Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 17/2018

12.07.2018

Ni deposited onto MWCNTs buckypapers for improved broadband EMI shielding

verfasst von: Yaoyao Bai, Jijie Wang, Shaowei Lu, Zhenwei Huang, Li Zhang, Qiangang Xu, Shifeng Xu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly flexible, mechanically robust and ultra-thin Ni deposited onto multi-walled carbon nanotubes (MWCNTs) buckypapers (BPs) were fabricated via vacuum filtration and magnetron sputtering. The samples were characterized structurally using scanning electron microscopy and X-ray Diffraction. Electromagnetic interference (EMI) shielding effectiveness (SE) of Ni deposited onto MWCNTs BPs with different deposition time (0, 30 and 60 min) were tested in frequency range of 2–18 GHz, including S-band, C-band, X-band and Ku-band. The 60 min Ni deposited onto MWCNTs BPs exhibited much higher EMI SE of average value up to 42.59 dB with the thickness of only 0.105 mm. Based on reliability study, the 60 min Ni deposited onto MWCNTs BPs retains 94.3% of its EMI SE after 500 cycles of mechanical bending. Therefore, the results and techniques promise a simple and effective approach to achieve light-weight and ultra-thin composite films for a wide application at the prospect of the field of EMI shielding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Bi et al., Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co 00-based and Ni 00-based activation for electromagnetic interference shielding. Appl. Surf. Sci. 419, 465–475 (2017)CrossRef S. Bi et al., Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co 00-based and Ni 00-based activation for electromagnetic interference shielding. Appl. Surf. Sci. 419, 465–475 (2017)CrossRef
2.
Zurück zum Zitat S.C. Lin et al., Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl. Surf. Sci. 385, 436–444 (2016)CrossRef S.C. Lin et al., Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl. Surf. Sci. 385, 436–444 (2016)CrossRef
3.
Zurück zum Zitat H. Liu et al., Preparation and the electromagnetic interference shielding in the X-band of carbon foams with Ni-Zn ferrite additive. J. Eur. Ceram. Soc. 36(16), 3939–3946 (2016)CrossRef H. Liu et al., Preparation and the electromagnetic interference shielding in the X-band of carbon foams with Ni-Zn ferrite additive. J. Eur. Ceram. Soc. 36(16), 3939–3946 (2016)CrossRef
4.
Zurück zum Zitat B. Shen et al., Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon 113, 55–62 (2016)CrossRef B. Shen et al., Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon 113, 55–62 (2016)CrossRef
5.
Zurück zum Zitat B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient emi shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014)CrossRef B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient emi shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014)CrossRef
6.
Zurück zum Zitat B. Wen et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)CrossRef B. Wen et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)CrossRef
7.
Zurück zum Zitat Y. Chen et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016)CrossRef Y. Chen et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016)CrossRef
8.
Zurück zum Zitat Y. Zhang et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049 (2015)CrossRef Y. Zhang et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049 (2015)CrossRef
9.
Zurück zum Zitat H. Sun et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014)CrossRef H. Sun et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014)CrossRef
10.
Zurück zum Zitat L. Wang et al., Influence of metal screen materials on 3-D electromagnetic field and eddy current loss in the end region of turbogenerator. IEEE Trans. Magn. 49(2), 939–945 (2013)CrossRef L. Wang et al., Influence of metal screen materials on 3-D electromagnetic field and eddy current loss in the end region of turbogenerator. IEEE Trans. Magn. 49(2), 939–945 (2013)CrossRef
11.
Zurück zum Zitat Y. Li et al., Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100, 375–385 (2016)CrossRef Y. Li et al., Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100, 375–385 (2016)CrossRef
12.
Zurück zum Zitat L. Zhang et al., Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82(30), 353–359 (2015)CrossRef L. Zhang et al., Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82(30), 353–359 (2015)CrossRef
13.
Zurück zum Zitat Z. Chen et al., Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013)CrossRef Z. Chen et al., Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013)CrossRef
14.
Zurück zum Zitat A. Fletcher et al., Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications. Compos. Sci. Technol. 70(6), 953–958 (2010)CrossRef A. Fletcher et al., Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications. Compos. Sci. Technol. 70(6), 953–958 (2010)CrossRef
15.
Zurück zum Zitat H.B. Zhang et al., Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918 (2011)CrossRef H.B. Zhang et al., Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918 (2011)CrossRef
16.
Zurück zum Zitat Y. Yang et al., Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005)CrossRef Y. Yang et al., Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005)CrossRef
17.
Zurück zum Zitat H.H. Zhao et al., Electrophoretic deposition of foam Ni/CNT composites and their electromagnetic interference shielding performance. Appl. Mech. Mater. 461, 436–444 (2013)CrossRef H.H. Zhao et al., Electrophoretic deposition of foam Ni/CNT composites and their electromagnetic interference shielding performance. Appl. Mech. Mater. 461, 436–444 (2013)CrossRef
18.
Zurück zum Zitat C.H. Phan, M. Mariatti, Y.H. Koh, Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers. J. Magn. Magn. Mater. 401, 472–478 (2016)CrossRef C.H. Phan, M. Mariatti, Y.H. Koh, Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers. J. Magn. Magn. Mater. 401, 472–478 (2016)CrossRef
19.
Zurück zum Zitat G. Kulkarni et al., Enhanced electromagnetic interference shielding effectiveness of chemical vapor deposited MWCNTs in X-band region. J. Mater. Sci.: Mater. Electron. 28(10), 7212–7220 (2017) G. Kulkarni et al., Enhanced electromagnetic interference shielding effectiveness of chemical vapor deposited MWCNTs in X-band region. J. Mater. Sci.: Mater. Electron. 28(10), 7212–7220 (2017)
20.
Zurück zum Zitat B. Yuan et al., Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J. Phys. D 45(23), 235108 (2012)CrossRef B. Yuan et al., Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J. Phys. D 45(23), 235108 (2012)CrossRef
21.
Zurück zum Zitat Y. Liu et al., EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe 3 O 4 and Fe. Compos. B Eng. 63(7), 34–40 (2014)CrossRef Y. Liu et al., EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe 3 O 4 and Fe. Compos. B Eng. 63(7), 34–40 (2014)CrossRef
22.
Zurück zum Zitat S. Lu et al., Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance. J. Phys. D 49(44), 445308 (2016)CrossRef S. Lu et al., Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance. J. Phys. D 49(44), 445308 (2016)CrossRef
23.
Zurück zum Zitat L.L. Wang et al., Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47(8), 1905–1910 (2009)CrossRef L.L. Wang et al., Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47(8), 1905–1910 (2009)CrossRef
24.
Zurück zum Zitat Y. Li et al., Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films. Appl. Surf. Sci. 254(18), 5766–5771 (2008)CrossRef Y. Li et al., Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films. Appl. Surf. Sci. 254(18), 5766–5771 (2008)CrossRef
25.
Zurück zum Zitat W.-L. Song et al., Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption. Mater. Res. Bull. 47(7), 1747–1754 (2012)CrossRef W.-L. Song et al., Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption. Mater. Res. Bull. 47(7), 1747–1754 (2012)CrossRef
26.
Zurück zum Zitat C.F. Goh et al., The effect of annealing on the morphologies and conductivities of sub-micrometer sized nickel particles used for electrically conductive adhesive. Thin Solid Films 504(1), 416–420 (2006)CrossRef C.F. Goh et al., The effect of annealing on the morphologies and conductivities of sub-micrometer sized nickel particles used for electrically conductive adhesive. Thin Solid Films 504(1), 416–420 (2006)CrossRef
27.
Zurück zum Zitat D.-X. Yan et al., Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772 (2012)CrossRef D.-X. Yan et al., Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772 (2012)CrossRef
28.
Zurück zum Zitat A. Joshi, S. Datar, Carbon nanostructure composite for electromagnetic interference shielding. Pramana 84(6), 1099–1116 (2015)CrossRef A. Joshi, S. Datar, Carbon nanostructure composite for electromagnetic interference shielding. Pramana 84(6), 1099–1116 (2015)CrossRef
29.
Zurück zum Zitat M. Sano et al., Application of supercritical carbon dioxide in catalyzation and Ni-P electroless plating of nylon 6,6 textile. Surf. Coat. Technol. 302, 336–343 (2016)CrossRef M. Sano et al., Application of supercritical carbon dioxide in catalyzation and Ni-P electroless plating of nylon 6,6 textile. Surf. Coat. Technol. 302, 336–343 (2016)CrossRef
30.
Zurück zum Zitat R. Wang et al., Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials. J. Alloys Compd. 514(5), 35–39 (2012)CrossRef R. Wang et al., Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials. J. Alloys Compd. 514(5), 35–39 (2012)CrossRef
31.
Zurück zum Zitat D.D.L. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9), 3342–3353 (2012)CrossRef D.D.L. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9), 3342–3353 (2012)CrossRef
32.
Zurück zum Zitat J.N. Balaraju et al., Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites. Surf. Coat. Technol. 302, 389–397 (2016)CrossRef J.N. Balaraju et al., Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites. Surf. Coat. Technol. 302, 389–397 (2016)CrossRef
33.
Zurück zum Zitat S.S. Tzeng, F.Y. Chang, Electrical resistivity of electroless nickel coated carbon fibers. Thin Solid Films 388(1), 143–149 (2001)CrossRef S.S. Tzeng, F.Y. Chang, Electrical resistivity of electroless nickel coated carbon fibers. Thin Solid Films 388(1), 143–149 (2001)CrossRef
34.
Zurück zum Zitat Y. Wang et al., Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 42(1), 936–942 (2016)CrossRef Y. Wang et al., Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 42(1), 936–942 (2016)CrossRef
35.
Zurück zum Zitat H. Mei et al., Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 109, 149–153 (2016)CrossRef H. Mei et al., Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 109, 149–153 (2016)CrossRef
36.
Zurück zum Zitat M. Arjmand et al., Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 98, 358–372 (2016)CrossRef M. Arjmand et al., Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 98, 358–372 (2016)CrossRef
37.
Zurück zum Zitat B. Wen et al., Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6(11), 5754–5761 (2014)CrossRef B. Wen et al., Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6(11), 5754–5761 (2014)CrossRef
38.
Zurück zum Zitat W.Q. Cao et al., Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3(38), 10017–10022 (2015)CrossRef W.Q. Cao et al., Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3(38), 10017–10022 (2015)CrossRef
39.
Zurück zum Zitat F. Sharif et al., Segregated hybrid poly (methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(16), 14171–14179 (2017)CrossRef F. Sharif et al., Segregated hybrid poly (methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(16), 14171–14179 (2017)CrossRef
40.
Zurück zum Zitat M. Zong et al., Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Adv. 3(45), 23638–23648 (2013)CrossRef M. Zong et al., Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Adv. 3(45), 23638–23648 (2013)CrossRef
41.
Zurück zum Zitat D. Chen et al., Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A 1(19), 5996–6003 (2013)CrossRef D. Chen et al., Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A 1(19), 5996–6003 (2013)CrossRef
42.
Zurück zum Zitat Y. Zhai et al., Enhanced microwave absorbing performance of hydrogenated acrylonitrile–butadiene rubber/multi-walled carbon nanotube composites by in situ prepared rare earth acrylates. Compos. Sci. Technol. 72(6), 696–701 (2012)CrossRef Y. Zhai et al., Enhanced microwave absorbing performance of hydrogenated acrylonitrile–butadiene rubber/multi-walled carbon nanotube composites by in situ prepared rare earth acrylates. Compos. Sci. Technol. 72(6), 696–701 (2012)CrossRef
43.
Zurück zum Zitat X.F. Zhang, J.J. Guo, G.W. Qin, Assembled micro-nano particles with multiple interface polarizations for electromagnetic absorption at gigahertz. Appl. Phys. Lett. 104(25), 8392 (2014) X.F. Zhang, J.J. Guo, G.W. Qin, Assembled micro-nano particles with multiple interface polarizations for electromagnetic absorption at gigahertz. Appl. Phys. Lett. 104(25), 8392 (2014)
44.
Zurück zum Zitat B. Wen et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65(12), 124–139 (2013)CrossRef B. Wen et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65(12), 124–139 (2013)CrossRef
45.
Zurück zum Zitat W.-L. Song et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)CrossRef W.-L. Song et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)CrossRef
46.
Zurück zum Zitat A.P. Singh et al., Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon 85, 79–88 (2015)CrossRef A.P. Singh et al., Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon 85, 79–88 (2015)CrossRef
47.
Zurück zum Zitat D. Lu et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018)CrossRef D. Lu et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018)CrossRef
48.
Zurück zum Zitat R. Mohan et al., Polyaniline/graphene hybrid film as an effective broadband electromagnetic shield. RSC Advances 5(8), 5917–5923 (2015)CrossRef R. Mohan et al., Polyaniline/graphene hybrid film as an effective broadband electromagnetic shield. RSC Advances 5(8), 5917–5923 (2015)CrossRef
49.
Zurück zum Zitat S.T. Hsiao et al., Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60(14), 57–66 (2013)CrossRef S.T. Hsiao et al., Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60(14), 57–66 (2013)CrossRef
50.
Zurück zum Zitat B. Shen et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016)CrossRef B. Shen et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016)CrossRef
Metadaten
Titel
Ni deposited onto MWCNTs buckypapers for improved broadband EMI shielding
verfasst von
Yaoyao Bai
Jijie Wang
Shaowei Lu
Zhenwei Huang
Li Zhang
Qiangang Xu
Shifeng Xu
Publikationsdatum
12.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 17/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9642-7

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Zur Ausgabe

Neuer Inhalt