Skip to main content
Erschienen in: Journal of Nondestructive Evaluation 3/2013

01.09.2013

Nondestructive Porosity Assessment of CFRP Composites with Spectral Analysis of Backscattered Laser-Induced Ultrasonic Pulses

verfasst von: A. A. Karabutov, N. B. Podymova

Erschienen in: Journal of Nondestructive Evaluation | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The laser-ultrasonic method for nondestructive quantitative local porosity assessment for CFRP composites is proposed and realized experimentally for only one available flat surface of a specimen or a product. This method combines the laser thermoelastic generation and the high-sensitivity piezoelectric detection of broadband pulses of longitudinal ultrasonic waves and does not require the detection of the backwall echo ultrasonic signal. The generation and the detection of ultrasonic pulses is carried out with the specially designed laser-ultrasonic transducer, which allows one to obtain both the temporal profile and the frequency spectrum of a part of the ultrasonic signal backscattered by gas voids in a composite specimen. The frequency spectrum of backscattered ultrasonic pulses is analyzed for three sets of CFRP specimens with different epoxy matrix fractions and porosity. The empirical relation between porosity of CFRP specimens and the spectral power (structural noise power) of ultrasonic signals backscattered by voids is obtained for porosity values up to 0.15. This relation allows one to evaluate the local porosity from measured structural noise power both for CFRP specimens and products fabricated from the same composite material. The proposed laser-ultrasonic setup demonstrates a basis for a system of CFRP porosity assessment in field conditions. It can be very useful especially for nondestructive detection of structural changes of composite materials that will allow evaluation of products during their life time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kelly, A., Zweben, C. (eds.): Comprehensive Composite Materials. Elsevier, Amsterdam (2000) Kelly, A., Zweben, C. (eds.): Comprehensive Composite Materials. Elsevier, Amsterdam (2000)
2.
Zurück zum Zitat Adams, R.D., Cawley, P.: A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT Int. 21, 208–222 (1988) CrossRef Adams, R.D., Cawley, P.: A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT Int. 21, 208–222 (1988) CrossRef
3.
Zurück zum Zitat Achenbach, J.D. (ed.): Evaluation of Materials and Structures by Quantitative Ultrasonics. Springer, Wien and New York (1993) Achenbach, J.D. (ed.): Evaluation of Materials and Structures by Quantitative Ultrasonics. Springer, Wien and New York (1993)
5.
Zurück zum Zitat Rokhlin, S.I., Chimenti, D.E., Nagy, P.B.: Physical Ultrasonics of Composites. Oxford University Press, Oxford (2011) Rokhlin, S.I., Chimenti, D.E., Nagy, P.B.: Physical Ultrasonics of Composites. Oxford University Press, Oxford (2011)
6.
Zurück zum Zitat Stone, D.E.W., Clarke, B.: Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Nondestruct. Test. 8, 137–145 (1975) CrossRef Stone, D.E.W., Clarke, B.: Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Nondestruct. Test. 8, 137–145 (1975) CrossRef
7.
Zurück zum Zitat Martin, B.G.: Ultrasonic wave propagation in fiber-reinforced solids containing voids. J. Appl. Phys. 48, 3368–3373 (1977) CrossRef Martin, B.G.: Ultrasonic wave propagation in fiber-reinforced solids containing voids. J. Appl. Phys. 48, 3368–3373 (1977) CrossRef
8.
Zurück zum Zitat Reynolds, W.N., Wilkinson, S.J.: The analysis of fibre-reinforced porous composite materials by the measurement of ultrasonic wave velocities. Ultrasonics 16, 159–163 (1978) CrossRef Reynolds, W.N., Wilkinson, S.J.: The analysis of fibre-reinforced porous composite materials by the measurement of ultrasonic wave velocities. Ultrasonics 16, 159–163 (1978) CrossRef
9.
Zurück zum Zitat Hale, J.M., Ashton, J.N.: Ultrasonic attenuation in voided fibre-reinforced plastics. NDT Int. 21, 321–326 (1988) CrossRef Hale, J.M., Ashton, J.N.: Ultrasonic attenuation in voided fibre-reinforced plastics. NDT Int. 21, 321–326 (1988) CrossRef
10.
Zurück zum Zitat Daniel, I.M., Wooh, S.C., Komsky, I.: Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements. J. Nondestruct. Eval. 11, 1–8 (1992) CrossRef Daniel, I.M., Wooh, S.C., Komsky, I.: Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements. J. Nondestruct. Eval. 11, 1–8 (1992) CrossRef
11.
Zurück zum Zitat Jeong, H., Hsu, D.K.: Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites. Ultrasonics 33, 195–203 (1995) CrossRef Jeong, H., Hsu, D.K.: Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites. Ultrasonics 33, 195–203 (1995) CrossRef
12.
Zurück zum Zitat Takatsubo, J., Urabe, K., Tsuda, H., Toyama, N., Wang, B.: Experimental and theoretical investigation of ultrasound propagation in materials containing void inclusions. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 1083–1090. American Institute of Physics, New York (2004) Takatsubo, J., Urabe, K., Tsuda, H., Toyama, N., Wang, B.: Experimental and theoretical investigation of ultrasound propagation in materials containing void inclusions. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 1083–1090. American Institute of Physics, New York (2004)
13.
Zurück zum Zitat Stone, M.A.: Evaluation of oven-cured, solid carbon/epoxy composites with various porosity levels. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 28. AIP Conference Proceedings, vol. 1096, pp. 1025–1032. American Institute of Physics, New York (2009) Stone, M.A.: Evaluation of oven-cured, solid carbon/epoxy composites with various porosity levels. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 28. AIP Conference Proceedings, vol. 1096, pp. 1025–1032. American Institute of Physics, New York (2009)
14.
Zurück zum Zitat Lin, L., Chen, J., Zhang, X., Li, X.: A novel 2-D random void model and its application in ultrasonically determined void content for composite materials. NDT E Int. 44, 254–260 (2011) CrossRef Lin, L., Chen, J., Zhang, X., Li, X.: A novel 2-D random void model and its application in ultrasonically determined void content for composite materials. NDT E Int. 44, 254–260 (2011) CrossRef
15.
Zurück zum Zitat Tittmann, B.R., Ahlberg, L.A., Fertig, K.W.: Ultrasonic characterization of microstructure in powder metal alloy. In: Analytical Ultrasonics in Materials Research and Testing. NASA Conf. Publ., vol. 2383, pp. 31–49 (1984) Tittmann, B.R., Ahlberg, L.A., Fertig, K.W.: Ultrasonic characterization of microstructure in powder metal alloy. In: Analytical Ultrasonics in Materials Research and Testing. NASA Conf. Publ., vol. 2383, pp. 31–49 (1984)
16.
Zurück zum Zitat Tittmann, B.R., Ahlberg, L.A., Fertig, K.W.: Ultrasonic microstructural noise parameters in a powder metal alloy. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 3A, pp. 57–63. Plenum, New York (1984) CrossRef Tittmann, B.R., Ahlberg, L.A., Fertig, K.W.: Ultrasonic microstructural noise parameters in a powder metal alloy. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 3A, pp. 57–63. Plenum, New York (1984) CrossRef
17.
Zurück zum Zitat Kogan, V.G., Hsu, D.K., Rose, J.H.: Characterization of flaws using the zeroes of the real and imaginary parts of the ultrasonic scattering amplitude. J. Nondestruct. Eval. 5, 57–68 (1985) CrossRef Kogan, V.G., Hsu, D.K., Rose, J.H.: Characterization of flaws using the zeroes of the real and imaginary parts of the ultrasonic scattering amplitude. J. Nondestruct. Eval. 5, 57–68 (1985) CrossRef
18.
Zurück zum Zitat Vary, A.: Material property characterization. In: Moore, P.O. (ed.) Nondestructive Testing Handbook, Ultrasonic Testing, 3rd edn. vol. 7, pp. 365–431. ASTM, Columbus (2007) Vary, A.: Material property characterization. In: Moore, P.O. (ed.) Nondestructive Testing Handbook, Ultrasonic Testing, 3rd edn. vol. 7, pp. 365–431. ASTM, Columbus (2007)
19.
Zurück zum Zitat Truell, R., Elbaum, C., Chick, B.: Ultrasonic Methods in Solid State Physics. Academic Press, New York (1969) Truell, R., Elbaum, C., Chick, B.: Ultrasonic Methods in Solid State Physics. Academic Press, New York (1969)
20.
Zurück zum Zitat Desilets, C.S., Fraser, J.D., Kino, G.S.: The design of efficient broad-band piezoelectric transducers. IEEE Trans. Sonics Ultrason. 25, 115–125 (1978) CrossRef Desilets, C.S., Fraser, J.D., Kino, G.S.: The design of efficient broad-band piezoelectric transducers. IEEE Trans. Sonics Ultrason. 25, 115–125 (1978) CrossRef
21.
Zurück zum Zitat Foster, F.S., Ryan, L.K., Turnbull, D.H.: Characterization of lead zirconate titanate ceramics for use in miniature high-frequency (20–80 MHz) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 446–453 (1991) CrossRef Foster, F.S., Ryan, L.K., Turnbull, D.H.: Characterization of lead zirconate titanate ceramics for use in miniature high-frequency (20–80 MHz) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 446–453 (1991) CrossRef
22.
Zurück zum Zitat Chung, C.-H., Lee, Y.-C.: Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating materials. J. Nondestruct. Eval. 28, 101–110 (2009) CrossRef Chung, C.-H., Lee, Y.-C.: Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating materials. J. Nondestruct. Eval. 28, 101–110 (2009) CrossRef
23.
Zurück zum Zitat Scruby, C.B., Drain, L.E.: Laser Ultrasonics: Techniques and Applications. Adam Hilger, Bristol (1990) Scruby, C.B., Drain, L.E.: Laser Ultrasonics: Techniques and Applications. Adam Hilger, Bristol (1990)
24.
Zurück zum Zitat Gusev, V.E., Karabutov, A.A.: Laser Optoacoustics. American Institute of Physics, New York (1993) Gusev, V.E., Karabutov, A.A.: Laser Optoacoustics. American Institute of Physics, New York (1993)
25.
Zurück zum Zitat Karabutov, A.A., Matrosov, M.P., Podymova, N.B., Pyzh, V.A.: Acoustic pulse spectroscopy using a laser sound source. Sov. Phys. Acoust. 37, 157–163 (1991) Karabutov, A.A., Matrosov, M.P., Podymova, N.B., Pyzh, V.A.: Acoustic pulse spectroscopy using a laser sound source. Sov. Phys. Acoust. 37, 157–163 (1991)
26.
Zurück zum Zitat Karabutov, A.A., Podymova, N.B.: Nondestructive evaluation of fatigue changes of composite structure by laser ultrasonic method. Mech. Compos. Mater. 31, 198–203 (1995) CrossRef Karabutov, A.A., Podymova, N.B.: Nondestructive evaluation of fatigue changes of composite structure by laser ultrasonic method. Mech. Compos. Mater. 31, 198–203 (1995) CrossRef
27.
Zurück zum Zitat Tittmann, B.R., Linebarger, R.S., Addison, R.C. Jr.: Laser-based ultrasonics on Gr/epoxy composite. J. Nondestruct. Eval. 9, 229–238 (1990) CrossRef Tittmann, B.R., Linebarger, R.S., Addison, R.C. Jr.: Laser-based ultrasonics on Gr/epoxy composite. J. Nondestruct. Eval. 9, 229–238 (1990) CrossRef
28.
Zurück zum Zitat Monchalin, J.-P., Neron, C.: Inspection of composite materials by laser–ultrasonics. Can. Aeronaut. Space J. 43, 23–30 (1997) Monchalin, J.-P., Neron, C.: Inspection of composite materials by laser–ultrasonics. Can. Aeronaut. Space J. 43, 23–30 (1997)
29.
Zurück zum Zitat Monchalin, J.-P.: Laser—ultrasonics: from the laboratory to industry. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 3–31. American Institute of Physics, New York (2004) Monchalin, J.-P.: Laser—ultrasonics: from the laboratory to industry. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 3–31. American Institute of Physics, New York (2004)
30.
Zurück zum Zitat Sakamoto, J.M.S., Baba, A., Tittmann, B.R., Mulry, B.R., Kropf, M., Pacheco, G.M.: Nondestructive inspection of a composite material sample using laser ultrasonic system with beam homogenizer. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 30(B). AIP Conference Proceedings, vol. 1335, pp. 935–941. American Institute of Physics, New York (2004) Sakamoto, J.M.S., Baba, A., Tittmann, B.R., Mulry, B.R., Kropf, M., Pacheco, G.M.: Nondestructive inspection of a composite material sample using laser ultrasonic system with beam homogenizer. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 30(B). AIP Conference Proceedings, vol. 1335, pp. 935–941. American Institute of Physics, New York (2004)
31.
Zurück zum Zitat Karabutov, A.A., Savateeva, E.V., Podymova, N.B., Oraevsky, A.A.: Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000) CrossRef Karabutov, A.A., Savateeva, E.V., Podymova, N.B., Oraevsky, A.A.: Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000) CrossRef
33.
Zurück zum Zitat De Moura, E.P., Normando, P.G., Gonçalves, L.L., Kruger, S.E.: Characterization of cast iron microstructure through fluctuation and fractal analyses of ultrasonic backscattered signals combined with classification techniques. J. Nondestruct. Eval. 31, 90–98 (2012) CrossRef De Moura, E.P., Normando, P.G., Gonçalves, L.L., Kruger, S.E.: Characterization of cast iron microstructure through fluctuation and fractal analyses of ultrasonic backscattered signals combined with classification techniques. J. Nondestruct. Eval. 31, 90–98 (2012) CrossRef
34.
Zurück zum Zitat Kechter, G.E., Achenbach, J.D.: Void characterization using ultrasonic backscatter from void clusters. Res. Nondestruct. Eval. 1, 13–29 (1989) CrossRef Kechter, G.E., Achenbach, J.D.: Void characterization using ultrasonic backscatter from void clusters. Res. Nondestruct. Eval. 1, 13–29 (1989) CrossRef
35.
Zurück zum Zitat Scott, W.R., Gordon, P.F.: Ultrasonic spectral analysis for nondestructive testing of layered composite materials. J. Acoust. Soc. Am. 62, 108–116 (1984) CrossRef Scott, W.R., Gordon, P.F.: Ultrasonic spectral analysis for nondestructive testing of layered composite materials. J. Acoust. Soc. Am. 62, 108–116 (1984) CrossRef
36.
Zurück zum Zitat Dean, E.A.: Elastic moduli of porous sintered materials as modeled by a variable–aspect–ratio self-consistent oblate-spheroidal-inclusion theory. J. Am. Ceram. Soc. 66, 847–854 (1983) CrossRef Dean, E.A.: Elastic moduli of porous sintered materials as modeled by a variable–aspect–ratio self-consistent oblate-spheroidal-inclusion theory. J. Am. Ceram. Soc. 66, 847–854 (1983) CrossRef
37.
Zurück zum Zitat Maitra, A.K., Phani, K.K.: Ultrasonic evaluation of elastic parameters of sintered powder compacts. J. Mater. Sci. 29, 4415–4419 (1994) CrossRef Maitra, A.K., Phani, K.K.: Ultrasonic evaluation of elastic parameters of sintered powder compacts. J. Mater. Sci. 29, 4415–4419 (1994) CrossRef
38.
Zurück zum Zitat Phani, K.K.: Porosity dependence of ultrasonic velocity in sintered materials—a model based on the self-consistent spheroidal inclusion theory. J. Mater. Sci. 31, 272–279 (1996) CrossRef Phani, K.K.: Porosity dependence of ultrasonic velocity in sintered materials—a model based on the self-consistent spheroidal inclusion theory. J. Mater. Sci. 31, 272–279 (1996) CrossRef
39.
Zurück zum Zitat Polyakov, V.V., Golovin, A.V.: The effect of porosity on the velocity of ultrasonic waves in metals. Tech. Phys. Lett. 20, 452–453 (1994) Polyakov, V.V., Golovin, A.V.: The effect of porosity on the velocity of ultrasonic waves in metals. Tech. Phys. Lett. 20, 452–453 (1994)
40.
Zurück zum Zitat Polyakov, V.V., Golovin, A.V.: Elastic moduli of porous metals. Phys. Met. Metallogr. 79, 147–149 (1995) Polyakov, V.V., Golovin, A.V.: Elastic moduli of porous metals. Phys. Met. Metallogr. 79, 147–149 (1995)
41.
Zurück zum Zitat Sayers, C.M., Smith, R.L.: The propagation of ultrasound in porous media. Ultrasonics 20, 201–205 (1982) CrossRef Sayers, C.M., Smith, R.L.: The propagation of ultrasound in porous media. Ultrasonics 20, 201–205 (1982) CrossRef
42.
Zurück zum Zitat Boccaccini, D.N., Boccaccini, A.R.: Dependence of ultrasonic velocity on porosity and pore shape in sintered materials. J. Nondestruct. Eval. 16, 187–192 (1997) CrossRef Boccaccini, D.N., Boccaccini, A.R.: Dependence of ultrasonic velocity on porosity and pore shape in sintered materials. J. Nondestruct. Eval. 16, 187–192 (1997) CrossRef
43.
Zurück zum Zitat Lin, L., Luo, M., Tian, H.T.: Experimental investigation on porosity of carbon fiber-reinforced composite using ultrasonic attenuation coefficient. In: Proceed WCNDT 2008, Shanghai, China, vol. 3, pp. 2249–2257. Curran Associates, Inc., New York (2011) Lin, L., Luo, M., Tian, H.T.: Experimental investigation on porosity of carbon fiber-reinforced composite using ultrasonic attenuation coefficient. In: Proceed WCNDT 2008, Shanghai, China, vol. 3, pp. 2249–2257. Curran Associates, Inc., New York (2011)
Metadaten
Titel
Nondestructive Porosity Assessment of CFRP Composites with Spectral Analysis of Backscattered Laser-Induced Ultrasonic Pulses
verfasst von
A. A. Karabutov
N. B. Podymova
Publikationsdatum
01.09.2013
Verlag
Springer US
Erschienen in
Journal of Nondestructive Evaluation / Ausgabe 3/2013
Print ISSN: 0195-9298
Elektronische ISSN: 1573-4862
DOI
https://doi.org/10.1007/s10921-013-0184-x

Weitere Artikel der Ausgabe 3/2013

Journal of Nondestructive Evaluation 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.