Skip to main content

2021 | OriginalPaper | Buchkapitel

Non-adiabatic Wall Effects on Transonic Shock/Boundary Layer Interaction

verfasst von : Sahil Bhola, Tapan K. Sengupta

Erschienen in: Design and Development of Aerospace Vehicles and Propulsion Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct simulations are carried out to investigate the influence of unsteady heat flux transfer on transonic shock-boundary layer interaction; for flow past SHM-1 airfoil at a free-stream Mach number \(M_{\infty }\) = 0.72 and angle of attack \(\alpha = 0.38^{\circ }\). Flux is added in a periodic manner through a region \((8{-}18\% \; of \;the \;chord)\) located on the suction side of the airfoil, with multiple values of exciter time period \((T_{\text {e}}=2,4)\) considered for our simulation. We show that addition of unsteady heat flux delayed shock formation, along with significant modifications in it’s structure. The time-averaged \(C_{\text {p}}\) distributions revealed a shift in the shock towards the aft, by approximately 5% of the chord; along with an increased lift near the trailing edge, suggesting a nose-down stabilizing influence. Primarily, it is noted that the additional heat flux resulted in an overall increase of the aerodynamic efficiency (lift to drag ratio) by approximately \(10\%\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Toure PSR, Schuelein E (2018) Numerical and experimental study of nominal 2-D shock-wave/turbulent boundary layer interactions. In: AIAA 2018-3395, fluid dynamics conference, 3395 Toure PSR, Schuelein E (2018) Numerical and experimental study of nominal 2-D shock-wave/turbulent boundary layer interactions. In: AIAA 2018-3395, fluid dynamics conference, 3395
2.
Zurück zum Zitat Gross A, Lee S (2018) Numerical analysis of laminar and turbulent shock-wave boundary layer interactions. In: AIAA 2018-4033, fluid dynamics conference , 4033 Gross A, Lee S (2018) Numerical analysis of laminar and turbulent shock-wave boundary layer interactions. In: AIAA 2018-4033, fluid dynamics conference , 4033
3.
Zurück zum Zitat Quadros R, Bernardini M (2018) Numerical investigation of transitional shock-wave/boundary-layer interaction in supersonic regime. AIAA J 56:2712–2724CrossRef Quadros R, Bernardini M (2018) Numerical investigation of transitional shock-wave/boundary-layer interaction in supersonic regime. AIAA J 56:2712–2724CrossRef
4.
Zurück zum Zitat Hermes V, Klioutchnikov I, Olivier H (2013) Numerical investigation of unsteady wave phenomena for transonic airfoil flow. Aerosp Sci Technol 25(1):224–233CrossRef Hermes V, Klioutchnikov I, Olivier H (2013) Numerical investigation of unsteady wave phenomena for transonic airfoil flow. Aerosp Sci Technol 25(1):224–233CrossRef
5.
Zurück zum Zitat Bernardini M, Asproulias I, Larsson J, Pirozzoli S, Grasso F (2016) Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions. Phys Rev Fluids 1(8):084403CrossRef Bernardini M, Asproulias I, Larsson J, Pirozzoli S, Grasso F (2016) Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions. Phys Rev Fluids 1(8):084403CrossRef
6.
Zurück zum Zitat Raghunathan S, Mitchell D (1995) Computed effects of heat transfer on the transonic flow over an aerofoil. AIAA J 33(11):2120–2127CrossRef Raghunathan S, Mitchell D (1995) Computed effects of heat transfer on the transonic flow over an aerofoil. AIAA J 33(11):2120–2127CrossRef
7.
Zurück zum Zitat Raghunathan S, Early JM, Tulita C, Benard E (2008) Periodic transonic flow and control. Aeronaut J 112(1127):1–16CrossRef Raghunathan S, Early JM, Tulita C, Benard E (2008) Periodic transonic flow and control. Aeronaut J 112(1127):1–16CrossRef
8.
Zurück zum Zitat Fujino M, Yoshizak Y, Kawamura Y (2003) Natural-laminar-flow airfoil development for a lightweight business jet. J Aircr 40(4):609–615CrossRef Fujino M, Yoshizak Y, Kawamura Y (2003) Natural-laminar-flow airfoil development for a lightweight business jet. J Aircr 40(4):609–615CrossRef
9.
Zurück zum Zitat Chakravarthy S, Harten A, Osher S (1986) Essentially non-oscillatory shock-capturing schemes of arbitrarily-high accuracy. In: AIAA 1986-339, 24th aerospace sciences meeting, 339 Chakravarthy S, Harten A, Osher S (1986) Essentially non-oscillatory shock-capturing schemes of arbitrarily-high accuracy. In: AIAA 1986-339, 24th aerospace sciences meeting, 339
10.
Zurück zum Zitat Ha Y, Kim CH, Lee YJ, Yoon J (2013) An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J Comput Phys 232(1):68–86MathSciNetCrossRef Ha Y, Kim CH, Lee YJ, Yoon J (2013) An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J Comput Phys 232(1):68–86MathSciNetCrossRef
11.
Zurück zum Zitat Allaneau Y, Jameson A (2009) Direct numerical simulations of a two-dimensional viscous flow in a shocktube using a kinetic energy preserving scheme. In: 19th AIAA computational fluid dynamics, 3797 Allaneau Y, Jameson A (2009) Direct numerical simulations of a two-dimensional viscous flow in a shocktube using a kinetic energy preserving scheme. In: 19th AIAA computational fluid dynamics, 3797
12.
Zurück zum Zitat Chiu EKY, Wang Q, Jameson A (2011) A conservative meshless scheme: general order formulation and application to Euler equations. In: 49th AIAA aerospace sciences meeting, 651 Chiu EKY, Wang Q, Jameson A (2011) A conservative meshless scheme: general order formulation and application to Euler equations. In: 49th AIAA aerospace sciences meeting, 651
13.
Zurück zum Zitat Ohwada T, Shibata Y, Kato T, Nakamura T (2018) A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: towards minimalism. J Comput Phys 362:131–162MathSciNetCrossRef Ohwada T, Shibata Y, Kato T, Nakamura T (2018) A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: towards minimalism. J Comput Phys 362:131–162MathSciNetCrossRef
14.
Zurück zum Zitat Borges R, Carmona M, Costa B, Don WS (2008) An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J Comput Phys 227(6):3191–3211MathSciNetCrossRef Borges R, Carmona M, Costa B, Don WS (2008) An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J Comput Phys 227(6):3191–3211MathSciNetCrossRef
15.
Zurück zum Zitat Sengupta TK, Ganeriwal G, De S (2003) Analysis of central and upwind compact schemes. J Comput Phys 192(2):677–694CrossRef Sengupta TK, Ganeriwal G, De S (2003) Analysis of central and upwind compact schemes. J Comput Phys 192(2):677–694CrossRef
16.
Zurück zum Zitat Sengupta TK (2013) High accuracy computing methods: fluid flows and wave phenomena. Cambridge University Press Sengupta TK (2013) High accuracy computing methods: fluid flows and wave phenomena. Cambridge University Press
17.
Zurück zum Zitat Sengupta TK (2004) Fundamentals of computational fluid dynamics. Universities Press, Hyderabad, India Sengupta TK (2004) Fundamentals of computational fluid dynamics. Universities Press, Hyderabad, India
18.
Zurück zum Zitat Sengupta TK, Bhole A, Sreejith NA (2013) Direct numerical simulation of 2D transonic flows around airfoils. Comput Fluids 88:19–37MathSciNetCrossRef Sengupta TK, Bhole A, Sreejith NA (2013) Direct numerical simulation of 2D transonic flows around airfoils. Comput Fluids 88:19–37MathSciNetCrossRef
19.
Zurück zum Zitat Garbaruk A, Shur M, Strelets M (2003) Numerical study of wind-tunnel walls effects on transonic airfoil flow. AIAA J 41(6):1046–1054CrossRef Garbaruk A, Shur M, Strelets M (2003) Numerical study of wind-tunnel walls effects on transonic airfoil flow. AIAA J 41(6):1046–1054CrossRef
20.
Zurück zum Zitat Binnion TW (1979) Limitations of available data. AGARD-AR 138 Binnion TW (1979) Limitations of available data. AGARD-AR 138
21.
Zurück zum Zitat Dipankar A, Sengupta TK (2006) Symmetrized compact scheme for receptivity study of 2D transitional channel flow. J Comput Phys 215(1):245–273CrossRef Dipankar A, Sengupta TK (2006) Symmetrized compact scheme for receptivity study of 2D transitional channel flow. J Comput Phys 215(1):245–273CrossRef
22.
Zurück zum Zitat Sengupta TK, Ganerwal G, Dipankar A (2004) High accuracy compact schemes and Gibbs’ phenomenon. J Sci Comput 21(3):253–268MathSciNetCrossRef Sengupta TK, Ganerwal G, Dipankar A (2004) High accuracy compact schemes and Gibbs’ phenomenon. J Sci Comput 21(3):253–268MathSciNetCrossRef
23.
Zurück zum Zitat Sengupta TK, Dipankar A, Sagaut P (2007) Error dynamics: beyond von Neumann analysis. J Comput Phys 226(2):1211–1218MathSciNetCrossRef Sengupta TK, Dipankar A, Sagaut P (2007) Error dynamics: beyond von Neumann analysis. J Comput Phys 226(2):1211–1218MathSciNetCrossRef
24.
Zurück zum Zitat Sengupta TK, Dipankar A, Rao AK (2007) A new compact scheme for parallel computing using domain decomposition. J Comput Phys 220(2):654–677CrossRef Sengupta TK, Dipankar A, Rao AK (2007) A new compact scheme for parallel computing using domain decomposition. J Comput Phys 220(2):654–677CrossRef
25.
Zurück zum Zitat Dolean V, Lanteri S, Nataf F (2002) Optimized interface conditions for domain decomposition methods in fluid dynamics. Int J Numer Methods Fluids 40(12):1539–1550MathSciNetCrossRef Dolean V, Lanteri S, Nataf F (2002) Optimized interface conditions for domain decomposition methods in fluid dynamics. Int J Numer Methods Fluids 40(12):1539–1550MathSciNetCrossRef
26.
Zurück zum Zitat Rajpoot MK, Sengupta TK, Dutt PK (2010) Optimal time advancing dispersion relation preserving schemes. J Comput Phys 229(10):3623–3651MathSciNetCrossRef Rajpoot MK, Sengupta TK, Dutt PK (2010) Optimal time advancing dispersion relation preserving schemes. J Comput Phys 229(10):3623–3651MathSciNetCrossRef
27.
Zurück zum Zitat Sengupta TK, Bhumkar YG (2010) New explicit two-dimensional higher order filters. Comput Fluids 39(10):1848–1863CrossRef Sengupta TK, Bhumkar YG (2010) New explicit two-dimensional higher order filters. Comput Fluids 39(10):1848–1863CrossRef
28.
Zurück zum Zitat Van Der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644 Van Der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644
29.
Zurück zum Zitat Bagade PM, Bhumkar YG, Sengupta TK (2014) An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements. Comput Fluids 103:275–289MathSciNetCrossRef Bagade PM, Bhumkar YG, Sengupta TK (2014) An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements. Comput Fluids 103:275–289MathSciNetCrossRef
30.
Zurück zum Zitat Hoffmann KA, Chiang ST (1993) Computational fluid dynamics for engineers, vol 2. Engineering Education System Wichita, KS Hoffmann KA, Chiang ST (1993) Computational fluid dynamics for engineers, vol 2. Engineering Education System Wichita, KS
31.
Zurück zum Zitat Pulliam TH (1986) Solution methods in computational fluid dynamics. In: Notes for the von Kármán institute for fluid dynamics lecture series Pulliam TH (1986) Solution methods in computational fluid dynamics. In: Notes for the von Kármán institute for fluid dynamics lecture series
32.
Zurück zum Zitat Samtaney R, Morris RD, Cheeseman P, Sunelyansky V, Maluf D, Wolf D (2000) Visualization, extraction and quantification of discontinuities in compressible flows. In: International conference on computer vision and pattern recognition (2000) Samtaney R, Morris RD, Cheeseman P, Sunelyansky V, Maluf D, Wolf D (2000) Visualization, extraction and quantification of discontinuities in compressible flows. In: International conference on computer vision and pattern recognition (2000)
33.
Zurück zum Zitat Lee BHK, Murty H, Jiang H (1994) Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J 32(4):789–796CrossRef Lee BHK, Murty H, Jiang H (1994) Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J 32(4):789–796CrossRef
34.
Zurück zum Zitat Tijdeman H (1977) Investigations of the transonic flow around oscillating airfoils. Nationaal Lucht-en Ruimtevaartlaboratorium Tijdeman H (1977) Investigations of the transonic flow around oscillating airfoils. Nationaal Lucht-en Ruimtevaartlaboratorium
35.
Zurück zum Zitat Liepmann HW, Roshko A (1957) Elements of gasdynamics. Courier Corporation Liepmann HW, Roshko A (1957) Elements of gasdynamics. Courier Corporation
Metadaten
Titel
Non-adiabatic Wall Effects on Transonic Shock/Boundary Layer Interaction
verfasst von
Sahil Bhola
Tapan K. Sengupta
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9601-8_20

    Premium Partner