Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 3/2020

28.01.2020 | Research Article-Electrical Engineering

Noise Optimization of CMOS Front-End Amplifier for Embedded Biomedical Recording

verfasst von: Hyem Saadi, Mokhtar Attari, Hammoudi Escid

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the noise optimization of a low-power front-end amplifier (FEA) integrating a band-pass filter for EEG signal recording. The AC-coupled and capacitive feedback structures have been adopted in order to reject the large DC offset generated at the electrode–skin interface. A high open-loop gain with acceptable phase margin was obtained with the proposed operational transconductance amplifier architecture. The methodology to reach a low noise-to-power trade-off is based on selecting the suitable operation region of each transistor, especially the input differential pair by considering the gm/ID parameter. The proposed amplifier was implemented in both 0.13 μm and 0.18 μm CMOS processes with a supply voltage set to ± 1 V. For both technologies, the obtained gain and bandwidth are practically similar, while the phase margin obtained in the first process (0.13 μm) is higher than the one obtained in the second process (0.18 μm); however, both values insure system stability. A lower total input-referred noise of 1.7 µVrms with a noise efficiency factor of 3.4 was obtained in 0.18 µm CMOS process. The designed FEA has been found suitable for ECG biopotential recording.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Morikawa, K.; Matsumoto, A.; Patki, S.; Grundlehner, B.; Verwegen, A.; Xu, J.; Mitra, S.; Penders, J.: Compact wireless EEG system with active electrodes for daily life healthcare monitoring. In: IEEE International Conference on Consumer Electronics, pp. 204–205, Las Vegas, USA (2013) Morikawa, K.; Matsumoto, A.; Patki, S.; Grundlehner, B.; Verwegen, A.; Xu, J.; Mitra, S.; Penders, J.: Compact wireless EEG system with active electrodes for daily life healthcare monitoring. In: IEEE International Conference on Consumer Electronics, pp. 204–205, Las Vegas, USA (2013)
2.
Zurück zum Zitat Sawan, M.; Salam, M.T.; Lan, J.L.; Kassab, A.; Élinas, S.; Vannasing, P.; Lesage, F.; Lassonde, M.; Nguyen, D.K.: Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices. IEEE Trans. Biomed. Circuits Syst. 7(2), 186–195 (2013)CrossRef Sawan, M.; Salam, M.T.; Lan, J.L.; Kassab, A.; Élinas, S.; Vannasing, P.; Lesage, F.; Lassonde, M.; Nguyen, D.K.: Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices. IEEE Trans. Biomed. Circuits Syst. 7(2), 186–195 (2013)CrossRef
3.
Zurück zum Zitat Lin, C.T.; Chuang, C.H.; Huang, C.S.; Tsai, S.F.; Lu, S.W.; Che, Y.H.; Ko, L.W.: Wireless and wearable EEG system for evaluating driver vigilance. IEEE Trans. Biomed. Circuits Syst. 8(2), 165–176 (2014)CrossRef Lin, C.T.; Chuang, C.H.; Huang, C.S.; Tsai, S.F.; Lu, S.W.; Che, Y.H.; Ko, L.W.: Wireless and wearable EEG system for evaluating driver vigilance. IEEE Trans. Biomed. Circuits Syst. 8(2), 165–176 (2014)CrossRef
4.
Zurück zum Zitat Hasan, Md.K.; Rusho, R.Z.; Hossain, T.Md.; Ghosh, T.K.; Ahmad, M.: Design and simulation of cost effective wireless EEG acquisition system for patient monitoring. In: International Conference on Informatics, Electronics and Vision, pp. 1–5, Dhaka, Bangladesh (2014) Hasan, Md.K.; Rusho, R.Z.; Hossain, T.Md.; Ghosh, T.K.; Ahmad, M.: Design and simulation of cost effective wireless EEG acquisition system for patient monitoring. In: International Conference on Informatics, Electronics and Vision, pp. 1–5, Dhaka, Bangladesh (2014)
5.
Zurück zum Zitat Brown, L.; Molengraft, J.V.; Yazicioglu, R.F.; Torfs, T.; Penders, J.; Van Hoof, C.: A low power wireless 8 channel EEG monitoring headset. In: IEEE EMBS Annual International Conference, pp. 4197–4200, Buenos Aires, Argentina (2010) Brown, L.; Molengraft, J.V.; Yazicioglu, R.F.; Torfs, T.; Penders, J.; Van Hoof, C.: A low power wireless 8 channel EEG monitoring headset. In: IEEE EMBS Annual International Conference, pp. 4197–4200, Buenos Aires, Argentina (2010)
6.
Zurück zum Zitat Alchalcabi, A.E.; Nour Eddin, A.; Shirmohammadi, S.: More attention, less deficit: Wearable EEG-based serious game for focus improvement. In: IEEE International Conference on Serious Games and Applications for Health, pp. 1–8, Perth, WA, Australia (2017) Alchalcabi, A.E.; Nour Eddin, A.; Shirmohammadi, S.: More attention, less deficit: Wearable EEG-based serious game for focus improvement. In: IEEE International Conference on Serious Games and Applications for Health, pp. 1–8, Perth, WA, Australia (2017)
7.
Zurück zum Zitat Xu, J.; Mitra, S.; Matsumoto, A.; Patki, S.; Hoof, C.V.; Makinawa, K.A.A.; Yazicioglu, R.F.: A wearable 8 channel active-electrode EEG/ETI acquisition system for body area networks. IEEE J. Solid-State Circuits 9(9), 2005–2016 (2014)CrossRef Xu, J.; Mitra, S.; Matsumoto, A.; Patki, S.; Hoof, C.V.; Makinawa, K.A.A.; Yazicioglu, R.F.: A wearable 8 channel active-electrode EEG/ETI acquisition system for body area networks. IEEE J. Solid-State Circuits 9(9), 2005–2016 (2014)CrossRef
8.
Zurück zum Zitat Abdallah, A.; Mahmoud, S.: Electroencephalogram system based on CMOS analog front-end interleaved chain architecture. In: International Conference on Microelectronics, pp. 5–8, Giza, Egypt (2016) Abdallah, A.; Mahmoud, S.: Electroencephalogram system based on CMOS analog front-end interleaved chain architecture. In: International Conference on Microelectronics, pp. 5–8, Giza, Egypt (2016)
9.
Zurück zum Zitat Feng, J.; Yan, N.; Min, H.: A low power low noise amplifier for EEG/ECG signal recording applications. In: IEEE International Conference on ASIC, pp. 145–148, Xiamen, China (2011) Feng, J.; Yan, N.; Min, H.: A low power low noise amplifier for EEG/ECG signal recording applications. In: IEEE International Conference on ASIC, pp. 145–148, Xiamen, China (2011)
10.
Zurück zum Zitat Liu, H.; Tang, K.T.; Wu, J.Y.; Wang, G.: A digitally trimmable low noise low power analog front end for EEG signal acquisition. In: IEEE-EMBS International Conference Biomedical and Health Infomatics, pp. 208–210. Hong Kong, China (2012) Liu, H.; Tang, K.T.; Wu, J.Y.; Wang, G.: A digitally trimmable low noise low power analog front end for EEG signal acquisition. In: IEEE-EMBS International Conference Biomedical and Health Infomatics, pp. 208–210. Hong Kong, China (2012)
11.
Zurück zum Zitat Casson, A.J.; Abdullal, M.; Dulabh, M.; Kohli, S.; Krachunov, S.; Trimble, E.: Electroencephalogram. In: Tamura, T., Chen, W. (eds.) Seamless Healthcare Monitoring, Chap. 2, pp. 45–81. Springer, Berlin (2018)CrossRef Casson, A.J.; Abdullal, M.; Dulabh, M.; Kohli, S.; Krachunov, S.; Trimble, E.: Electroencephalogram. In: Tamura, T., Chen, W. (eds.) Seamless Healthcare Monitoring, Chap. 2, pp. 45–81. Springer, Berlin (2018)CrossRef
12.
Zurück zum Zitat Bronzino, J.D. (ed.): Principles of electroencephalography. In: The Biomedical Engineering Handbook, Chap. 3, vol. 1, 2nd edn. CRC and IEEE Press, USA (2000) Bronzino, J.D. (ed.): Principles of electroencephalography. In: The Biomedical Engineering Handbook, Chap. 3, vol. 1, 2nd edn. CRC and IEEE Press, USA (2000)
13.
Zurück zum Zitat Yin, M.; Ghovanloo, M.: A low noise preamplifier with adjustable gain and bandwidth for biopotential recording applications. In: IEEE International Symposium on Circuits and Systems, pp. 321–324, New Orleans, LA (2007) Yin, M.; Ghovanloo, M.: A low noise preamplifier with adjustable gain and bandwidth for biopotential recording applications. In: IEEE International Symposium on Circuits and Systems, pp. 321–324, New Orleans, LA (2007)
14.
Zurück zum Zitat Harrison, R.R.; Watkins, P.T.; Kier, R.J.; Lovejoy, R.O.; Black, D.J.; Greger, B.; Solzbacher, F.: A low power integrated circuit for a wireless 100 electrode neural recording system. IEEE J. Solid-State Circuits 42(1), 125–130 (2007)CrossRef Harrison, R.R.; Watkins, P.T.; Kier, R.J.; Lovejoy, R.O.; Black, D.J.; Greger, B.; Solzbacher, F.: A low power integrated circuit for a wireless 100 electrode neural recording system. IEEE J. Solid-State Circuits 42(1), 125–130 (2007)CrossRef
15.
Zurück zum Zitat Chandran, A.P.; Nadjafi, K.; Wise, K.D.: A new DC baseline stabilization scheme for neural recording microprobes. In: Proceedings of the First Joint BMES/EMBS Conference Serving Humanity, vol. 1, Atlanta, GA (1999) Chandran, A.P.; Nadjafi, K.; Wise, K.D.: A new DC baseline stabilization scheme for neural recording microprobes. In: Proceedings of the First Joint BMES/EMBS Conference Serving Humanity, vol. 1, Atlanta, GA (1999)
16.
Zurück zum Zitat Olsson, R.H.; Buhl, D.L.; Sirota, A.M.; Buzsaki, G.; Wise, K.D.: Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans. Biomed. Eng. 52(7), 1303–1311 (2005)CrossRef Olsson, R.H.; Buhl, D.L.; Sirota, A.M.; Buzsaki, G.; Wise, K.D.: Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans. Biomed. Eng. 52(7), 1303–1311 (2005)CrossRef
17.
Zurück zum Zitat Yazicioglu, R.F.; Merken, P.; Puers, R.; Van Hoof, C.: A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits 42(5), 1100–1110 (2007)CrossRef Yazicioglu, R.F.; Merken, P.; Puers, R.; Van Hoof, C.: A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits 42(5), 1100–1110 (2007)CrossRef
18.
Zurück zum Zitat Dagtekin, M.; Liu, W.; Bashirullah, R.: A multi-channel chopper modulated neural recording system. In: EMBS International Conference, Istanbul, Turkey (2001) Dagtekin, M.; Liu, W.; Bashirullah, R.: A multi-channel chopper modulated neural recording system. In: EMBS International Conference, Istanbul, Turkey (2001)
19.
Zurück zum Zitat Denison, T.; Consoer, K.; Santa, W.; Avestruz, A.; Cooley, J.; Kelly, A.: A 2 µW 100 nV/√Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid-State Circuits 42(12), 2934–2945 (2007)CrossRef Denison, T.; Consoer, K.; Santa, W.; Avestruz, A.; Cooley, J.; Kelly, A.: A 2 µW 100 nV/√Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid-State Circuits 42(12), 2934–2945 (2007)CrossRef
20.
Zurück zum Zitat Harrison, R.R.; Charles, C.: A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)CrossRef Harrison, R.R.; Charles, C.: A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)CrossRef
21.
Zurück zum Zitat Moreno, R.; Pimenta, T.; Crepaldi, P.; Dutra, O.; Colletta, G.D.; Zoccal, L.: A low noise low power OTA with adjustable gain PID feedback network for EEG Soc arrays. In: Hudak, R., Penhaker, M., Majernik, J. (eds.) Biomedical Engineering Technical Applications in Medicine, Chap. 18. IntechOpen (2012) Moreno, R.; Pimenta, T.; Crepaldi, P.; Dutra, O.; Colletta, G.D.; Zoccal, L.: A low noise low power OTA with adjustable gain PID feedback network for EEG Soc arrays. In: Hudak, R., Penhaker, M., Majernik, J. (eds.) Biomedical Engineering Technical Applications in Medicine, Chap. 18. IntechOpen (2012)
22.
Zurück zum Zitat El Guindy, M.; Madian, A.H.: Low voltage digitally programmable gain and bandwidth fully differential CMOS neural amplifier. In: IEEE RAS -EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 477–481, Roma, Italy (2012) El Guindy, M.; Madian, A.H.: Low voltage digitally programmable gain and bandwidth fully differential CMOS neural amplifier. In: IEEE RAS -EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 477–481, Roma, Italy (2012)
23.
Zurück zum Zitat Xiaofei, P.; Lei, W.; Hui, Z.; Yajie, Q.; Zhiliang, H.: A low power portable ECG sensor interface with dry electrodes. J. Semiconduc. 34(5), 055002-1–055002-6 (2013) Xiaofei, P.; Lei, W.; Hui, Z.; Yajie, Q.; Zhiliang, H.: A low power portable ECG sensor interface with dry electrodes. J. Semiconduc. 34(5), 055002-1–055002-6 (2013)
24.
Zurück zum Zitat Xu, Z.; Weihua, P.; Beiju, H.; Hongda, C.: Low power CMOS preamplifier for neural recording applications. J. Semiconduc. 31(4), 045002-1–045002-6 (2000) Xu, Z.; Weihua, P.; Beiju, H.; Hongda, C.: Low power CMOS preamplifier for neural recording applications. J. Semiconduc. 31(4), 045002-1–045002-6 (2000)
25.
Zurück zum Zitat Seo, I.; Fox, R.: Comparison of quasi-pseudo-floating gate techniques and low voltage applications. Anal. Integr. Circuits Signal Process. 47, 183–192 (2006)CrossRef Seo, I.; Fox, R.: Comparison of quasi-pseudo-floating gate techniques and low voltage applications. Anal. Integr. Circuits Signal Process. 47, 183–192 (2006)CrossRef
26.
Zurück zum Zitat Mohseni, P.; Najafi, K.: A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans. Biomed. Eng. 51(5), 832–837 (2004)CrossRef Mohseni, P.; Najafi, K.: A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans. Biomed. Eng. 51(5), 832–837 (2004)CrossRef
27.
Zurück zum Zitat Aghtar, S.; Haslett, J.W.; Trofimenkoff, F.N.: Subthreshold analysis of an MOS analog switch. IEEE Trans. Electron Devices 44(1), 89–96 (1997)CrossRef Aghtar, S.; Haslett, J.W.; Trofimenkoff, F.N.: Subthreshold analysis of an MOS analog switch. IEEE Trans. Electron Devices 44(1), 89–96 (1997)CrossRef
28.
Zurück zum Zitat Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw Hill, New York (2001) Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw Hill, New York (2001)
29.
Zurück zum Zitat Enz, C.C.; Krummenacher, F.; Vittoz, E.A.: An analytical MOS transistor model valid in all region of operation and dedicated to low voltage and low current applications. Anal. Integr. Circuits Signal Process. 8, 83–114 (1995)CrossRef Enz, C.C.; Krummenacher, F.; Vittoz, E.A.: An analytical MOS transistor model valid in all region of operation and dedicated to low voltage and low current applications. Anal. Integr. Circuits Signal Process. 8, 83–114 (1995)CrossRef
Metadaten
Titel
Noise Optimization of CMOS Front-End Amplifier for Embedded Biomedical Recording
verfasst von
Hyem Saadi
Mokhtar Attari
Hammoudi Escid
Publikationsdatum
28.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 3/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04347-3

Weitere Artikel der Ausgabe 3/2020

Arabian Journal for Science and Engineering 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.