Skip to main content
Erschienen in: Dynamic Games and Applications 2/2022

11.11.2021

Newton’s Method, Bellman Recursion and Differential Dynamic Programming for Unconstrained Nonlinear Dynamic Games

verfasst von: Bolei Di, Andrew Lamperski

Erschienen in: Dynamic Games and Applications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic games arise when multiple agents with differing objectives control a dynamic system. They model a wide variety of applications in economics, defense, energy systems and etc. However, compared to single-agent control problems, the computational methods for dynamic games are relatively limited. As in the single-agent case, only specific dynamic games can be solved exactly, so approximation algorithms are required. In this paper, we show how to extend the Newton step algorithm, the Bellman recursion and the popular differential dynamic programming (DDP) for single-agent optimal control to the case of full-information nonzero sum dynamic games. We show that the Newton’s step can be solved in a computationally efficient manner and inherits its original quadratic convergence rate to open-loop Nash equilibria, and that the approximated Bellman recursion and DDP methods are very similar and can be used to find local feedback \(O(\varepsilon ^2)\)-Nash equilibria. Numerical examples are provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/ Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://​www.​tensorflow.​org/​
2.
Zurück zum Zitat Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M (2018) CasADi—a software framework for nonlinear optimization and optimal control. Math Program Comput (in press) Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M (2018) CasADi—a software framework for nonlinear optimization and optimal control. Math Program Comput (in press)
3.
Zurück zum Zitat Basar T (1976) On the uniqueness of the Nash solution in linear-quadratic differential games. Int J Game Theory 5(2–3):65–90MathSciNetMATHCrossRef Basar T (1976) On the uniqueness of the Nash solution in linear-quadratic differential games. Int J Game Theory 5(2–3):65–90MathSciNetMATHCrossRef
4.
Zurück zum Zitat Basar T, Haurie A, Zaccour G (2018) Nonzero-sum differential games. In Basar T, Zaccour G (eds) Handbook of dynamic game theory. Springer, pp 61–110 Basar T, Haurie A, Zaccour G (2018) Nonzero-sum differential games. In Basar T, Zaccour G (eds) Handbook of dynamic game theory. Springer, pp 61–110
5.
Zurück zum Zitat Basar T, Olsder GJ (1999) Dynamic noncooperative game theory, vol 3. SIAM, PhiladelphiaMATH Basar T, Olsder GJ (1999) Dynamic noncooperative game theory, vol 3. SIAM, PhiladelphiaMATH
6.
Zurück zum Zitat Basar T, Zaccour G (2018) Handbook of Dynamic Game Theory. Springer Basar T, Zaccour G (2018) Handbook of Dynamic Game Theory. Springer
7.
8.
Zurück zum Zitat Berridge S, Krawczyk JB (1997) Relaxation algorithms in finding Nash equilibria. Available at SSRN 66448 Berridge S, Krawczyk JB (1997) Relaxation algorithms in finding Nash equilibria. Available at SSRN 66448
11.
Zurück zum Zitat Bressan A, Nguyen KT (2018) Stability of feedback solutions for infinite horizon noncooperative differential games. Dyn Games Appl 8(1):42–78MathSciNetMATHCrossRef Bressan A, Nguyen KT (2018) Stability of feedback solutions for infinite horizon noncooperative differential games. Dyn Games Appl 8(1):42–78MathSciNetMATHCrossRef
12.
Zurück zum Zitat Buckdahn R, Cardaliaguet P, Quincampoix M (2011) Some recent aspects of differential game theory. Dyn Games Appl 1(1):74–114MathSciNetMATHCrossRef Buckdahn R, Cardaliaguet P, Quincampoix M (2011) Some recent aspects of differential game theory. Dyn Games Appl 1(1):74–114MathSciNetMATHCrossRef
13.
Zurück zum Zitat Cacace S, Cristiani E, Falcone M (2011) Numerical approximation of Nash equilibria for a class of non-cooperative differential games. arXiv preprint arXiv:1109.3569 Cacace S, Cristiani E, Falcone M (2011) Numerical approximation of Nash equilibria for a class of non-cooperative differential games. arXiv preprint arXiv:​1109.​3569
14.
Zurück zum Zitat Carlson D, Haurie A, Zaccour G (2016) Infinite horizon concave games with coupled constraints. In: Handbook of dynamic game theory, pp 1–44 Carlson D, Haurie A, Zaccour G (2016) Infinite horizon concave games with coupled constraints. In: Handbook of dynamic game theory, pp 1–44
15.
Zurück zum Zitat Contreras J, Klusch M, Krawczyk JB (2004) Numerical solutions to Nash–Cournot equilibria in coupled constraint electricity markets. IEEE Trans Power Syst 19(1):195–206CrossRef Contreras J, Klusch M, Krawczyk JB (2004) Numerical solutions to Nash–Cournot equilibria in coupled constraint electricity markets. IEEE Trans Power Syst 19(1):195–206CrossRef
16.
Zurück zum Zitat Darbon J, Langlois GP, Meng T (2020) Overcoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network architectures. Res Math Sci 7(3):1–50MathSciNetMATHCrossRef Darbon J, Langlois GP, Meng T (2020) Overcoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network architectures. Res Math Sci 7(3):1–50MathSciNetMATHCrossRef
17.
Zurück zum Zitat Darbon J, Meng T (2021) On some neural network architectures that can represent viscosity solutions of certain high dimensional Hamilton–Jacobi partial differential equations. J Comput Phys 425:109907MathSciNetCrossRef Darbon J, Meng T (2021) On some neural network architectures that can represent viscosity solutions of certain high dimensional Hamilton–Jacobi partial differential equations. J Comput Phys 425:109907MathSciNetCrossRef
18.
Zurück zum Zitat Dechert WD (1997) Non cooperative dynamic games: a control theoretic approach. Unpublished, available on request to the author Dechert WD (1997) Non cooperative dynamic games: a control theoretic approach. Unpublished, available on request to the author
19.
Zurück zum Zitat Diehl M, Bjornberg J (2004) Robust dynamic programming for min-max model predictive control of constrained uncertain systems. IEEE Trans Autom Control 49(12):2253–2257MathSciNetMATHCrossRef Diehl M, Bjornberg J (2004) Robust dynamic programming for min-max model predictive control of constrained uncertain systems. IEEE Trans Autom Control 49(12):2253–2257MathSciNetMATHCrossRef
20.
Zurück zum Zitat Duncan TE, Pasik-Duncan B (2015) Some stochastic differential games with state dependent noise. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, pp 3773–3777 Duncan TE, Pasik-Duncan B (2015) Some stochastic differential games with state dependent noise. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, pp 3773–3777
21.
Zurück zum Zitat Dunn JC, Bertsekas DP (1989) Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems. J Optim Theory Appl 63(1):23–38 Dunn JC, Bertsekas DP (1989) Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems. J Optim Theory Appl 63(1):23–38
24.
Zurück zum Zitat Engwerda J (2017) A numerical algorithm to calculate the unique feedback Nash equilibrium in a large scalar LQ differential game. Dyn Games Appl 7(4):635–656MathSciNetMATHCrossRef Engwerda J (2017) A numerical algorithm to calculate the unique feedback Nash equilibrium in a large scalar LQ differential game. Dyn Games Appl 7(4):635–656MathSciNetMATHCrossRef
25.
Zurück zum Zitat Engwerda J et al (2012) Feedback Nash equilibria for linear quadratic descriptor differential games. Automatica 48(4):625–631MathSciNetMATHCrossRef Engwerda J et al (2012) Feedback Nash equilibria for linear quadratic descriptor differential games. Automatica 48(4):625–631MathSciNetMATHCrossRef
26.
Zurück zum Zitat Evans LC, Souganidis PE (1984) Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations. Indiana Univ Math J 33(5):773–797MathSciNetMATHCrossRef Evans LC, Souganidis PE (1984) Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations. Indiana Univ Math J 33(5):773–797MathSciNetMATHCrossRef
27.
Zurück zum Zitat Exarchos I, Theodorou E, Tsiotras P (2018) Stochastic differential games: a sampling approach via fbsdes. Dyn Games Appl 9:486–505MathSciNetMATHCrossRef Exarchos I, Theodorou E, Tsiotras P (2018) Stochastic differential games: a sampling approach via fbsdes. Dyn Games Appl 9:486–505MathSciNetMATHCrossRef
28.
Zurück zum Zitat Facchinei F, Fischer A, Piccialli V (2007) On generalized Nash games and variational inequalities. Oper Res Lett 35(2):159–164MathSciNetMATHCrossRef Facchinei F, Fischer A, Piccialli V (2007) On generalized Nash games and variational inequalities. Oper Res Lett 35(2):159–164MathSciNetMATHCrossRef
29.
Zurück zum Zitat Facchinei F, Fischer A, Piccialli V (2009) Generalized Nash equilibrium problems and Newton methods. Math Program 117(1–2):163–194MathSciNetMATHCrossRef Facchinei F, Fischer A, Piccialli V (2009) Generalized Nash equilibrium problems and Newton methods. Math Program 117(1–2):163–194MathSciNetMATHCrossRef
31.
Zurück zum Zitat Facchinei F, Pang JS (2007) Finite-dimensional variational inequalities and complementarity problems. Springer, BerlinMATH Facchinei F, Pang JS (2007) Finite-dimensional variational inequalities and complementarity problems. Springer, BerlinMATH
32.
Zurück zum Zitat Frihauf P, Krstic M, Basar T (2012) Nash equilibrium seeking in noncooperative games. IEEE Trans Autom Control 57(5):1192–1207MathSciNetMATHCrossRef Frihauf P, Krstic M, Basar T (2012) Nash equilibrium seeking in noncooperative games. IEEE Trans Autom Control 57(5):1192–1207MathSciNetMATHCrossRef
33.
Zurück zum Zitat Frihauf P, Krstic M, Başar T (2013) Finite-horizon LQ control for unknown discrete-time linear systems via extremum seeking. Eur J Control 19(5):399–407MathSciNetMATHCrossRef Frihauf P, Krstic M, Başar T (2013) Finite-horizon LQ control for unknown discrete-time linear systems via extremum seeking. Eur J Control 19(5):399–407MathSciNetMATHCrossRef
34.
Zurück zum Zitat Frihauf P, Krstic M, Başar T (2013) Nash equilibrium seeking for dynamic systems with non-quadratic payoffs. In: Advances in dynamic games. Springer, pp 179–198 Frihauf P, Krstic M, Başar T (2013) Nash equilibrium seeking for dynamic systems with non-quadratic payoffs. In: Advances in dynamic games. Springer, pp 179–198
35.
Zurück zum Zitat González-Sánchez D, Hernández-Lerma O (2013) Discrete-time stochastic control and dynamic potential games: the Euler-equation approach. Springer, BerlinMATHCrossRef González-Sánchez D, Hernández-Lerma O (2013) Discrete-time stochastic control and dynamic potential games: the Euler-equation approach. Springer, BerlinMATHCrossRef
36.
Zurück zum Zitat González-Sánchez D, Hernández-Lerma O (2014) Dynamic potential games: the discrete-time stochastic case. Dyn Games Appl 4(3):309–328MathSciNetMATHCrossRef González-Sánchez D, Hernández-Lerma O (2014) Dynamic potential games: the discrete-time stochastic case. Dyn Games Appl 4(3):309–328MathSciNetMATHCrossRef
37.
Zurück zum Zitat González-Sánchez D, Hernández-Lerma O (2016) A survey of static and dynamic potential games. Sci China Math 59(11):2075–2102MathSciNetMATHCrossRef González-Sánchez D, Hernández-Lerma O (2016) A survey of static and dynamic potential games. Sci China Math 59(11):2075–2102MathSciNetMATHCrossRef
38.
Zurück zum Zitat Haurie A, Krawczyk JB, Zaccour G (2012) Games and dynamic games, vol 1. World Scientific Publishing Company, SingaporeMATHCrossRef Haurie A, Krawczyk JB, Zaccour G (2012) Games and dynamic games, vol 1. World Scientific Publishing Company, SingaporeMATHCrossRef
39.
Zurück zum Zitat Isaacs R (1999) Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization. Courier Corporation, ChelmsfordMATH Isaacs R (1999) Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization. Courier Corporation, ChelmsfordMATH
40.
Zurück zum Zitat Kebriaei H, Iannelli L (2018) Discrete-time robust hierarchical linear-quadratic dynamic games. IEEE Trans Autom Control 63(3):902–909MathSciNetMATHCrossRef Kebriaei H, Iannelli L (2018) Discrete-time robust hierarchical linear-quadratic dynamic games. IEEE Trans Autom Control 63(3):902–909MathSciNetMATHCrossRef
41.
42.
Zurück zum Zitat Krawczyk JB (2005) Coupled constraint Nash equilibria in environmental games. Resour Energy Econ 27(2):157–181CrossRef Krawczyk JB (2005) Coupled constraint Nash equilibria in environmental games. Resour Energy Econ 27(2):157–181CrossRef
43.
Zurück zum Zitat Krawczyk JB, Petkov V (2018) Multistage games. In: Handbook of dynamic game theory, pp 157–213 Krawczyk JB, Petkov V (2018) Multistage games. In: Handbook of dynamic game theory, pp 157–213
44.
Zurück zum Zitat Krawczyk JB, Uryasev S (2000) Relaxation algorithms to find Nash equilibria with economic applications. Environ Model Assess 5(1):63–73CrossRef Krawczyk JB, Uryasev S (2000) Relaxation algorithms to find Nash equilibria with economic applications. Environ Model Assess 5(1):63–73CrossRef
45.
Zurück zum Zitat Krikelis N, Rekasius Z (1971) On the solution of the optimal linear control problems under conflict of interest. IEEE Trans Autom Control 16(2):140–147MathSciNetCrossRef Krikelis N, Rekasius Z (1971) On the solution of the optimal linear control problems under conflict of interest. IEEE Trans Autom Control 16(2):140–147MathSciNetCrossRef
46.
47.
Zurück zum Zitat Liao LZ, Shoemaker CA (1991) Convergence in unconstrained discrete-time differential dynamic programming. IEEE Trans Autom Control 36(6):692–706MathSciNetMATHCrossRef Liao LZ, Shoemaker CA (1991) Convergence in unconstrained discrete-time differential dynamic programming. IEEE Trans Autom Control 36(6):692–706MathSciNetMATHCrossRef
48.
Zurück zum Zitat Lin W (2013) Differential games for multi-agent systems under distributed information. Ph.D. thesis, University of Central Florida information Lin W (2013) Differential games for multi-agent systems under distributed information. Ph.D. thesis, University of Central Florida information
49.
Zurück zum Zitat Mazalov VV, Rettieva AN, Avrachenkov KE (2017) Linear-quadratic discrete-time dynamic potential games. Autom Remote Control 78(8):1537–1544MathSciNetMATHCrossRef Mazalov VV, Rettieva AN, Avrachenkov KE (2017) Linear-quadratic discrete-time dynamic potential games. Autom Remote Control 78(8):1537–1544MathSciNetMATHCrossRef
50.
Zurück zum Zitat Murray D, Yakowitz S (1984) Differential dynamic programming and Newton’s method for discrete optimal control problems. J Optim Theory Appl 43(3):395–414 Murray D, Yakowitz S (1984) Differential dynamic programming and Newton’s method for discrete optimal control problems. J Optim Theory Appl 43(3):395–414
51.
Zurück zum Zitat Nakamura-Zimmerer T, Gong Q, Kang W (2021) Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations. SIAM J Sci Comput 43(2):A1221–A1247MathSciNetMATHCrossRef Nakamura-Zimmerer T, Gong Q, Kang W (2021) Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations. SIAM J Sci Comput 43(2):A1221–A1247MathSciNetMATHCrossRef
52.
Zurück zum Zitat Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH
53.
Zurück zum Zitat O’Donoghue B, Stathopoulos G, Boyd S (2013) A splitting method for optimal control. IEEE Trans Control Syst Technol 21(6):2432–2442 O’Donoghue B, Stathopoulos G, Boyd S (2013) A splitting method for optimal control. IEEE Trans Control Syst Technol 21(6):2432–2442
54.
Zurück zum Zitat Pan Y, Ozguner U (2004) Sliding mode extremum seeking control for linear quadratic dynamic game. In: Proceedings of the 2004 American Control Conference, vol 1. IEEE, pp 614–619 Pan Y, Ozguner U (2004) Sliding mode extremum seeking control for linear quadratic dynamic game. In: Proceedings of the 2004 American Control Conference, vol 1. IEEE, pp 614–619
55.
Zurück zum Zitat Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS-W Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS-W
56.
Zurück zum Zitat Plaksin A (2020) Viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations for time-delay systems. arXiv e-prints arXiv:2001.07905 Plaksin A (2020) Viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations for time-delay systems. arXiv e-prints arXiv:​2001.​07905
57.
Zurück zum Zitat Sethi SP (2019) Differential games. In: Optimal control theory. Springer, pp 385–407 Sethi SP (2019) Differential games. In: Optimal control theory. Springer, pp 385–407
58.
Zurück zum Zitat Sun W, Theodorou EA, Tsiotras P (2015) Game theoretic continuous time differential dynamic programming. In: American Control Conference (ACC), 2015. IEEE, pp 5593–5598 Sun W, Theodorou EA, Tsiotras P (2015) Game theoretic continuous time differential dynamic programming. In: American Control Conference (ACC), 2015. IEEE, pp 5593–5598
59.
Zurück zum Zitat Sun W, Theodorou EA, Tsiotras P (2016) Stochastic game theoretic trajectory optimization in continuous time. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, pp 6167–6172 Sun W, Theodorou EA, Tsiotras P (2016) Stochastic game theoretic trajectory optimization in continuous time. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, pp 6167–6172
60.
Zurück zum Zitat Tassa Y (2011) Theory and implementation of biomimetic motor controllers. Hebrew University of Jerusalem Tassa Y (2011) Theory and implementation of biomimetic motor controllers. Hebrew University of Jerusalem
61.
Zurück zum Zitat Zazo S, Macua SV, Sánchez-Fernández M, Zazo J (2015) Dynamic potential games in communications: fundamentals and applications. arXiv preprint arXiv:1509.01313 Zazo S, Macua SV, Sánchez-Fernández M, Zazo J (2015) Dynamic potential games in communications: fundamentals and applications. arXiv preprint arXiv:​1509.​01313
62.
Zurück zum Zitat Zazo S, Macua SV, Sánchez-Fernández M, Zazo J (2016) Dynamic potential games with constraints: fundamentals and applications in communications. IEEE Trans Signal Process 64(14):3806–3821MathSciNetMATHCrossRef Zazo S, Macua SV, Sánchez-Fernández M, Zazo J (2016) Dynamic potential games with constraints: fundamentals and applications in communications. IEEE Trans Signal Process 64(14):3806–3821MathSciNetMATHCrossRef
63.
Zurück zum Zitat Zazo S, Valcarcel S, Matilde S, Zazo J et al (2015) A new framework for solving dynamic scheduling games. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 2071–2075 Zazo S, Valcarcel S, Matilde S, Zazo J et al (2015) A new framework for solving dynamic scheduling games. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 2071–2075
Metadaten
Titel
Newton’s Method, Bellman Recursion and Differential Dynamic Programming for Unconstrained Nonlinear Dynamic Games
verfasst von
Bolei Di
Andrew Lamperski
Publikationsdatum
11.11.2021
Verlag
Springer US
Erschienen in
Dynamic Games and Applications / Ausgabe 2/2022
Print ISSN: 2153-0785
Elektronische ISSN: 2153-0793
DOI
https://doi.org/10.1007/s13235-021-00399-8

Weitere Artikel der Ausgabe 2/2022

Dynamic Games and Applications 2/2022 Zur Ausgabe

Premium Partner