Skip to main content

2023 | OriginalPaper | Buchkapitel

5. NOMA for 5G and Beyond Wireless Networks

verfasst von : Pragya Swami, Vimal Bhatia

Erschienen in: A Glimpse Beyond 5G in Wireless Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The explosive growth of wireless subscribers and high data rate demanding multimedia services have pushed the fourth-generation (4G) network to improve and adapt to the emerging issues. This has led to the evolution of cutting-edge fifth-generation (5G) wireless networks. Few of the well-known techniques for boosting 5G networks are non-orthogonal multiple access (NOMA), small cell deployment (a.k.a. HetNets), millimeter-wave (mmWave) communications, intelligent reflecting surfaces (IRSs), etc. One of the basic elements of the physical layer of a wireless network is the multiple access (MA) techniques. The MA techniques deviate in each generation and have grown from frequency division multiple access, used in the first generation, to orthogonal frequency division multiple access, which is adequately accepted in the 4G network. NOMA (MA scheme that violates the criteria of orthogonality) has been considered a promising multiple access technique for the 5G networks. NOMA supports a huge number of connected users (or devices), lowers latency, and boosts spectral efficiency. Accordingly, the application of NOMA is essential in investigating the 5G network and beyond. Furthermore, NOMA is compatible with recent techniques, such as HetNets, device to device (D2D) communication, mmWave, and IRS. This integrates NOMA with the contending 5G and beyond techniques of great research interest and is presented in this chapter. This chapter introduces a scenario in which a heterogeneous cellular network (HCN) is considered with three tiers, namely, macro base station (macroBS) tier underlaid with femto base station (femtoBS) tier, and D2D tier. NOMA principle is applied in the femtoBS tier and the D2D tier, while the macroBS tier does not use NOMA. Offloading from the macroBS tier to the femtoBS tier aids in tackling congestion at the macroBS tier. The cooperation introduced using the D2D tier further supports the offloaded macro user (macroU) from the macroBS tier. This support is primarily helpful when the femtoBS tier is using NOMA, and the femtoBS tier is unable to find a pairing user for the offloaded macroU. We introduce theoretical bounds and analysis for outage probability supported by Monte Carlo simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Xiang, W. Yang, Y. Cai, Z. Ding, Y. Song, Y. Zou, NOMA-assisted secure short-packet communications in IoT. IEEE Wirel. Commun. 27(4), 8–15 (2020)CrossRef Z. Xiang, W. Yang, Y. Cai, Z. Ding, Y. Song, Y. Zou, NOMA-assisted secure short-packet communications in IoT. IEEE Wirel. Commun. 27(4), 8–15 (2020)CrossRef
2.
Zurück zum Zitat X. Liu, B. Lin, M. Zhou, M. Jia, NOMA-based cognitive spectrum access for 5G-enabled internet of things. IEEE Network 35, 290–297 (2021)CrossRef X. Liu, B. Lin, M. Zhou, M. Jia, NOMA-based cognitive spectrum access for 5G-enabled internet of things. IEEE Network 35, 290–297 (2021)CrossRef
3.
Zurück zum Zitat C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)CrossRef C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)CrossRef
4.
Zurück zum Zitat Z. Wei, J. Yuan, D.W.K. Ng, M. Elkashlan, Z. Ding, A survey of downlink non-orthogonal multiple access for 5G wireless communication networks (2016). Preprint arXiv:1609.01856 Z. Wei, J. Yuan, D.W.K. Ng, M. Elkashlan, Z. Ding, A survey of downlink non-orthogonal multiple access for 5G wireless communication networks (2016). Preprint arXiv:1609.01856
5.
Zurück zum Zitat M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Toward 6G networks: use cases and technologies. IEEE Commun. Mag. 58(3), 55–61 (2020)CrossRef M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Toward 6G networks: use cases and technologies. IEEE Commun. Mag. 58(3), 55–61 (2020)CrossRef
6.
Zurück zum Zitat R. Mitra, V. Bhatia, Precoded chebyshev-nlms-based pre-distorter for nonlinear led compensation in noma-vlc. IEEE Trans. Commun. 65(11), 4845–4856 (2017)CrossRef R. Mitra, V. Bhatia, Precoded chebyshev-nlms-based pre-distorter for nonlinear led compensation in noma-vlc. IEEE Trans. Commun. 65(11), 4845–4856 (2017)CrossRef
7.
Zurück zum Zitat Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in IEEE Vehicular Technology Conference (VTC Spring) (2013), pp. 1–5 Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in IEEE Vehicular Technology Conference (VTC Spring) (2013), pp. 1–5
8.
Zurück zum Zitat Z. Ding, P. Fan, H.V. Poor, Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016)CrossRef Z. Ding, P. Fan, H.V. Poor, Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016)CrossRef
9.
Zurück zum Zitat K.S. Gilhousen, I.M. Jacobs, R. Padovani, A.J. Viterbi, L.A. Weaver, C.E. Wheatley, On the capacity of a cellular CDMA system. IEEE Trans. Veh. Technol. 40(2), 303–312 (1991)CrossRef K.S. Gilhousen, I.M. Jacobs, R. Padovani, A.J. Viterbi, L.A. Weaver, C.E. Wheatley, On the capacity of a cellular CDMA system. IEEE Trans. Veh. Technol. 40(2), 303–312 (1991)CrossRef
10.
Zurück zum Zitat J. Li, X. Wu, R. Laroia, OFDMA Mobile Broadband Communications: A Systems Approach (Cambridge University Press, Cambridge, 2013)CrossRef J. Li, X. Wu, R. Laroia, OFDMA Mobile Broadband Communications: A Systems Approach (Cambridge University Press, Cambridge, 2013)CrossRef
11.
Zurück zum Zitat E. LTE, Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN) (3GPP TS 36.300, version 8.11. 0 release 8), December 2009. ETSI TS, vol. 136, no. 300 (2011), p. V8 E. LTE, Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN) (3GPP TS 36.300, version 8.11. 0 release 8), December 2009. ETSI TS, vol. 136, no. 300 (2011), p. V8
12.
Zurück zum Zitat E.U.T.R. Access, Further advancements for E-UTRA physical layer aspects. 3GPP TR 36.814, Technical Report (2010) E.U.T.R. Access, Further advancements for E-UTRA physical layer aspects. 3GPP TR 36.814, Technical Report (2010)
13.
Zurück zum Zitat Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 55(2), 185–191 (2017)CrossRef Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 55(2), 185–191 (2017)CrossRef
14.
Zurück zum Zitat Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, System-level performance evaluation of downlink non-orthogonal multiple access (NOMA), in IEEE 24th Annual International Symposium on Personal, Indoor Mobile Radio Communications (PIMRC) (2013), pp. 611–615 Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, System-level performance evaluation of downlink non-orthogonal multiple access (NOMA), in IEEE 24th Annual International Symposium on Personal, Indoor Mobile Radio Communications (PIMRC) (2013), pp. 611–615
15.
Zurück zum Zitat J. Meredith, Study on channel model for frequency spectrum above 6 GHz, 3GPP TR 38.900, Jun, Technical Report (2016) J. Meredith, Study on channel model for frequency spectrum above 6 GHz, 3GPP TR 38.900, Jun, Technical Report (2016)
16.
Zurück zum Zitat Z. Yuan, G. Yu, W. Li, Multi-user shared access for 5G. Telecommun. Netw. Technol. 5(5), 28–30 (2015) Z. Yuan, G. Yu, W. Li, Multi-user shared access for 5G. Telecommun. Netw. Technol. 5(5), 28–30 (2015)
17.
Zurück zum Zitat R. Hoshyar, F.P. Wathan, R. Tafazolli, Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process. 56(4), 1616–1626 (2008)MathSciNetMATHCrossRef R. Hoshyar, F.P. Wathan, R. Tafazolli, Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process. 56(4), 1616–1626 (2008)MathSciNetMATHCrossRef
18.
Zurück zum Zitat X. Dai, S. Chen, S. Sun, S. Kang, Y. Wang, Z. Shen, J. Xu, Successive interference cancelation amenable multiple access (SAMA) for future wireless communications, in IEEE International Conference on COMmunication Systems (IEEE, Piscataway, 2014), pp. 222–226 X. Dai, S. Chen, S. Sun, S. Kang, Y. Wang, Z. Shen, J. Xu, Successive interference cancelation amenable multiple access (SAMA) for future wireless communications, in IEEE International Conference on COMmunication Systems (IEEE, Piscataway, 2014), pp. 222–226
19.
Zurück zum Zitat S. Sharma, K. Deka, V. Bhatia, A. Gupta, Joint power-domain and SCMA-based NOMA system for downlink in 5G and beyond. IEEE Commun. Lett. 23(6), 971–974 (2019)CrossRef S. Sharma, K. Deka, V. Bhatia, A. Gupta, Joint power-domain and SCMA-based NOMA system for downlink in 5G and beyond. IEEE Commun. Lett. 23(6), 971–974 (2019)CrossRef
20.
Zurück zum Zitat R. Mitra, S. Sharma, G. Kaddoum, V. Bhatia, Color-domain SCMA NOMA for visible light communication. IEEE Commun. Lett. 25(1), 200–204 (2020)CrossRef R. Mitra, S. Sharma, G. Kaddoum, V. Bhatia, Color-domain SCMA NOMA for visible light communication. IEEE Commun. Lett. 25(1), 200–204 (2020)CrossRef
21.
Zurück zum Zitat V. Bhatia, P. Swami, S. Sharma, R. Mitra, Non-orthogonal multiple access: An enabler for massive connectivity. J. Indian Inst. Sci. 100(2), 337–348 (2020)CrossRef V. Bhatia, P. Swami, S. Sharma, R. Mitra, Non-orthogonal multiple access: An enabler for massive connectivity. J. Indian Inst. Sci. 100(2), 337–348 (2020)CrossRef
22.
Zurück zum Zitat L. Lv, J. Chen, Q. Ni, Z. Ding, H. Jiang, Cognitive non-orthogonal multiple access with cooperative relaying: a new wireless frontier for 5G spectrum sharing. IEEE Commun. Mag. 56(4), 188–195 (2018)CrossRef L. Lv, J. Chen, Q. Ni, Z. Ding, H. Jiang, Cognitive non-orthogonal multiple access with cooperative relaying: a new wireless frontier for 5G spectrum sharing. IEEE Commun. Mag. 56(4), 188–195 (2018)CrossRef
23.
Zurück zum Zitat B. Di, L. Song, Y. Li, Z. Han, V2X meets NOMA: Non-orthogonal multiple access for 5G-enabled vehicular networks. IEEE Wirel. Commun. 24(6), 14–21 (2017)CrossRef B. Di, L. Song, Y. Li, Z. Han, V2X meets NOMA: Non-orthogonal multiple access for 5G-enabled vehicular networks. IEEE Wirel. Commun. 24(6), 14–21 (2017)CrossRef
24.
Zurück zum Zitat M. Zeng, W. Hao, O.A. Dobre, Z. Ding, Cooperative NOMA: state of the art, key techniques, and open challenges. IEEE Netw. 34(5), 205–211 (2020)CrossRef M. Zeng, W. Hao, O.A. Dobre, Z. Ding, Cooperative NOMA: state of the art, key techniques, and open challenges. IEEE Netw. 34(5), 205–211 (2020)CrossRef
25.
Zurück zum Zitat C. Zhang, Y. Liu, Z. Ding, Semi-grant-free NOMA: A stochastic geometry model. IEEE Trans. Wirel. Commun. 21, 1197–1213 (2021)CrossRef C. Zhang, Y. Liu, Z. Ding, Semi-grant-free NOMA: A stochastic geometry model. IEEE Trans. Wirel. Commun. 21, 1197–1213 (2021)CrossRef
26.
Zurück zum Zitat J. Liu, G. Wu, X. Zhang, S. Fang, S. Li, Modeling, Analysis, and Optimization of Grant-Free NOMA in Massive MTC via Stochastic Geometry. IEEE Int. Things J. 8(6), 4389–4402 (2020)CrossRef J. Liu, G. Wu, X. Zhang, S. Fang, S. Li, Modeling, Analysis, and Optimization of Grant-Free NOMA in Massive MTC via Stochastic Geometry. IEEE Int. Things J. 8(6), 4389–4402 (2020)CrossRef
27.
Zurück zum Zitat Q. Zhang, L. Zhang, Y.-C. Liang, P.-Y. Kam, Backscatter-NOMA: A symbiotic system of cellular and Internet-of-Things networks. IEEE Access 7, 20000–20013 (2019)CrossRef Q. Zhang, L. Zhang, Y.-C. Liang, P.-Y. Kam, Backscatter-NOMA: A symbiotic system of cellular and Internet-of-Things networks. IEEE Access 7, 20000–20013 (2019)CrossRef
28.
Zurück zum Zitat J. Jose, P. Shaik, V. Bhatia, VFD-NOMA under imperfect SIC and residual inter-Relay interference over generalized nakagami-m fading channels. IEEE Commun. Lett. 25(2), 646–650 (2020)CrossRef J. Jose, P. Shaik, V. Bhatia, VFD-NOMA under imperfect SIC and residual inter-Relay interference over generalized nakagami-m fading channels. IEEE Commun. Lett. 25(2), 646–650 (2020)CrossRef
29.
Zurück zum Zitat A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, D. Malladi, A survey on 3GPP heterogeneous networks. IEEE Wirel. Commun. 18(3), 10–21 (2011)CrossRef A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, D. Malladi, A survey on 3GPP heterogeneous networks. IEEE Wirel. Commun. 18(3), 10–21 (2011)CrossRef
30.
Zurück zum Zitat S. Singh, H.S. Dhillon, J.G. Andrews, Offloading in heterogeneous networks: Modeling, analysis, and design insights. IEEE Trans. Wirel. Commun. 12(5), 2484–2497 (2013)CrossRef S. Singh, H.S. Dhillon, J.G. Andrews, Offloading in heterogeneous networks: Modeling, analysis, and design insights. IEEE Trans. Wirel. Commun. 12(5), 2484–2497 (2013)CrossRef
32.
Zurück zum Zitat H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30(3), 550–560 (2012)CrossRef H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30(3), 550–560 (2012)CrossRef
33.
Zurück zum Zitat W. Bao, B. Liang, Stochastic analysis of uplink interference in two-tier femtocell networks: open versus closed access. IEEE Trans. Wirel. Commun. 14(11), 6200–6215 (2015)CrossRef W. Bao, B. Liang, Stochastic analysis of uplink interference in two-tier femtocell networks: open versus closed access. IEEE Trans. Wirel. Commun. 14(11), 6200–6215 (2015)CrossRef
34.
Zurück zum Zitat H.-S. Jo, Y.J. Sang, P. Xia, J.G. Andrews, Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wireless Commun. 11(10), 3484–3495 (2012)CrossRef H.-S. Jo, Y.J. Sang, P. Xia, J.G. Andrews, Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wireless Commun. 11(10), 3484–3495 (2012)CrossRef
35.
Zurück zum Zitat S. Parkvall, A. Furuskär, E. Dahlman, Evolution of LTE toward IMT-advanced. IEEE Commun. Mag. 49(2), 84–91 (2011)CrossRef S. Parkvall, A. Furuskär, E. Dahlman, Evolution of LTE toward IMT-advanced. IEEE Commun. Mag. 49(2), 84–91 (2011)CrossRef
36.
Zurück zum Zitat F. Guo, H. Lu, B. Li, D. Li, C.W. Chen, Noma-assisted multi-mec offloading for iovt networks. IEEE Wirel. Commun. 28(4), 26–33 (2021)CrossRef F. Guo, H. Lu, B. Li, D. Li, C.W. Chen, Noma-assisted multi-mec offloading for iovt networks. IEEE Wirel. Commun. 28(4), 26–33 (2021)CrossRef
37.
Zurück zum Zitat P. Swami, V. Bhatia, S. Vuppala, T. Ratnarajah, A cooperation scheme for user fairness and performance enhancement in NOMA-HCN. IEEE Trans. Veh. Technol. 67(12), 11965–11978 (2018)CrossRef P. Swami, V. Bhatia, S. Vuppala, T. Ratnarajah, A cooperation scheme for user fairness and performance enhancement in NOMA-HCN. IEEE Trans. Veh. Technol. 67(12), 11965–11978 (2018)CrossRef
38.
Zurück zum Zitat Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, J.A. McCann, Non-orthogonal multiple access in large-scale heterogeneous networks. IEEE J. Sel. Areas Commun. 35(12), 2667–2680 (2017)CrossRef Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, J.A. McCann, Non-orthogonal multiple access in large-scale heterogeneous networks. IEEE J. Sel. Areas Commun. 35(12), 2667–2680 (2017)CrossRef
39.
Zurück zum Zitat A.S. Parihar, P. Swami, V. Bhatia, Z. Ding, Performance analysis of SWIPT enabled cooperative-NOMA in heterogeneous networks using carrier sensing. IEEE Trans. Vehic. Technol. 70(10), 10646–10656 (2021)CrossRef A.S. Parihar, P. Swami, V. Bhatia, Z. Ding, Performance analysis of SWIPT enabled cooperative-NOMA in heterogeneous networks using carrier sensing. IEEE Trans. Vehic. Technol. 70(10), 10646–10656 (2021)CrossRef
40.
Zurück zum Zitat Z. Ding, L. Dai, H.V. Poor, MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access 4, 1393–1405 (2016)CrossRef Z. Ding, L. Dai, H.V. Poor, MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access 4, 1393–1405 (2016)CrossRef
41.
Zurück zum Zitat J. Xu, J. Zhang, J.G. Andrews, On the accuracy of the Wyner model in cellular networks. IEEE Trans. Wirel. Commun. 10(9), 3098–3109 (2011)CrossRef J. Xu, J. Zhang, J.G. Andrews, On the accuracy of the Wyner model in cellular networks. IEEE Trans. Wirel. Commun. 10(9), 3098–3109 (2011)CrossRef
42.
Zurück zum Zitat P. Cardieri, Modeling interference in wireless ad hoc networks. IEEE Commun. Surveys Tut. 12(4), 551–572 (2010)CrossRef P. Cardieri, Modeling interference in wireless ad hoc networks. IEEE Commun. Surveys Tut. 12(4), 551–572 (2010)CrossRef
43.
Zurück zum Zitat M. Haenggi, Stochastic Geometry for Wireless Networks (Cambridge University Press, Cambridge, 2012)MATHCrossRef M. Haenggi, Stochastic Geometry for Wireless Networks (Cambridge University Press, Cambridge, 2012)MATHCrossRef
44.
Zurück zum Zitat H. ElSawy, E. Hossain, M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surveys Tut. 15(3), 996–1019 (2013)CrossRef H. ElSawy, E. Hossain, M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surveys Tut. 15(3), 996–1019 (2013)CrossRef
45.
Zurück zum Zitat S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and Its Applications (Wiley, Hoboken, 2013)MATHCrossRef S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and Its Applications (Wiley, Hoboken, 2013)MATHCrossRef
46.
Zurück zum Zitat J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59(11), 3122–3134 (2011)CrossRef J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59(11), 3122–3134 (2011)CrossRef
47.
Zurück zum Zitat H. ElSawy, E. Hossain, A modified hard-core point process for analysis of random CSMA wireless networks in general fading environments. IEEE Trans. Commun. 61(4), 1520–1534 (2013)CrossRef H. ElSawy, E. Hossain, A modified hard-core point process for analysis of random CSMA wireless networks in general fading environments. IEEE Trans. Commun. 61(4), 1520–1534 (2013)CrossRef
48.
Zurück zum Zitat G. Alfano, M. Garetto, E. Leonardi, New insights into the stochastic geometry analysis of dense CSMA networks, in IEEE INFOCOM (2011), pp. 2642–2650 G. Alfano, M. Garetto, E. Leonardi, New insights into the stochastic geometry analysis of dense CSMA networks, in IEEE INFOCOM (2011), pp. 2642–2650
49.
Zurück zum Zitat H.Q. Nguyen, F. Baccelli, D. Kofman, A stochastic geometry analysis of dense IEEE 802.11 networks, in International Conference on Computer Communications (INFOCOM) (2007), pp. 1199–1207 H.Q. Nguyen, F. Baccelli, D. Kofman, A stochastic geometry analysis of dense IEEE 802.11 networks, in International Conference on Computer Communications (INFOCOM) (2007), pp. 1199–1207
50.
Zurück zum Zitat M. Afshang, H.S. Dhillon, Poisson cluster process based analysis of HetNets with correlated user and base station locations. IEEE Trans. Wirel. Commun. 17(4), 2417–2431 (2018)CrossRef M. Afshang, H.S. Dhillon, Poisson cluster process based analysis of HetNets with correlated user and base station locations. IEEE Trans. Wirel. Commun. 17(4), 2417–2431 (2018)CrossRef
51.
Zurück zum Zitat C. Saha, H.S. Dhillon, N. Miyoshi, J.G. Andrews, Unified analysis of HetNets using Poisson cluster processes under max-power association. IEEE Trans. Wirel. Commun. 18(8), 3797–3812 (2019)CrossRef C. Saha, H.S. Dhillon, N. Miyoshi, J.G. Andrews, Unified analysis of HetNets using Poisson cluster processes under max-power association. IEEE Trans. Wirel. Commun. 18(8), 3797–3812 (2019)CrossRef
52.
Zurück zum Zitat H. Tabassum, E. Hossain, J. Hossain, Modeling and analysis of uplink non-orthogonal multiple access in large-scale cellular networks using poisson cluster processes. IEEE Trans. Commun. 65(8), 3555–3570 (2017) H. Tabassum, E. Hossain, J. Hossain, Modeling and analysis of uplink non-orthogonal multiple access in large-scale cellular networks using poisson cluster processes. IEEE Trans. Commun. 65(8), 3555–3570 (2017)
53.
Zurück zum Zitat M. Haenggi, R. Ganti, Interference in Large Wireless Networks (Now Publishers, Breda, 2008)MATHCrossRef M. Haenggi, R. Ganti, Interference in Large Wireless Networks (Now Publishers, Breda, 2008)MATHCrossRef
54.
Zurück zum Zitat D. Feng, L. Lu, Y. Yuan-Wu, G.Y. Li, S. Li, G. Feng, Device-to-device communications in cellular networks. IEEE Commun. Mag. 52(4), 49–55 (2014)CrossRef D. Feng, L. Lu, Y. Yuan-Wu, G.Y. Li, S. Li, G. Feng, Device-to-device communications in cellular networks. IEEE Commun. Mag. 52(4), 49–55 (2014)CrossRef
55.
Zurück zum Zitat H. ElSawy, E. Hossain, M.-S. Alouini, Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Trans. Commun. 62(11), 4147–4161 (2014)CrossRef H. ElSawy, E. Hossain, M.-S. Alouini, Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Trans. Commun. 62(11), 4147–4161 (2014)CrossRef
56.
Zurück zum Zitat A. Asadi, Q. Wang, V. Mancuso, A survey on device-to-device communication in cellular networks. IEEE Commun. Surveys Tut. 16(4), 1801–1819 (2014)CrossRef A. Asadi, Q. Wang, V. Mancuso, A survey on device-to-device communication in cellular networks. IEEE Commun. Surveys Tut. 16(4), 1801–1819 (2014)CrossRef
57.
Zurück zum Zitat A. Tang, X. Wang, C. Zhang, Cooperative full duplex device to device communication underlaying cellular networks. IEEE Trans. Wirel. Commun. 16(12), 7800–7815 (2017)CrossRef A. Tang, X. Wang, C. Zhang, Cooperative full duplex device to device communication underlaying cellular networks. IEEE Trans. Wirel. Commun. 16(12), 7800–7815 (2017)CrossRef
58.
Zurück zum Zitat J.-F. Shi, L. Tao, M. Chen, Z.-H. Yang, Power control for relay-assisted device-to-device communication underlaying cellular networks, in IEEE nternational Conference on Wireless Communications Signal Processing (WCSP) (2015), pp. 1–6 J.-F. Shi, L. Tao, M. Chen, Z.-H. Yang, Power control for relay-assisted device-to-device communication underlaying cellular networks, in IEEE nternational Conference on Wireless Communications Signal Processing (WCSP) (2015), pp. 1–6
59.
Zurück zum Zitat Z. Ding, M. Peng, H.V. Poor, Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)CrossRef Z. Ding, M. Peng, H.V. Poor, Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)CrossRef
60.
Zurück zum Zitat J. Zhao, Y. Liu, K.K. Chai, Y. Chen, M. Elkashlan, J. Alonso-Zarate, NOMA-based D2D communications: Towards 5G, in IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6 J. Zhao, Y. Liu, K.K. Chai, Y. Chen, M. Elkashlan, J. Alonso-Zarate, NOMA-based D2D communications: Towards 5G, in IEEE Global Communications Conference (GLOBECOM) (2016), pp. 1–6
61.
Zurück zum Zitat J. Venkataraman, M. Haenggi, O. Collins, Shot noise models for outage and throughput analyses in wireless ad hoc networks, in IEEE Military Communications Conference MILCOM 2006 (2006), pp. 1–7 J. Venkataraman, M. Haenggi, O. Collins, Shot noise models for outage and throughput analyses in wireless ad hoc networks, in IEEE Military Communications Conference MILCOM 2006 (2006), pp. 1–7
62.
Zurück zum Zitat Z. Ding, P. Fan, H.V. Poor, User pairing in non-orthogonal multiple access downlink transmissions, in IEEE Global Communications Conference (GLOBECOM) (2015), pp. 1–5 Z. Ding, P. Fan, H.V. Poor, User pairing in non-orthogonal multiple access downlink transmissions, in IEEE Global Communications Conference (GLOBECOM) (2015), pp. 1–5
63.
Zurück zum Zitat K. Subrahmaniam, On some applications of Mellin transforms to statistics: dependent random variables. SIAM J. Appl. Math. 19(4), 658–662 (1970)MathSciNetMATHCrossRef K. Subrahmaniam, On some applications of Mellin transforms to statistics: dependent random variables. SIAM J. Appl. Math. 19(4), 658–662 (1970)MathSciNetMATHCrossRef
64.
Zurück zum Zitat Y. Liu, Z. Ding, M. Elkashlan, J. Yuan, Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans. Veh. Technol. 65(12), 10152–10157 (2016)CrossRef Y. Liu, Z. Ding, M. Elkashlan, J. Yuan, Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans. Veh. Technol. 65(12), 10152–10157 (2016)CrossRef
65.
Zurück zum Zitat L. Lv, H. Jiang, Z. Ding, Q. Ye, N. Al-Dhahir, J. Chen, Secure non-orthogonal multiple access: An interference engineering perspective. IEEE Netw. 35, 278–285 (2020)CrossRef L. Lv, H. Jiang, Z. Ding, Q. Ye, N. Al-Dhahir, J. Chen, Secure non-orthogonal multiple access: An interference engineering perspective. IEEE Netw. 35, 278–285 (2020)CrossRef
Metadaten
Titel
NOMA for 5G and Beyond Wireless Networks
verfasst von
Pragya Swami
Vimal Bhatia
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-13786-0_5