Skip to main content
Erschienen in: Polymer Bulletin 6/2014

01.06.2014 | Original Paper

Non-isothermal crystallization kinetics of TiO2 nanoparticle-filled poly(ethylene terephthalate) with structural and chemical properties

verfasst von: Harshita Agrawal, Kamlendra Awasthi, Vibhav K. Saraswat

Erschienen in: Polymer Bulletin | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present research work includes non-isothermal crystallization kinetics of poly(ethylene terephthalate) (PET)–titanium dioxide (TiO2) nanocomposites as well as structural and chemical properties of these nanocomposites. The average grain size of chemically synthesized TiO2 nanoparticles has been calculated 19.31 nm by TEM and XRD. The morphology and structural analysis of PET–TiO2 nanocomposites, prepared via solution casting method, has been investigated using SEM and XRD, respectively. The nature of chemical bonds has been discussed on the basis of FTIR spectra. The effect of TiO2 nanoparticles and cooling rates on non-isothermal crystallization kinetics of PET was examined by differential scanning calorimetry at various heating and cooling rates. It has been observed that TiO2 nanoparticles accelerate the heterogeneous nucleation in PET matrix. The crystallization kinetics could be explained through Avrami–Ozawa combined theory. TiO2 nanoparticles cause to make molecular chains of PET easier to crystallize and accelerate the crystallization rates during non-isothermal crystallization process; this conclusion has also been verified by Kissinger model for crystallization activation energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saujanya C, Radhakrishnan S (2000) Structure development and crystallization behavior of PP/nanoparticulate composite. Polymer 42:6723–6731CrossRef Saujanya C, Radhakrishnan S (2000) Structure development and crystallization behavior of PP/nanoparticulate composite. Polymer 42:6723–6731CrossRef
2.
Zurück zum Zitat Nelson JK, Fothergill JC (2004) Internal charge behavior of nanocomposites. Nanotechnology 15:586–595CrossRef Nelson JK, Fothergill JC (2004) Internal charge behavior of nanocomposites. Nanotechnology 15:586–595CrossRef
3.
Zurück zum Zitat Zhu J, Wilkie CA (2000) Thermal and fire studies on polystyrene-clay nanocomposites. Polym Int 49:1158–1163CrossRef Zhu J, Wilkie CA (2000) Thermal and fire studies on polystyrene-clay nanocomposites. Polym Int 49:1158–1163CrossRef
4.
Zurück zum Zitat Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and application of polymer clay nanocomposites. Thermochim Acta 442:74–77CrossRef Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and application of polymer clay nanocomposites. Thermochim Acta 442:74–77CrossRef
5.
Zurück zum Zitat Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317CrossRef Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317CrossRef
6.
Zurück zum Zitat Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622CrossRef Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622CrossRef
7.
Zurück zum Zitat Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRef
8.
Zurück zum Zitat Tan EPS, Lim CT (2006) Mechanical characterization of nanofibers––a review. Compos Sci Technol 66:1102–1111CrossRef Tan EPS, Lim CT (2006) Mechanical characterization of nanofibers––a review. Compos Sci Technol 66:1102–1111CrossRef
9.
Zurück zum Zitat Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Tech 18:84–95CrossRef Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Tech 18:84–95CrossRef
10.
Zurück zum Zitat Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRef Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRef
11.
Zurück zum Zitat Fried JR (2009) Polymer science and technology, 2nd edn. PHI, New Delhi Fried JR (2009) Polymer science and technology, 2nd edn. PHI, New Delhi
12.
Zurück zum Zitat Todorov LV (2010) Multiscale morphology evoluation of PET and its nanocomposites under deformation. Ph.D. thesis, Unversidade do Minho Escola de Engenharia Todorov LV (2010) Multiscale morphology evoluation of PET and its nanocomposites under deformation. Ph.D. thesis, Unversidade do Minho Escola de Engenharia
13.
Zurück zum Zitat Todorov LV, Viana JC (2007) Characterization of PET nanocomposites produced by different melt-based production methods. J Appl Polym Sci 106:1659–1669CrossRef Todorov LV, Viana JC (2007) Characterization of PET nanocomposites produced by different melt-based production methods. J Appl Polym Sci 106:1659–1669CrossRef
14.
Zurück zum Zitat Viana JC, Alves NM, Mano JF (2004) Morphology and mechanical properties of injection molded poly (ethylene terephthalate). Polym Eng Sci 44:2174–2184CrossRef Viana JC, Alves NM, Mano JF (2004) Morphology and mechanical properties of injection molded poly (ethylene terephthalate). Polym Eng Sci 44:2174–2184CrossRef
15.
Zurück zum Zitat Borse PH, Kankate LS, Dassenoy F, Vogel W, Urban J, Kulkarni SK (2002) Synthesis and investigations of rutile phase TiO2 nanoparticles. J Mater Sci Mater Electron 13:553–559CrossRef Borse PH, Kankate LS, Dassenoy F, Vogel W, Urban J, Kulkarni SK (2002) Synthesis and investigations of rutile phase TiO2 nanoparticles. J Mater Sci Mater Electron 13:553–559CrossRef
16.
Zurück zum Zitat Rodgers J, Delhom C, Hinchliffe D, Kim HJ, Cui X (2013) A rapid measurement for cotton breeders of maturity and fineness from developing and mature fibers. Text Res J 83(14):1439–1451 Rodgers J, Delhom C, Hinchliffe D, Kim HJ, Cui X (2013) A rapid measurement for cotton breeders of maturity and fineness from developing and mature fibers. Text Res J 83(14):1439–1451
17.
Zurück zum Zitat Awasthi K, Kulshrestha V, Avasthi DK, Vijay YK (2010) Optical, chemical and structural modification of oxygen irradiated PET. Radiat Meas 45:850–855CrossRef Awasthi K, Kulshrestha V, Avasthi DK, Vijay YK (2010) Optical, chemical and structural modification of oxygen irradiated PET. Radiat Meas 45:850–855CrossRef
18.
Zurück zum Zitat Zhu X, Wang B, Chen S, Wang C, Zhang Y, Wang H (2008) Synthesis and non-isothermal crystallization behavior of PET/surfacetreated TiO2 nanocomposites. J Macromol Sci R Part B Phys 47:1117–1129CrossRef Zhu X, Wang B, Chen S, Wang C, Zhang Y, Wang H (2008) Synthesis and non-isothermal crystallization behavior of PET/surfacetreated TiO2 nanocomposites. J Macromol Sci R Part B Phys 47:1117–1129CrossRef
19.
Zurück zum Zitat Jiang XL, Luo SJ, Sun K, Chen XD (2007) Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett 1(4):245–251CrossRef Jiang XL, Luo SJ, Sun K, Chen XD (2007) Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett 1(4):245–251CrossRef
20.
Zurück zum Zitat Kim SH, Ahn SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly (ethylene 2, 6-naphthalate). Polymer 44:5625–5634CrossRef Kim SH, Ahn SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly (ethylene 2, 6-naphthalate). Polymer 44:5625–5634CrossRef
21.
Zurück zum Zitat Kuo MC, Huang JC, Chen M (2006) Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly (ether ether ketone). Mater Chem Phys 99:258–268CrossRef Kuo MC, Huang JC, Chen M (2006) Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly (ether ether ketone). Mater Chem Phys 99:258–268CrossRef
22.
Zurück zum Zitat Qiu S, Kalita S (2006) Synthesis, processing and characterization of nanocrystalline titanium dioxide. J Mater Sci Eng A 327:435–436 Qiu S, Kalita S (2006) Synthesis, processing and characterization of nanocrystalline titanium dioxide. J Mater Sci Eng A 327:435–436
23.
Zurück zum Zitat Callister WD, Rethwisch DG (2009) Materials science and engineering. John Wiley and Sons publication, USA Callister WD, Rethwisch DG (2009) Materials science and engineering. John Wiley and Sons publication, USA
24.
Zurück zum Zitat Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158CrossRef Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158CrossRef
25.
Zurück zum Zitat Di Lorenzo ML, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24(6):917–950CrossRef Di Lorenzo ML, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24(6):917–950CrossRef
26.
Zurück zum Zitat Avrami M (1939) Kinetics of phase change, I. General theory. J Chem Phys 7:1103–1112CrossRef Avrami M (1939) Kinetics of phase change, I. General theory. J Chem Phys 7:1103–1112CrossRef
27.
Zurück zum Zitat Avrami M (1941) Kinetics of phase change III. J Chem Phys 9:177–184CrossRef Avrami M (1941) Kinetics of phase change III. J Chem Phys 9:177–184CrossRef
28.
Zurück zum Zitat Lu XF, Hay JN (2001) Isothermal crystallization kinetics and melting behaviour of poly (ethylene terephthalate). Polymer 42(23):9423–9431CrossRef Lu XF, Hay JN (2001) Isothermal crystallization kinetics and melting behaviour of poly (ethylene terephthalate). Polymer 42(23):9423–9431CrossRef
29.
Zurück zum Zitat Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37(3):568–575CrossRef Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37(3):568–575CrossRef
30.
Zurück zum Zitat Weng W, Chen G, Wu D (2003) Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer 44:8119–8132CrossRef Weng W, Chen G, Wu D (2003) Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer 44:8119–8132CrossRef
31.
Zurück zum Zitat Ramesh V, Mohanty S, Panda BP, Nayak SK (2013) Nucleation effect of surface treated TiO2 n poly (trimethylene terephthalate) (PTT) nanocomposites. J Appl Polym Sci 127(3):1909–1920CrossRef Ramesh V, Mohanty S, Panda BP, Nayak SK (2013) Nucleation effect of surface treated TiO2 n poly (trimethylene terephthalate) (PTT) nanocomposites. J Appl Polym Sci 127(3):1909–1920CrossRef
32.
Zurück zum Zitat Xu W, Ge M, He P (2002) Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 40:408–414CrossRef Xu W, Ge M, He P (2002) Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 40:408–414CrossRef
33.
Zurück zum Zitat Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221CrossRef Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221CrossRef
Metadaten
Titel
Non-isothermal crystallization kinetics of TiO2 nanoparticle-filled poly(ethylene terephthalate) with structural and chemical properties
verfasst von
Harshita Agrawal
Kamlendra Awasthi
Vibhav K. Saraswat
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 6/2014
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-014-1140-3

Weitere Artikel der Ausgabe 6/2014

Polymer Bulletin 6/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.