore, from (4) and (5), we obtain
$$ M_{A}\leq \frac{1}{a_{11}-\sum_{j=2}^{n}|a_{1j}|\omega_{j1}}+\frac{1}{1-d_{1}l_{1}}\bigl\Vert B^{-1}\bigr\Vert _{\infty}. $$
(6)
The result follows. □
Theorem 2
Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then
$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq \frac{1}{a_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. $$
(7)
Proof
The result follows by applying the principle of mathematical induction with respect to k on \(A^{(k,n)}\) in (6). □
By Lemma 5 and Theorem 1, we can obtain a new bound of \(\tau(A)\).
Corollary 1
If \(A=(a_{ij})\) is a strictly diagonally dominant M-matrix, then
$$ \tau(A)\geq \Biggl\{ \frac{1}{a_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr] \Biggr\} ^{-1}. $$
Theorem 3
Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then the bound in (7) is better than that in (3), i.e.,
$$\begin{aligned}& \frac{1}{a_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr] \\& \quad \leq\frac{1}{a_{11}(1-u_{1}l_{1})}+\sum_{i=2}^{n} \Biggl[\frac{1}{a_{ii}(1-u_{i}l_{i})} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. \end{aligned}$$
Proof
Since A is a strictly diagonally dominant matrix, so \(0\leq u_{j}\), \(l_{j}<1\) for all j. By the definition of \(u_{i}\), \(l_{i}\), \(\omega_{ki}\), we have \(\omega_{ki}\leq l_{i}\) and \(a_{ii}u_{i}=\sum_{k=i+1}^{n}|a_{ik}|\) for all i. Obviously, the result follows. □

3 Upper bounds for \(\|A^{-1}\|_{\infty}\) of a strictly α-diagonally dominant M-matrix

In this section, we present an upper bound of \(\|A^{-1}\|_{\infty}\) for a strictly α-diagonally dominant M-matrix A.
Lemma 6
[8]
Let \(A, B\in R^{n\times n}\). If A and \(A-B\) are nonsingular, then
$$ (A-B)^{-1}=A^{-1}+A^{-1}B \bigl(I-A^{-1}B\bigr)^{-1}A^{-1}. $$
Lemma 7
Let \(A=(a_{ij})\in R^{n\times n}\) be a strictly diagonally dominant M-matrix, and \(B=(b_{ij}) \in R^{n\times n}\). If \(\varphi_{0} \cdot \|B\|_{\infty}<1\), then \(\|A^{-1}B\|_{\infty}<1\), where
$$ \varphi_{0}=\frac{1}{a_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. $$
Proof
By Theorem 2, we get
$$ \bigl\Vert A^{-1}B\bigr\Vert _{\infty}\leq\bigl\Vert A^{-1}\bigr\Vert _{\infty}\|B\|_{\infty}\leq \varphi_{0} \|B\|_{\infty}< 1. $$
The result follows. □
Lemma 8
[8]
If \(\|A^{-1}\|_{\infty}<1\), then \(I-A\) is nonsingular and
$$ \bigl\Vert (I-A)^{-1}\bigr\Vert _{\infty}\leq \frac{1}{1-\|A\|_{\infty}}. $$
Theorem 4
Let \(A=(a_{ij})\in R^{n\times n}\) be a strictly α-diagonally dominant matrix, \(\alpha\in(0, 1]\) and A be an M-matrix. If \(\{ i\in N| R_{i}(A)>C_{i}(A) \}\neq\emptyset\), and
$$ \varphi_{1}< \frac{1}{ \max_{1\leq i\leq n}\alpha(R_{i}(A)-C_{i}(A)) }, $$
then
$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}< \frac{\varphi_{1}}{1-\varphi_{1} \max_{1\leq i\leq n}\alpha(R_{i}(A)-C_{i}(A))}, $$
(8)
where
$$\begin{aligned}& \varphi_{1}=\frac{1}{\nu_{1}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{\nu_{i}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr], \\& \nu_{i}=\max_{1\leq i\leq n} \bigl\{ a_{ii}, a_{ii}+ \alpha\bigl(R_{i}(A)-C_{i}(A)\bigr) \bigr\} . \end{aligned}$$
Proof
Let \(A=B-C\), where \(B=(b_{ij})\), \(C=(c_{ij})\), and
$$\begin{aligned}& b_{ij}=\left \{ \begin{array}{l@{\quad}l} a_{ii}+\alpha(R_{i}(A)-C_{i}(A)), & i=j, R_{i}(A)>C_{i}(A), \\ a_{ij}, &\mbox{otherwise}, \end{array} \right . \\& c_{ij}=\left \{ \begin{array}{l@{\quad}l} \alpha(R_{i}(A)-C_{i}(A)), & i=j, R_{i}(A)>C_{i}(A), \\ 0, &\mbox{otherwise}. \end{array} \right . \end{aligned}$$
For any \(i\in\{ i\in N| R_{i}(A)>C_{i}(A)\}\), we get
$$ b_{ii}=a_{ii}+\alpha\bigl(R_{i}(A)-C_{i}(A) \bigr)>R_{i}(A)=R_{i}(B). $$
For any \(i\in\{ i\in N| R_{i}(A)\leq C_{i}(A)\}\), we have
$$ b_{ii}=a_{ii}>\alpha R_{i}(A)+(1- \alpha)C_{i}(A) \geq R_{i}(A)=R_{i}(B). $$
Thus, B is a strictly diagonal dominant M-matrix. By Lemma 7, we get \(\|B^{-1}C\|_{\infty}<1\). By Lemma 6, Lemma 8, and Theorem 2, we have
$$\begin{aligned} \bigl\Vert B^{-1}\bigr\Vert _{\infty} \leq& \frac{1}{b_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{b_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr] \\ =& \frac{1}{\nu_{1}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{\nu_{i}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. \end{aligned}$$
Therefore
$$ \bigl\Vert B^{-1}C\bigr\Vert _{\infty}\leq \varphi_{1} \max_{1\leq i\leq n}\alpha\bigl(R_{i}(A)-C_{i}(A) \bigr) . $$
Furthermore, we have
$$\begin{aligned} \bigl\Vert A^{-1}\bigr\Vert _{\infty} =&\bigl\Vert (B-C)^{-1}\bigr\Vert _{\infty}=\bigl\Vert B^{-1}+B^{-1}C\bigl(I-B^{-1}C\bigr)^{-1}B^{-1} \bigr\Vert _{\infty}\\ \leq&\bigl\Vert B^{-1}\bigr\Vert _{\infty}+\bigl\Vert B^{-1}C\bigr\Vert _{\infty}\cdot\bigl\Vert \bigl(I-B^{-1}C\bigr)^{-1}\bigr\Vert _{\infty}\cdot\bigl\Vert B^{-1}\bigr\Vert _{\infty}\\ \leq&\bigl\Vert B^{-1}\bigr\Vert _{\infty}+ \frac{\|B^{-1}C\|_{\infty}}{1-\|B^{-1}C\|_{\infty}} \bigl\Vert B^{-1}\bigr\Vert _{\infty}\\ =& \frac{\|B^{-1}\|_{\infty}}{1-\|B^{-1}C\|_{\infty}} \\ \leq&\frac{\varphi_{1}}{1-\varphi_{1} \max_{1\leq i\leq n}\alpha(R_{i}(A)-C_{i}(A))}. \end{aligned}$$
The result follows. □

4 Numerical examples

In this section, we present numerical examples to illustrate the advantages of our derived results.
Example 1
Let
$$ A=\left ( \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} 37&-1&-3&-1&-2&-4&-2&-3&-1&-5\\ -4&30&-1&-2&-3&-4&0&-1&-1&-3\\ -1&-3&30&-4&0&-2&-3&-2&-4&-5\\ -3&-5&-3&40&-1&-2&-3&-4&-2&-4\\ -5&-2&0&-5&25.01&-5&0&-1&-5&-2\\ -2&0&-2&-1&-4&30&-5&-2&-5&-3\\ 0&-3&-1&-1&-2&-4&40&-2&-3&-4\\ -1&-3&-2&-3&-2&-1&-2&40&-4&-1\\ -2&-4&-3&-1&-3&-3&-4&0&27&-2\\ -2&-1&0&-2&-4&-3&-1&0&-3&25 \end{array} \right ). $$
It is easy to see that A is a strictly diagonally dominant M-matrix. By calculations with Matlab 7.1, we have
$$\begin{aligned}& \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq100 \quad ( \mbox{by (1)}),\qquad \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq 11.2862\quad (\mbox{by (2)}), \\& \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq5.2305\quad ( \mbox{by (3)}),\qquad \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq 1.0003\quad (\mbox{by (7)}), \end{aligned}$$
respectively. It is obvious that the bound in (7) is the best result.
Example 2
Let
$$ A=\left ( \begin{array}{@{}c@{\quad}c@{\quad}c@{}} 2&-1&-1\\ -1&2&-1\\ -0.5&-0.5&2 \end{array} \right ). $$
It is easy to see that A is a strictly α-diagonally dominant M-matrix by taking \(\alpha=0.5\), and A is not a strictly diagonally dominant matrix. Thus the bound of \(\|A^{-1}\|_{\infty}\) cannot be estimated by (1), (2), and (3), but it can be estimated by (8). By (8), we get
$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq8.0322. $$

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11361074, 71161020) and IRTSTYN, Applied Basic Research Programs of Science and Technology Department of Yunnan Province (2013FD002).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors contributed equally to this work. All authors read and approved the final manuscript.
Literatur
2.
Zurück zum Zitat Cheng, GH, Huang, TZ: An upper bound for ∥A −1∥∞ of strictly diagonally dominant M-matrices. Linear Algebra Appl. 426, 667-673 (2007) CrossRefMATHMathSciNet Cheng, GH, Huang, TZ: An upper bound for ∥A −1 of strictly diagonally dominant M-matrices. Linear Algebra Appl. 426, 667-673 (2007) CrossRefMATHMathSciNet
3.
Zurück zum Zitat Shivakumar, PN, Williams, JJ, Ye, Q, Marinov, CA: On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics. SIAM J. Matrix Anal. Appl. 17, 298-312 (1996) CrossRefMATHMathSciNet Shivakumar, PN, Williams, JJ, Ye, Q, Marinov, CA: On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics. SIAM J. Matrix Anal. Appl. 17, 298-312 (1996) CrossRefMATHMathSciNet
4.
Zurück zum Zitat Wang, P: An upper bound for ∥A −1∥∞ of strictly diagonally dominant M-matrices. Linear Algebra Appl. 431, 511-517 (2009) CrossRefMATHMathSciNet Wang, P: An upper bound for ∥A −1 of strictly diagonally dominant M-matrices. Linear Algebra Appl. 431, 511-517 (2009) CrossRefMATHMathSciNet
5.
Zurück zum Zitat Zhang, YL, Mo, HM, Liu, JZ: α-Diagonal dominance and criteria for generalized strictly diagonally dominant matrices. Numer. Math. 31, 119-128 (2009) MATHMathSciNet Zhang, YL, Mo, HM, Liu, JZ: α-Diagonal dominance and criteria for generalized strictly diagonally dominant matrices. Numer. Math. 31, 119-128 (2009) MATHMathSciNet
6.
Zurück zum Zitat Li, YT, Wang, F, Li, CQ, Zhao, JX: Some new bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and an inverse M-matrix. J. Inequal. Appl. 2013, 480 (2013) CrossRefMathSciNet Li, YT, Wang, F, Li, CQ, Zhao, JX: Some new bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and an inverse M-matrix. J. Inequal. Appl. 2013, 480 (2013) CrossRefMathSciNet
7.
Zurück zum Zitat Li, YT, Chen, FB, Wang, DF: New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 430, 1423-1431 (2009) CrossRefMATHMathSciNet Li, YT, Chen, FB, Wang, DF: New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 430, 1423-1431 (2009) CrossRefMATHMathSciNet
8.
Zurück zum Zitat Xu, S: Theory and Methods about Matrix Computation. Tsinghua University Press, Beijing (1986) Xu, S: Theory and Methods about Matrix Computation. Tsinghua University Press, Beijing (1986)
Metadaten
Titel
New upper bounds for of strictly diagonally dominant M-matrices
verfasst von
Feng Wang
De-shu Sun
Jian-xing Zhao
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0696-2

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe

Premium Partner