Skip to main content

2021 | OriginalPaper | Buchkapitel

Night Operation of a Solar Chimney Integrated with Spiral Heat Exchanger

verfasst von : Amel Dhahri, Ahmed Omri, Jamel Orfi

Erschienen in: Numerical Methods for Energy Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solar power is one of the most raising and encouraging renewable source of energy generation. Solar plants are playing an important role in power supplies worldwide. Nowadays, the electrical energy demand is increasing rapidly due to fast-growing daily requirements. In the last few decades, scientific researchers have focused on a novel technology called the solar chimney power plant, sometimes recognized as solar updraft tower. The solar chimney is principally composed of three main constituents, namely, a solar collector, a chimney and a wind turbine. This promising technology addresses a very challenging idea of generating electricity from free solar energy. It is categorized as a viable resource of clean energy for many non developed countries. The world’s first solar chimney prototype was designed and constructed at Manzanares in Spain, as a result of a joint project between the Schlaich Bergermann partner and the Spanish government. The plant is characterized by a tower high 195 m with a radius of 5 m. The radius and height of the collector encircling the tower are respectively 120 m and 1.85 m. The spanish prototype built by the engineer Jorg Schlaich of Schlaich Bergermann operated without significant problems for seven years. Several research projects have been conducted all over the world to design and introduce different solar towers based on experience gained from operating the 50 kW Spanish prototype. To ensure that the energy conversion is maintained at satisfactory levels to guarantee considerable power generation, an unprecedentedly high tower and an immense collector area are needed. This plant is then based on a thermal updraft movement of hot air resulting from natural convection. In this chapter, the simulations were conducted using cylindrical coordinate system. The inner fluid flow is considered turbulent and simulated with the k-ε turbulent model, by means of the CFD commercial software ANSYS Fluent. Numerical data were validated by comparing them with those from experiments. The agreement between simulation results and the measurements taken from the experimental plant in Manzanares is fairly good. A set of mathematical models of the solar updraft power plant have been developed where a model considering the kinetic energy difference within the solar collector was proposed. The operation of such a plant is strongly dependent on the amount of solar radiation. The main disadvantage of this system is the inability to operate constantly at night. A geothermal heating device is suggested to guarantee a continuous operation during night hours. In this chapter, an auxiliary heating system constructed of in-plane spiral coil tubes is proposed to be placed above the ground under the collector. Thus, the computational model is afterward combined with a mathematical model for a geothermal heat exchanger to evaluate the effect of combining both solar and geothermal energy on the plant performance. A parametric study of the hybrid plant is carried out. The study focus essentially on the impact of the collector size, the meteorological conditions as well as the effectiveness of the heat exchanger on the air flow rate, the temperature increase within the collector and the global performance of the solar-geothermal hybrid system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schlaich J (1995) The solar chimney: electricity from the, sun edn. Axel Menges, Felbach Schlaich J (1995) The solar chimney: electricity from the, sun edn. Axel Menges, Felbach
2.
Zurück zum Zitat Goswami DY, Zhao Y (2009) Proceedings of ISES world congress 2007, vol 1–vol 5. Solar energy and human settlement. Springer Science & Business Media Goswami DY, Zhao Y (2009) Proceedings of ISES world congress 2007, vol 1–vol 5. Solar energy and human settlement. Springer Science & Business Media
3.
Zurück zum Zitat Chikere AO, Al-Kayiem HH, Karim ZAA (2011) Review on the enhancement techniques and introduction of an alternate enhancement technique of solar chimney power plant. J Appl Sci 11(11):1877–1884CrossRef Chikere AO, Al-Kayiem HH, Karim ZAA (2011) Review on the enhancement techniques and introduction of an alternate enhancement technique of solar chimney power plant. J Appl Sci 11(11):1877–1884CrossRef
4.
Zurück zum Zitat Fasel HF, Meng F, Shams E, Gross A (2013) CFD analysis for solar chimney power plants. Solar Energy Part A 98:12–22CrossRef Fasel HF, Meng F, Shams E, Gross A (2013) CFD analysis for solar chimney power plants. Solar Energy Part A 98:12–22CrossRef
5.
Zurück zum Zitat Kreetz H (1997) Theoretische Untersuchungen und Auslegung eines temporärenWasserspeichers für das Aufwindkraftwerk, dissertation, Technical University Berlin Kreetz H (1997) Theoretische Untersuchungen und Auslegung eines temporärenWasserspeichers für das Aufwindkraftwerk, dissertation, Technical University Berlin
6.
Zurück zum Zitat Fathi N, McDaniel P, Aleyasin SS, Robinson M, Vorobieff P, Rodriguez S, de Oliveira C (2018) Efficiency enhancement of solar chimney power plant by use of waste heat from nuclear power plant. J Clean Prod 180:407–416CrossRef Fathi N, McDaniel P, Aleyasin SS, Robinson M, Vorobieff P, Rodriguez S, de Oliveira C (2018) Efficiency enhancement of solar chimney power plant by use of waste heat from nuclear power plant. J Clean Prod 180:407–416CrossRef
7.
Zurück zum Zitat Kasaeian AB, Molana S, Rahmani K et al (2017) A review on solar chimney systems. Renew Sustain Energy Rev 67:954–987CrossRef Kasaeian AB, Molana S, Rahmani K et al (2017) A review on solar chimney systems. Renew Sustain Energy Rev 67:954–987CrossRef
8.
Zurück zum Zitat Al-Kayiem HH et al (2019) Performance evaluation of hybrid solar chimney for uninterrupted power generation. Energy 166:490–505CrossRef Al-Kayiem HH et al (2019) Performance evaluation of hybrid solar chimney for uninterrupted power generation. Energy 166:490–505CrossRef
9.
Zurück zum Zitat Hurtado FJ, Kaiser AS, Zamora B (2012) Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant. Energy 47(1):213–224CrossRef Hurtado FJ, Kaiser AS, Zamora B (2012) Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant. Energy 47(1):213–224CrossRef
10.
Zurück zum Zitat Zheng Y, Ming TZ, Zhou Z, Yu XF, Wang HY, Pan Y, Liu W (2010) Unsteady numerical simulation of solar chimney power plant system with energy storage layer. J Energy Inst 83(2):86–92CrossRef Zheng Y, Ming TZ, Zhou Z, Yu XF, Wang HY, Pan Y, Liu W (2010) Unsteady numerical simulation of solar chimney power plant system with energy storage layer. J Energy Inst 83(2):86–92CrossRef
11.
Zurück zum Zitat Ming TZ, Zheng Y, Liu W, Huang XM (2009) Unsteady numerical conjugate simulation of the solar chimney power generation systems. J Eng Thermophys 30:4 Ming TZ, Zheng Y, Liu W, Huang XM (2009) Unsteady numerical conjugate simulation of the solar chimney power generation systems. J Eng Thermophys 30:4
12.
Zurück zum Zitat Fanlong M, Tingzhen M, Yuan P (2011) A method of decreasing power output fluctuation of solar chimney power generating systems. In: 2011 3rd international conference on measuring technology and mechatronics automation (ICMTMA), vol 1, pp 114–118 Fanlong M, Tingzhen M, Yuan P (2011) A method of decreasing power output fluctuation of solar chimney power generating systems. In: 2011 3rd international conference on measuring technology and mechatronics automation (ICMTMA), vol 1, pp 114–118
13.
Zurück zum Zitat Yan Zhou XHL (2011) Unsteady conjugate numerical simulation of the solar chimney power plant system with vertical heat collector. Mater Sci Forum 704–705:535–540 Yan Zhou XHL (2011) Unsteady conjugate numerical simulation of the solar chimney power plant system with vertical heat collector. Mater Sci Forum 704–705:535–540
14.
Zurück zum Zitat Robert AL, Craig RB, Eckhard AG et al (2012) Alternative heat rejection methods for power plants. Appl Energy 92:17–25CrossRef Robert AL, Craig RB, Eckhard AG et al (2012) Alternative heat rejection methods for power plants. Appl Energy 92:17–25CrossRef
15.
Zurück zum Zitat Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev 6(1–2):3–65CrossRef Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev 6(1–2):3–65CrossRef
16.
Zurück zum Zitat Al-Kayiem HH, Brebbia CA, Zubir SS (2014) Energy and sustainability V. WIT Press, UK Al-Kayiem HH, Brebbia CA, Zubir SS (2014) Energy and sustainability V. WIT Press, UK
17.
Zurück zum Zitat Zubir SS, Brebbia A (2013) The sustainable city VIII (2 volume set): urban regeneration and sustainability. WIT Press, UK Zubir SS, Brebbia A (2013) The sustainable city VIII (2 volume set): urban regeneration and sustainability. WIT Press, UK
18.
Zurück zum Zitat Aurybi MA, Al-Kayiem HH, Gilani SIU, Ismaeel AA (2017) Numerical analysis of solar updraft power plant integrated with external heat source. In: UTP-UMP symposium on energy systems 2017 (SES 2017), vol 131, (MATEC Web Conf.), pp 7 Aurybi MA, Al-Kayiem HH, Gilani SIU, Ismaeel AA (2017) Numerical analysis of solar updraft power plant integrated with external heat source. In: UTP-UMP symposium on energy systems 2017 (SES 2017), vol 131, (MATEC Web Conf.), pp 7
19.
Zurück zum Zitat Cao F, Li H, Ma Q, Zhao L (2014) Design and simulation of a geothermal–solar combined chimney power plant. Energy Convers Manag 84:186–195CrossRef Cao F, Li H, Ma Q, Zhao L (2014) Design and simulation of a geothermal–solar combined chimney power plant. Energy Convers Manag 84:186–195CrossRef
20.
Zurück zum Zitat Dhahri A, Omri A, Orfi J (2018) Theoretical analysis of the performance of a solar chimney coupled with a geothermal heat exchanger. In: Driss Z, Necib B, Zhang HC (eds) CFD techniques and energy applications. Springer, Cham Dhahri A, Omri A, Orfi J (2018) Theoretical analysis of the performance of a solar chimney coupled with a geothermal heat exchanger. In: Driss Z, Necib B, Zhang HC (eds) CFD techniques and energy applications. Springer, Cham
21.
Zurück zum Zitat Elmagid WMA, Kepple I (2017) Axial flow turbine for solar chimney. Hung Agric Eng J 32:29–37 Elmagid WMA, Kepple I (2017) Axial flow turbine for solar chimney. Hung Agric Eng J 32:29–37
22.
Zurück zum Zitat Weinrebe G, Bergermann R, Schlaich J (2012) solar updraft towers. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York, NY Weinrebe G, Bergermann R, Schlaich J (2012) solar updraft towers. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York, NY
23.
Zurück zum Zitat Verlodt H (1983) Amélioration du bilan thermique sous abri-serre. Tropicultura 1(2):59–69 Verlodt H (1983) Amélioration du bilan thermique sous abri-serre. Tropicultura 1(2):59–69
24.
Zurück zum Zitat Ho JC, Wijeysundera NE (1996) Study of a compact spiral-coil cooling and dehu midifying heat exchanger. Appl Therm Eng 16(10):777–790CrossRef Ho JC, Wijeysundera NE (1996) Study of a compact spiral-coil cooling and dehu midifying heat exchanger. Appl Therm Eng 16(10):777–790CrossRef
25.
Zurück zum Zitat Nguyen DK, San JY (2016) Heat transfer and exergy analysis of a spiral heat exchanger. Heat Trans Eng 37(12):1013–1026CrossRef Nguyen DK, San JY (2016) Heat transfer and exergy analysis of a spiral heat exchanger. Heat Trans Eng 37(12):1013–1026CrossRef
26.
Zurück zum Zitat Wijeysundera NE, Ho JC, Rajasekar S (1996) The effectiveness of a spiral coil heat exchanger. Int Commun Heat Mass Transfer 23(5):623–631CrossRef Wijeysundera NE, Ho JC, Rajasekar S (1996) The effectiveness of a spiral coil heat exchanger. Int Commun Heat Mass Transfer 23(5):623–631CrossRef
27.
Zurück zum Zitat Dhahri A, Omri A, Orfi J (2014) Numerical study of a solar chimney power plant. Res J Appl Sci Eng Technol 8:1953–1965CrossRef Dhahri A, Omri A, Orfi J (2014) Numerical study of a solar chimney power plant. Res J Appl Sci Eng Technol 8:1953–1965CrossRef
28.
Zurück zum Zitat Cuce E, Cuce PM (2019) Performance assessment of solar chimneys: part i–impact of chimney height on power output. Energy Res J 10:11–19CrossRef Cuce E, Cuce PM (2019) Performance assessment of solar chimneys: part i–impact of chimney height on power output. Energy Res J 10:11–19CrossRef
29.
Zurück zum Zitat Bernardes MAdS (2004) Technische, ökonomische und ökologische Analyse von Aufwind-kraftwerken, Ph.D. Thesis. Universität Stuttgart Bernardes MAdS (2004) Technische, ökonomische und ökologische Analyse von Aufwind-kraftwerken, Ph.D. Thesis. Universität Stuttgart
30.
Zurück zum Zitat Deshpande M et al (2012) Study of hydrodynamics of horizontal spiral coil tube. Int J Adv Eng Res Stud 1(3):112–114 Deshpande M et al (2012) Study of hydrodynamics of horizontal spiral coil tube. Int J Adv Eng Res Stud 1(3):112–114
31.
Zurück zum Zitat Purandare PS, Lel MM, Gupta R (2012) Parametric analysis of helical coil heat exchanger. Int J of Eng Res Technol 1(8) Purandare PS, Lel MM, Gupta R (2012) Parametric analysis of helical coil heat exchanger. Int J of Eng Res Technol 1(8)
32.
Zurück zum Zitat Mukesh Kumar PC, Chandrasekar M (2019) CFD analysis on heat and flow characteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids. Heliyon 5(7):e02030CrossRef Mukesh Kumar PC, Chandrasekar M (2019) CFD analysis on heat and flow characteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids. Heliyon 5(7):e02030CrossRef
33.
Zurück zum Zitat Chaware P, Sewatkar CM (2018) Effects of tangential and radial velocity on fluid flow and heat transfer for flow through a pipe with twisted tape insert—laminar flow. Sādhanā 43(9):1MathSciNetCrossRef Chaware P, Sewatkar CM (2018) Effects of tangential and radial velocity on fluid flow and heat transfer for flow through a pipe with twisted tape insert—laminar flow. Sādhanā 43(9):1MathSciNetCrossRef
34.
Zurück zum Zitat Yoo G, Choi H, Dong W (2012) Fluid flow and heat transfer characteristics of spiral coiled tube: effects of reynolds number and curvature ratio. J Cent South Univ Technol 19:471–476CrossRef Yoo G, Choi H, Dong W (2012) Fluid flow and heat transfer characteristics of spiral coiled tube: effects of reynolds number and curvature ratio. J Cent South Univ Technol 19:471–476CrossRef
35.
Zurück zum Zitat Bergman TL, Incropera FP (2011) Introduction to heat transfer. John Wiley & Sons Bergman TL, Incropera FP (2011) Introduction to heat transfer. John Wiley & Sons
36.
Zurück zum Zitat Pablo Coronel KPS (2008) Heat transfer coefficient in helical heat exchangers under turbulent flow conditions. Int Jof Food Eng 4(1) Pablo Coronel KPS (2008) Heat transfer coefficient in helical heat exchangers under turbulent flow conditions. Int Jof Food Eng 4(1)
37.
Zurück zum Zitat Naphon P, Suwagrai J (2007) Effect of curvature ratios on the heat transfer and flow developments in the horizontal spirally coiled tubes. Int J Heat Mass Transfer 50:444–451CrossRef Naphon P, Suwagrai J (2007) Effect of curvature ratios on the heat transfer and flow developments in the horizontal spirally coiled tubes. Int J Heat Mass Transfer 50:444–451CrossRef
Metadaten
Titel
Night Operation of a Solar Chimney Integrated with Spiral Heat Exchanger
verfasst von
Amel Dhahri
Ahmed Omri
Jamel Orfi
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-62191-9_14