Skip to main content

2019 | OriginalPaper | Buchkapitel

5. NOMA: An Information-Theoretic Perspective

verfasst von : Mojtaba Vaezi, H. Vincent Poor

Erschienen in: Multiple Access Techniques for 5G Wireless Networks and Beyond

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Non-orthogonal multiple access (NOMA) is a potential enabler for the development of 5G and beyond wireless networks. By allowing multiple users to share the same resource (time/frequency/code/space), NOMA can scale up the number of served users, increase the spectral efficiency, and improve user-fairness compared to existing orthogonal multiple access (OMA) techniques. The basic premise behind NOMA in a single-cell network is to reap the benefits promised by information theory for the downlink and uplink transmission of wireless systems, modeled respectively by the broadcast channel (BC) and multiple access channel (MAC). The capacity regions of the BC and MAC have been established several decades ago, and concurrent non-orthogonal transmission is the optimal transmission strategy in both cases. Unlike the single-cell setting, the capacity region of multi-cell wireless networks, commonly modeled by the interference channel (IC), is in general unknown. However, it is known that OMA is suboptimal. This chapter reviews what information theory promises and proposes for NOMA in single- and multi-cell networks with both single- and multi-antenna nodes. Furthermore, relevant physical layer security channel models are proposed and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We should highlight that in this chapter we are discussing non-orthogonal multiple access methods. This should not be confused with non-orthogonal random access which is another related topic and will be discussed in Chap. 17 of this book.
 
2
For example, CDMA with power control is capacity achieving for the single-antenna broadcast channel.
 
3
However, in the SDMA case, we assume that the system is overloaded. This is relevant in the MIMO (and MU-MIMO) case where “space” comes in as a new resource. We note that when the number of transmit antennas \(n_t\) is greater than the number of users K, different users can be served in different (orthogonal) spaces, reducing the underlying system to an OMA one.
 
4
Sparse code multiple access (SCMA) is an important variant of NOMA in the code domain.
 
5
FDMA has exactly the same performance [5].
 
6
Moore’s Law, hypothesized by Intel founder Gordon Moore in 1965, states that the number of transistors in a dense integrated circuit will double approximately every two years. This enables a larger number of transistors to be concentrated in a given area which, in turn, results in a faster processor that can operate at lower power.
 
7
In LTE one resource block is 180 kHz.
 
Literatur
1.
Zurück zum Zitat D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge university press, 2005) D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge university press, 2005)
2.
Zurück zum Zitat Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in Proceedings of the 77th IEEE Vehicular Technology Conference (VTC Spring) (2013), pp. 1–5 Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in Proceedings of the 77th IEEE Vehicular Technology Conference (VTC Spring) (2013), pp. 1–5
3.
Zurück zum Zitat P. Wang, J. Xiao, P. Li, Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Veh. Technol. Mag. 1(3), 4–11 (2006)CrossRef P. Wang, J. Xiao, P. Li, Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Veh. Technol. Mag. 1(3), 4–11 (2006)CrossRef
4.
Zurück zum Zitat T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2006)MATH T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2006)MATH
5.
Zurück zum Zitat A. El Gamal, Y.H. Kim, Network Information Theory (Cambridge University Press, 2011) A. El Gamal, Y.H. Kim, Network Information Theory (Cambridge University Press, 2011)
6.
Zurück zum Zitat T. Han, K. Kobayashi, A new achievable rate region for the interference channel. IEEE Trans. Inf. Theory 27, 49–60 (1981)MathSciNetCrossRef T. Han, K. Kobayashi, A new achievable rate region for the interference channel. IEEE Trans. Inf. Theory 27, 49–60 (1981)MathSciNetCrossRef
7.
Zurück zum Zitat M. Vaezi, H.V. Poor, Simplified Han-Kobayashi region for one-sided and mixed Gaussian interference channels, in Proceedings of the IEEE International Conference on Communications (ICC) (2016), pp. 1–6 M. Vaezi, H.V. Poor, Simplified Han-Kobayashi region for one-sided and mixed Gaussian interference channels, in Proceedings of the IEEE International Conference on Communications (ICC) (2016), pp. 1–6
9.
Zurück zum Zitat S.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. (2017) S.R. Islam, N. Avazov, O.A. Dobre, K.-S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. (2017)
10.
Zurück zum Zitat Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 55(2), 185–191 (2017)CrossRef Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 55(2), 185–191 (2017)CrossRef
11.
Zurück zum Zitat W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun. Mag. 55(10), 176–183 (2017)CrossRef W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun. Mag. 55(10), 176–183 (2017)CrossRef
12.
Zurück zum Zitat 3GPP TD RP-150496, Study on Downlink Multiuser Superposition Transmission, Mar 2015 3GPP TD RP-150496, Study on Downlink Multiuser Superposition Transmission, Mar 2015
13.
Zurück zum Zitat Q. Sun, S. Han, C.-L. I, Z. Pan, On the ergodic capacity of MIMO NOMA systems. IEEE Wirel. Commun. Lett. 4(4), 405–408 (2015) Q. Sun, S. Han, C.-L. I, Z. Pan, On the ergodic capacity of MIMO NOMA systems. IEEE Wirel. Commun. Lett. 4(4), 405–408 (2015)
14.
Zurück zum Zitat Z. Ding, F. Adachi, H.V. Poor, The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 15(1), 537–552 (2016)CrossRef Z. Ding, F. Adachi, H.V. Poor, The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 15(1), 537–552 (2016)CrossRef
15.
Zurück zum Zitat Z. Ding, R. Schober, H.V. Poor, A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans. Wirel. Commun. 15(6), 4438–4454 (2016)CrossRef Z. Ding, R. Schober, H.V. Poor, A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans. Wirel. Commun. 15(6), 4438–4454 (2016)CrossRef
16.
Zurück zum Zitat R.H. Etkin, D.N. Tse, H. Wang, Gaussian interference channel capacity to within one bit. IEEE Trans. Inf. Theory 54(12), 5534–5562 (2008)MathSciNetCrossRef R.H. Etkin, D.N. Tse, H. Wang, Gaussian interference channel capacity to within one bit. IEEE Trans. Inf. Theory 54(12), 5534–5562 (2008)MathSciNetCrossRef
17.
Zurück zum Zitat A.S. Motahari, A.K. Khandani, Capacity bounds for the Gaussian interference channel. IEEE Trans. Inf. Theory 55(2), 620–643 (2009)MathSciNetCrossRef A.S. Motahari, A.K. Khandani, Capacity bounds for the Gaussian interference channel. IEEE Trans. Inf. Theory 55(2), 620–643 (2009)MathSciNetCrossRef
18.
Zurück zum Zitat X. Shang, G. Kramer, B. Chen, A new outer bound and the noisy-interference sum-rate capacity for Gaussian interference channels. IEEE Trans. Inf. Theory 55(2), 689–699 (2009)MathSciNetCrossRef X. Shang, G. Kramer, B. Chen, A new outer bound and the noisy-interference sum-rate capacity for Gaussian interference channels. IEEE Trans. Inf. Theory 55(2), 689–699 (2009)MathSciNetCrossRef
19.
Zurück zum Zitat V.S. Annapureddy, V.V. Veeravalli, Gaussian interference networks: sum capacity in the low-interference regime and new outer bounds on the capacity region. IEEE Trans. Inf. Theory 55(7), 3032–3050 (2009)MathSciNetCrossRef V.S. Annapureddy, V.V. Veeravalli, Gaussian interference networks: sum capacity in the low-interference regime and new outer bounds on the capacity region. IEEE Trans. Inf. Theory 55(7), 3032–3050 (2009)MathSciNetCrossRef
20.
Zurück zum Zitat M. Vaezi, H.V. Poor, On limiting expressions for the capacity regions of Gaussian interference channels, in Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers, Nov (2015), pp. 1292–1298 M. Vaezi, H.V. Poor, On limiting expressions for the capacity regions of Gaussian interference channels, in Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers, Nov (2015), pp. 1292–1298
22.
Zurück zum Zitat H. Weingarten, Y. Steinberg, S.S. Shamai, The capacity region of the Gaussian multiple-input multiple-output broadcast channel. IEEE Trans. Inf. Theory 52(9), 3936–3964 (2006)MathSciNetCrossRef H. Weingarten, Y. Steinberg, S.S. Shamai, The capacity region of the Gaussian multiple-input multiple-output broadcast channel. IEEE Trans. Inf. Theory 52(9), 3936–3964 (2006)MathSciNetCrossRef
24.
Zurück zum Zitat V.O.L. Yijie Mao, B. Clerckx, Rate-splitting multiple access for downlink communication systems: bridging, generalizing and outperforming SDMA and NOMA, arXiv:1710.11018v3 V.O.L. Yijie Mao, B. Clerckx, Rate-splitting multiple access for downlink communication systems: bridging, generalizing and outperforming SDMA and NOMA, arXiv:​1710.​11018v3
25.
Zurück zum Zitat M.A. Maddah-Ali, A.S. Motahari, A.K. Khandani, Signaling over MIMO multi-base systems: combination of multi-access and broadcast schemes, in Proceedings of the IEEE International Symposium on Information Theory (2006), pp. 2104–2108 M.A. Maddah-Ali, A.S. Motahari, A.K. Khandani, Signaling over MIMO multi-base systems: combination of multi-access and broadcast schemes, in Proceedings of the IEEE International Symposium on Information Theory (2006), pp. 2104–2108
26.
Zurück zum Zitat M.A. Maddah-Ali, A.S. Motahari, A.K. Khandani, Communication over MIMO X channels: interference alignment, decomposition, and performance analysis. IEEE Trans. Inf. Theory 54(8), 3457–3470 (2008)MathSciNetCrossRef M.A. Maddah-Ali, A.S. Motahari, A.K. Khandani, Communication over MIMO X channels: interference alignment, decomposition, and performance analysis. IEEE Trans. Inf. Theory 54(8), 3457–3470 (2008)MathSciNetCrossRef
27.
Zurück zum Zitat V.R. Cadambe, S.A. Jafar, Interference alignment and degrees of freedom of the \(K\)-user interference channel. IEEE Trans. Inf. Theory 54(8), 3425–3441 (2008)MathSciNetCrossRef V.R. Cadambe, S.A. Jafar, Interference alignment and degrees of freedom of the \(K\)-user interference channel. IEEE Trans. Inf. Theory 54(8), 3425–3441 (2008)MathSciNetCrossRef
28.
Zurück zum Zitat C.M. Yetis, T. Gou, S.A. Jafar, A.H. Kayran, On feasibility of interference alignment in MIMO interference networks. IEEE Trans. Signal Process. 58(9), 4771–4782 (2010)MathSciNetCrossRef C.M. Yetis, T. Gou, S.A. Jafar, A.H. Kayran, On feasibility of interference alignment in MIMO interference networks. IEEE Trans. Signal Process. 58(9), 4771–4782 (2010)MathSciNetCrossRef
29.
Zurück zum Zitat T. Gou, S.A. Jafar, Degrees of freedom of the K user \(M\,\times \,N\) MIMO interference channel. IEEE Trans. Inf. Theory 56(12), 6040–6057 (2010)MathSciNetCrossRef T. Gou, S.A. Jafar, Degrees of freedom of the K user \(M\,\times \,N\) MIMO interference channel. IEEE Trans. Inf. Theory 56(12), 6040–6057 (2010)MathSciNetCrossRef
30.
Zurück zum Zitat 3GPP TR 36.866 V12.0.1, Study on Network-Assisted Interference Cancellation and Suppression (NAIC) for LTE (Release 12), Mar 2014 3GPP TR 36.866 V12.0.1, Study on Network-Assisted Interference Cancellation and Suppression (NAIC) for LTE (Release 12), Mar 2014
31.
Zurück zum Zitat Q. Li, G. Li, W. Lee, M.-i. Lee, D. Mazzarese, B. Clerckx, Z. Li, MIMO techniques in WiMAX and LTE: a feature overview. IEEE Commun. Mag. 48(5), (2010) Q. Li, G. Li, W. Lee, M.-i. Lee, D. Mazzarese, B. Clerckx, Z. Li, MIMO techniques in WiMAX and LTE: a feature overview. IEEE Commun. Mag. 48(5), (2010)
32.
Zurück zum Zitat Y. Yuan, Z. Yuan, G. Yu, C.-H. Hwang, P.-K. Liao, A. Li, K. Takeda, Non-orthogonal transmission technology in LTE evolution. IEEE Commun. Mag. 54(7), 68–74 (2016)CrossRef Y. Yuan, Z. Yuan, G. Yu, C.-H. Hwang, P.-K. Liao, A. Li, K. Takeda, Non-orthogonal transmission technology in LTE evolution. IEEE Commun. Mag. 54(7), 68–74 (2016)CrossRef
33.
Zurück zum Zitat D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, K. Sayana, Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges. IEEE Commun. Mag. 50(2), 148–155 (2012)CrossRef D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, K. Sayana, Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges. IEEE Commun. Mag. 50(2), 148–155 (2012)CrossRef
34.
Zurück zum Zitat W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun. Lett. 21(1), 84–87 (2017)CrossRef W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun. Lett. 21(1), 84–87 (2017)CrossRef
35.
Zurück zum Zitat E. Ekrem, S. Ulukus, The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel. IEEE Trans. Inf. Theory 57(4), 2083–2114 (2011)MathSciNetCrossRef E. Ekrem, S. Ulukus, The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel. IEEE Trans. Inf. Theory 57(4), 2083–2114 (2011)MathSciNetCrossRef
36.
Zurück zum Zitat R. Liu, T. Liu, H.V. Poor, S. Shamai, Multiple-input multiple-output Gaussian broadcast channels with confidential messages. IEEE Trans. Inf. Theory 56(9), 4215–4227 (2010)MathSciNetCrossRef R. Liu, T. Liu, H.V. Poor, S. Shamai, Multiple-input multiple-output Gaussian broadcast channels with confidential messages. IEEE Trans. Inf. Theory 56(9), 4215–4227 (2010)MathSciNetCrossRef
37.
Zurück zum Zitat K. Wang, X. Wang, X. Zhang, SLNR-based transmit beamforming for MIMO wiretap channel. Wirel. Pers. Commun. 71(1), 109–121 (2013)CrossRef K. Wang, X. Wang, X. Zhang, SLNR-based transmit beamforming for MIMO wiretap channel. Wirel. Pers. Commun. 71(1), 109–121 (2013)CrossRef
38.
Zurück zum Zitat S.A.A. Fakoorian, A.L. Swindlehurst, Optimal power allocation for GSVD-based beamforming in the MIMO Gaussian wiretap channel, in Proceedings of the IEEE International Symposium on Information Theory (2012), pp. 2321–2325 S.A.A. Fakoorian, A.L. Swindlehurst, Optimal power allocation for GSVD-based beamforming in the MIMO Gaussian wiretap channel, in Proceedings of the IEEE International Symposium on Information Theory (2012), pp. 2321–2325
39.
Zurück zum Zitat A. Khisti, G.W. Wornell, Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans. Inf. Theory 56(7), 3088–3104 (2010) A. Khisti, G.W. Wornell, Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans. Inf. Theory 56(7), 3088–3104 (2010)
40.
Zurück zum Zitat W. Mei, Z. Chen, J. Fang, GSVD-based precoding in MIMO systems with integrated services. IEEE Signal Process. Lett. 23(11), 1528–1532 (2016)CrossRef W. Mei, Z. Chen, J. Fang, GSVD-based precoding in MIMO systems with integrated services. IEEE Signal Process. Lett. 23(11), 1528–1532 (2016)CrossRef
41.
Zurück zum Zitat M. Vaezi, W. Shin, V. Poor, Optimal beamforming for Gaussian MIMO wiretap channels with two transmit antennas. IEEE Trans. Wirel. Commun. 16, 6726–6735 (2017)CrossRef M. Vaezi, W. Shin, V. Poor, Optimal beamforming for Gaussian MIMO wiretap channels with two transmit antennas. IEEE Trans. Wirel. Commun. 16, 6726–6735 (2017)CrossRef
42.
Zurück zum Zitat R. Liu, H.V. Poor, Secrecy capacity region of a multiple-antenna Gaussian broadcast channel with confidential messages. IEEE Trans. Inf. Theory 55(3), 1235–1249 (2009)MathSciNetCrossRef R. Liu, H.V. Poor, Secrecy capacity region of a multiple-antenna Gaussian broadcast channel with confidential messages. IEEE Trans. Inf. Theory 55(3), 1235–1249 (2009)MathSciNetCrossRef
43.
Zurück zum Zitat R. Bustin, R. Liu, H. V. Poor, S. Shamai, An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap channel. EURASIP J. Wirel. Commun. Netw. (1) (2009) R. Bustin, R. Liu, H. V. Poor, S. Shamai, An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap channel. EURASIP J. Wirel. Commun. Netw. (1) (2009)
44.
Zurück zum Zitat M. Vaezi, W. Shin, H. V. Poor, J. Lee, MIMO Gaussian wiretap channels with two transmit antennas: optimal precoding and power allocation, in Proceedings of the IEEE International Symposium on Information Theory (2017), pp. 1708–1712 M. Vaezi, W. Shin, H. V. Poor, J. Lee, MIMO Gaussian wiretap channels with two transmit antennas: optimal precoding and power allocation, in Proceedings of the IEEE International Symposium on Information Theory (2017), pp. 1708–1712
45.
Zurück zum Zitat Q. Li, W.-K. Ma, Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming. IEEE Trans. Signal Process. 59(8), 3799–3812 (2011)MathSciNetCrossRef Q. Li, W.-K. Ma, Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming. IEEE Trans. Signal Process. 59(8), 3799–3812 (2011)MathSciNetCrossRef
46.
Zurück zum Zitat Q. Li, M. Hong, H.-T. Wai, Y.-F. Liu, W.-K. Ma, Z.-Q. Luo, Transmit solutions for MIMO wiretap channels using alternating optimization. IEEE J. Sel. Areas Commun. 31(9), 1714–1727 (2013)CrossRef Q. Li, M. Hong, H.-T. Wai, Y.-F. Liu, W.-K. Ma, Z.-Q. Luo, Transmit solutions for MIMO wiretap channels using alternating optimization. IEEE J. Sel. Areas Commun. 31(9), 1714–1727 (2013)CrossRef
47.
Zurück zum Zitat S. Goel, R. Negi, Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 7(6), 2180–2189 (2008) S. Goel, R. Negi, Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 7(6), 2180–2189 (2008)
48.
Zurück zum Zitat Z. Li, P. Mu, B. Wang, X. Hu, Optimal semiadaptive transmission with artificial-noise-aided beamforming in MISO wiretap channels. IEEE Trans. Veh. Technol. 65(9), 7021–7035 (2016)CrossRef Z. Li, P. Mu, B. Wang, X. Hu, Optimal semiadaptive transmission with artificial-noise-aided beamforming in MISO wiretap channels. IEEE Trans. Veh. Technol. 65(9), 7021–7035 (2016)CrossRef
49.
Zurück zum Zitat T.-X. Zheng, H.-M. Wang, J. Yuan, D. Towsley, M.H. Lee, Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Trans. Commun. 63(11), 4347–4362 (2015)CrossRef T.-X. Zheng, H.-M. Wang, J. Yuan, D. Towsley, M.H. Lee, Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Trans. Commun. 63(11), 4347–4362 (2015)CrossRef
50.
Zurück zum Zitat S. Gerbracht, C. Scheunert, E.A. Jorswieck, Secrecy outage in MISO systems with partial channel information. IEEE Trans. Inf. Forensics Secur. 7(2), 704–716 (2012)CrossRef S. Gerbracht, C. Scheunert, E.A. Jorswieck, Secrecy outage in MISO systems with partial channel information. IEEE Trans. Inf. Forensics Secur. 7(2), 704–716 (2012)CrossRef
Metadaten
Titel
NOMA: An Information-Theoretic Perspective
verfasst von
Mojtaba Vaezi
H. Vincent Poor
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-92090-0_5