Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2017

01.03.2017 | Research Paper

Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

verfasst von: Jang Yeol Lee, Na Young Kim, Dong Yun Shin, Hee-Young Park, Sang-Soo Lee, S. Joon Kwon, Dong-Hee Lim, Ki Wan Bong, Jeong Gon Son, Jin Young Kim

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe2O3) microparticles with melamine. The heat treatment leads to transformation of Fe2O3 microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E1/2 of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm−2 indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66CrossRef Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66CrossRef
Zurück zum Zitat Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef
Zurück zum Zitat Cao L et al. (2016) Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy. in press Cao L et al. (2016) Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy. in press
Zurück zum Zitat Cui X, Ren P, Deng D, Deng J, Bao X (2016) Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ Sci 9:123–129CrossRef Cui X, Ren P, Deng D, Deng J, Bao X (2016) Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ Sci 9:123–129CrossRef
Zurück zum Zitat Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef
Zurück zum Zitat Deng DH et al (2013) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed 52:371–375CrossRef Deng DH et al (2013) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed 52:371–375CrossRef
Zurück zum Zitat Deng J et al (2014) Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci 7:1919–1923CrossRef Deng J et al (2014) Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci 7:1919–1923CrossRef
Zurück zum Zitat Feng LL et al (2015) Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl Mater Interfaces 7:980–988CrossRef Feng LL et al (2015) Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl Mater Interfaces 7:980–988CrossRef
Zurück zum Zitat Ferrero GA et al (2016) Fe−N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano 10:5922–5932CrossRef Ferrero GA et al (2016) Fe−N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano 10:5922–5932CrossRef
Zurück zum Zitat Gong K, Du F, Xia Z, Dursock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef Gong K, Du F, Xia Z, Dursock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef
Zurück zum Zitat Hummers WS, Offenman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef Hummers WS, Offenman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef
Zurück zum Zitat Jiang Y et al (2013) Enhanced catalytic performance of Pt-free iron Phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal 3:1263–1271CrossRef Jiang Y et al (2013) Enhanced catalytic performance of Pt-free iron Phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal 3:1263–1271CrossRef
Zurück zum Zitat Jiang WJ et al (2016) Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J Am Chem Soc 138:3570–3578CrossRef Jiang WJ et al (2016) Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J Am Chem Soc 138:3570–3578CrossRef
Zurück zum Zitat Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRef Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRef
Zurück zum Zitat Kramm UI, Lefèvre M, Larouche N, Schmeisser D, Dodelet JP (2014) Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J Am Chem Soc 136:978–985CrossRef Kramm UI, Lefèvre M, Larouche N, Schmeisser D, Dodelet JP (2014) Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J Am Chem Soc 136:978–985CrossRef
Zurück zum Zitat Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef
Zurück zum Zitat Kresse G, Furthmüller J (1996b) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50CrossRef Kresse G, Furthmüller J (1996b) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50CrossRef
Zurück zum Zitat Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef
Zurück zum Zitat Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRef Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRef
Zurück zum Zitat Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef
Zurück zum Zitat Lee JY et al (2015) Sea-urchin-inspired 3D crumpled graphene balls using simultaneous etching and reduction process for high-density capacitive energy storage. Adv Funct Mater 25:3606–3614CrossRef Lee JY et al (2015) Sea-urchin-inspired 3D crumpled graphene balls using simultaneous etching and reduction process for high-density capacitive energy storage. Adv Funct Mater 25:3606–3614CrossRef
Zurück zum Zitat Li Y et al (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9:3336–3344 Li Y et al (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9:3336–3344
Zurück zum Zitat Liang HW, Wei W, Wu ZS, Feng X, Müllen K (2013) Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J Am Chem Soc 135:16002–16005CrossRef Liang HW, Wei W, Wu ZS, Feng X, Müllen K (2013) Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J Am Chem Soc 135:16002–16005CrossRef
Zurück zum Zitat Lin L et al (2014) Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J Am Chem Soc 136:11027–11033CrossRef Lin L et al (2014) Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J Am Chem Soc 136:11027–11033CrossRef
Zurück zum Zitat Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef
Zurück zum Zitat Liu Q, Zhang H, Zhong H, Zhang S, Chen S (2012) N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction reaction. Electrochim Acta 81:313–320CrossRef Liu Q, Zhang H, Zhong H, Zhang S, Chen S (2012) N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction reaction. Electrochim Acta 81:313–320CrossRef
Zurück zum Zitat Mao S, Wen Z, Huang T, Hou Y, Chen J (2014) High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ Sci 7:609–616CrossRef Mao S, Wen Z, Huang T, Hou Y, Chen J (2014) High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ Sci 7:609–616CrossRef
Zurück zum Zitat Men B et al (2016) Heirarchical metal-free nitrogen-doped porous graphene/carbon composites as an efficient oxygen reduction reaction catalyst. ACS Appl Mater Interfaces 8:1415–1423CrossRef Men B et al (2016) Heirarchical metal-free nitrogen-doped porous graphene/carbon composites as an efficient oxygen reduction reaction catalyst. ACS Appl Mater Interfaces 8:1415–1423CrossRef
Zurück zum Zitat Meng FL et al (2016) Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv Mater 28:7948–7955CrossRef Meng FL et al (2016) Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv Mater 28:7948–7955CrossRef
Zurück zum Zitat Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRef Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRef
Zurück zum Zitat Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef
Zurück zum Zitat Muthukrishnan A et al (2015) Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts. ACS Catal 5:5194–5202CrossRef Muthukrishnan A et al (2015) Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts. ACS Catal 5:5194–5202CrossRef
Zurück zum Zitat Nam G et al (2015) Carbon-coated core–shell Fe–Cu nanoparticles as highly active and durable electrocatalysts for a Zn–air battery. ACS Nano 9:6493–6501CrossRef Nam G et al (2015) Carbon-coated core–shell Fe–Cu nanoparticles as highly active and durable electrocatalysts for a Zn–air battery. ACS Nano 9:6493–6501CrossRef
Zurück zum Zitat Nørskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRef Nørskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRef
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
Zurück zum Zitat Qian Y et al (2016) Chemical nature of catalytic active sites for the oxygen reduction reaction on nitrogen-doped carbon-supported non-Noble metal catalysts. J. Phys. Chem C 120:9884–9896 Qian Y et al (2016) Chemical nature of catalytic active sites for the oxygen reduction reaction on nitrogen-doped carbon-supported non-Noble metal catalysts. J. Phys. Chem C 120:9884–9896
Zurück zum Zitat Qu K, Zheng Y, Dai S, Qiao SZ (2016) Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19:373–381CrossRef Qu K, Zheng Y, Dai S, Qiao SZ (2016) Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19:373–381CrossRef
Zurück zum Zitat Ramaker D, Korovina A, Croze V, Melke J, Roth C (2014) Following ORR intermediates adsorbed on a Pt cathode catalyst during break-in of a PEM fuel cell by in operando X-ray absorption spectroscopy. Phys Chem Chem Phys 16:13645–13653CrossRef Ramaker D, Korovina A, Croze V, Melke J, Roth C (2014) Following ORR intermediates adsorbed on a Pt cathode catalyst during break-in of a PEM fuel cell by in operando X-ray absorption spectroscopy. Phys Chem Chem Phys 16:13645–13653CrossRef
Zurück zum Zitat Schnepp Z et al (2015) In situ synchrotron X-ray diffraction study of the sol–gel synthesis of Fe3N and Fe3C. Chem Mater 27:5094–5099CrossRef Schnepp Z et al (2015) In situ synchrotron X-ray diffraction study of the sol–gel synthesis of Fe3N and Fe3C. Chem Mater 27:5094–5099CrossRef
Zurück zum Zitat Setyowati VA et al (2016) Effect of iron precursors on the structure and oxygen reduction activity of iron–nitrogen–carbon catalysts. Electrochim Acta 211:933–940CrossRef Setyowati VA et al (2016) Effect of iron precursors on the structure and oxygen reduction activity of iron–nitrogen–carbon catalysts. Electrochim Acta 211:933–940CrossRef
Zurück zum Zitat Shanmugam S, Gedanken A (2007) Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small 3:1189–1193CrossRef Shanmugam S, Gedanken A (2007) Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small 3:1189–1193CrossRef
Zurück zum Zitat Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657CrossRef Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657CrossRef
Zurück zum Zitat Sharifi T et al (2013) Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles. Nature Commun 4:2319CrossRef Sharifi T et al (2013) Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles. Nature Commun 4:2319CrossRef
Zurück zum Zitat Sheng ZH et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRef Sheng ZH et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRef
Zurück zum Zitat Stamenkovic V et al (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 118:2963–2967CrossRef Stamenkovic V et al (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 118:2963–2967CrossRef
Zurück zum Zitat Stamenkovic VR et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRef Stamenkovic VR et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRef
Zurück zum Zitat Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816CrossRef Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816CrossRef
Zurück zum Zitat Tang Y et al (2013) The effect of metal catalyst on the electrocatalytic activity of nitrogen-doped carbon nanotubes. J Phys Chem C 117:25213–25221CrossRef Tang Y et al (2013) The effect of metal catalyst on the electrocatalytic activity of nitrogen-doped carbon nanotubes. J Phys Chem C 117:25213–25221CrossRef
Zurück zum Zitat Wang B, Caffio M, Bromley C, Früchtl H, Schaub R (2010) Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. ACS Nano 4:5773–5782CrossRef Wang B, Caffio M, Bromley C, Früchtl H, Schaub R (2010) Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. ACS Nano 4:5773–5782CrossRef
Zurück zum Zitat Wang J, Qiu T, Chen X, Lu Y, Yang W (2015a) N-doped carbon@Ni–Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium. J. Power Sources 293:178–186CrossRef Wang J, Qiu T, Chen X, Lu Y, Yang W (2015a) N-doped carbon@Ni–Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium. J. Power Sources 293:178–186CrossRef
Zurück zum Zitat Wang DY et al (2015b) FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction. Nano Energy 11:631–639CrossRef Wang DY et al (2015b) FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction. Nano Energy 11:631–639CrossRef
Zurück zum Zitat Wang J et al (2015c) High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 13:387–396CrossRef Wang J et al (2015c) High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 13:387–396CrossRef
Zurück zum Zitat Woehrle T, Leineweber A, Mittemeijer EJ (2012) Microstructural and phase evolution of compound layers growing on α–iron during gaseous nitrocarburizing. Metall Mater Trans A 43:2401–2413CrossRef Woehrle T, Leineweber A, Mittemeijer EJ (2012) Microstructural and phase evolution of compound layers growing on α–iron during gaseous nitrocarburizing. Metall Mater Trans A 43:2401–2413CrossRef
Zurück zum Zitat Wu G, Zelenay P (2013) Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res 46:1878–1889CrossRef Wu G, Zelenay P (2013) Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc Chem Res 46:1878–1889CrossRef
Zurück zum Zitat Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447CrossRef Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447CrossRef
Zurück zum Zitat Xia X et al (2016) Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy 20:244–253CrossRef Xia X et al (2016) Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy 20:244–253CrossRef
Zurück zum Zitat Xiong W et al (2010) 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J Am Chem Soc 132:15839–15841CrossRef Xiong W et al (2010) 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J Am Chem Soc 132:15839–15841CrossRef
Zurück zum Zitat Xu Y et al (2015) Carbon-coated perovskite BaMnO3 porous nanorods with enhanced electrocatalytic perporites for oxygen reduction and oxygen evolution. Electrochim Acta 174:551–556CrossRef Xu Y et al (2015) Carbon-coated perovskite BaMnO3 porous nanorods with enhanced electrocatalytic perporites for oxygen reduction and oxygen evolution. Electrochim Acta 174:551–556CrossRef
Zurück zum Zitat Yang Z, Nakashima N (2016) An electrocatalyst based on carbon nanotubes coated with poly(vinylpyrrolidone) shows a high tolerance to carbon monoxide in a direct methanol fuel cell. ChemCatChem 8:600–606CrossRef Yang Z, Nakashima N (2016) An electrocatalyst based on carbon nanotubes coated with poly(vinylpyrrolidone) shows a high tolerance to carbon monoxide in a direct methanol fuel cell. ChemCatChem 8:600–606CrossRef
Zurück zum Zitat Zamani P et al (2016) Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells. Nan energy. Nano Energy 26:267–275CrossRef Zamani P et al (2016) Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells. Nan energy. Nano Energy 26:267–275CrossRef
Zurück zum Zitat Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222CrossRef Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222CrossRef
Zurück zum Zitat Zhang Y et al (2015) Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 14:30–48CrossRef Zhang Y et al (2015) Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 14:30–48CrossRef
Zurück zum Zitat Zhang H et al (2016) Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10:684–694CrossRef Zhang H et al (2016) Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10:684–694CrossRef
Zurück zum Zitat Zhou W et al (2015) N-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:1915–1919CrossRef Zhou W et al (2015) N-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:1915–1919CrossRef
Zurück zum Zitat Zitolo A et al (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 14:937–942 Zitolo A et al (2015) Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater 14:937–942
Metadaten
Titel
Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts
verfasst von
Jang Yeol Lee
Na Young Kim
Dong Yun Shin
Hee-Young Park
Sang-Soo Lee
S. Joon Kwon
Dong-Hee Lim
Ki Wan Bong
Jeong Gon Son
Jin Young Kim
Publikationsdatum
01.03.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-3793-y

Weitere Artikel der Ausgabe 3/2017

Journal of Nanoparticle Research 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.