Skip to main content
Erschienen in: Russian Journal of Nondestructive Testing 10/2023

01.10.2023 | ACOUSTIC METHODS

Nondestructive Testing of Local Microcracking in Laboratory Mineral Samples Using an Acoustic Method with a Laser Source of Ultrasound and Its Verification with X-ray Computed Tomography

verfasst von: N. B. Podymova, A. B. Ermolinskii, M. S. Chernov

Erschienen in: Russian Journal of Nondestructive Testing | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An acoustic technique for nondestructive testing of the degree of local microcracking in laboratory mineral samples based on laser generation of ultrasound is proposed. The spectral power of broadband signals of longitudinal ultrasonic waves is measured. The waves were generated by absorption of pulsed laser radiation in a special material that served as a laser source of ultrasound and further scattered by microcracks in samples (the so-called structural noise power). For two types of feldspars with a nonuniform volumetric distribution of microcracks, a direct relationship was obtained between an increase in microcracks and an increase in the power of structural noise in the sounded sections of the samples. For the first time, an independent method of X-ray computed tomography of complex-shaped samples confirmed the reliability of the results of acoustic measurements. The established relationship between the local microcracking and structural noise power can be used in the monitoring systems for observing the crack formation in rocks and minerals under various external loadings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sagong, M. and Bobet, A., Coalescence of multiple flaws in a rock model material in uniaxial compression, Int. J. Rock Mech. Min. Sci., 2002, vol. 39, pp. 229–241.CrossRef Sagong, M. and Bobet, A., Coalescence of multiple flaws in a rock model material in uniaxial compression, Int. J. Rock Mech. Min. Sci., 2002, vol. 39, pp. 229–241.CrossRef
2.
Zurück zum Zitat Wong, L.N.Y. and Einstein, H.H., Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression, Int. J. Rock Mech. Min. Sci., 2009, vol. 46, pp. 239–249.CrossRef Wong, L.N.Y. and Einstein, H.H., Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression, Int. J. Rock Mech. Min. Sci., 2009, vol. 46, pp. 239–249.CrossRef
3.
Zurück zum Zitat Krivosheev, I.A. and Shamurina, A.I., A sensitive test method for rock fracturing, Russ. J. Nondestr. Test., 2013, vol. 49, no. 9, pp. 543–547.CrossRef Krivosheev, I.A. and Shamurina, A.I., A sensitive test method for rock fracturing, Russ. J. Nondestr. Test., 2013, vol. 49, no. 9, pp. 543–547.CrossRef
4.
Zurück zum Zitat Yin, P., Wong, R.H., and Chau, K.T., Coalescence of two parallel pre-existing surface cracks in granite, Int. J. Rock Mech. Min. Sci., 2014, vol. 68, pp. 66–84.CrossRef Yin, P., Wong, R.H., and Chau, K.T., Coalescence of two parallel pre-existing surface cracks in granite, Int. J. Rock Mech. Min. Sci., 2014, vol. 68, pp. 66–84.CrossRef
5.
Zurück zum Zitat Krivosheev, I.A. and Shamurina, A.I., Control of formed discontinuities in a solid sample by acoustic method, Defektoskopiya, 2017, no. 9, pp. 29–34. Krivosheev, I.A. and Shamurina, A.I., Control of formed discontinuities in a solid sample by acoustic method, Defektoskopiya, 2017, no. 9, pp. 29–34.
6.
Zurück zum Zitat Lavrov, A.V. and Shkuratnik, V.L., Acoustic emission during deformation and destruction of rocks (a review), Akust. Zh., 2005, vol. 51, Suppl., pp. 6–18. Lavrov, A.V. and Shkuratnik, V.L., Acoustic emission during deformation and destruction of rocks (a review), Akust. Zh., 2005, vol. 51, Suppl., pp. 6–18.
7.
Zurück zum Zitat Krivosheev, I.A., Method of coupled dipoles for localization of the sources of acoustic emission, Russ. J. Nondestr. Test., 2007, vol. 43, no. 6, pp. 397–400.CrossRef Krivosheev, I.A., Method of coupled dipoles for localization of the sources of acoustic emission, Russ. J. Nondestr. Test., 2007, vol. 43, no. 6, pp. 397–400.CrossRef
8.
Zurück zum Zitat Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering, Grosse, C.U. and Ohtsu, M., Eds., Berlin: Springer, 2008. Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering, Grosse, C.U. and Ohtsu, M., Eds., Berlin: Springer, 2008.
9.
Zurück zum Zitat Builo, S.I., Builo, B.I., and Chebakov, M.I., Probalistic-information approach to assessing the reliability of the results of the acoustic-emission method of testing and diagnostics, Russ. J. Nondestruct. Test., 2021, vol. 57, no. 5, pp. 375–382.CrossRef Builo, S.I., Builo, B.I., and Chebakov, M.I., Probalistic-information approach to assessing the reliability of the results of the acoustic-emission method of testing and diagnostics, Russ. J. Nondestruct. Test., 2021, vol. 57, no. 5, pp. 375–382.CrossRef
10.
Zurück zum Zitat Aki, K. and Richards, P.G., Quantitative Seismology, Melville: Univ. Sci. Books, 2009, 2nd ed. Aki, K. and Richards, P.G., Quantitative Seismology, Melville: Univ. Sci. Books, 2009, 2nd ed.
11.
Zurück zum Zitat Meglis, I.L., Chow, T., Martin, C.D., and Young, R.P., Assessing in situ microcrack damage using ultrasonic velocity tomography, Int. J. Rock Mech. Min. Sci., 2005, vol. 42, no. 1, pp. 25–34.CrossRef Meglis, I.L., Chow, T., Martin, C.D., and Young, R.P., Assessing in situ microcrack damage using ultrasonic velocity tomography, Int. J. Rock Mech. Min. Sci., 2005, vol. 42, no. 1, pp. 25–34.CrossRef
12.
Zurück zum Zitat Nikitin, A.N., Ivankina, T.I., and Ignatovich, V.K., Features of propagation of longitudinal and transverse elastic waves in textured rocks, Fiz. Zemli, 2009, no. 5, pp. 57–69. Nikitin, A.N., Ivankina, T.I., and Ignatovich, V.K., Features of propagation of longitudinal and transverse elastic waves in textured rocks, Fiz. Zemli, 2009, no. 5, pp. 57–69.
13.
Zurück zum Zitat Nicco, M.,·Holley, E.A., Hartlieb, P., Kaunda, R., and Nelson, P.P., Methods for characterizing cracks induced in rock, Rock Mech. Rock Eng., 2018, vol. 51, no. 7, pp. 2075–2093.CrossRef Nicco, M.,·Holley, E.A., Hartlieb, P., Kaunda, R., and Nelson, P.P., Methods for characterizing cracks induced in rock, Rock Mech. Rock Eng., 2018, vol. 51, no. 7, pp. 2075–2093.CrossRef
14.
Zurück zum Zitat Nikolenko, P.V., Shkuratnik, V.L., and Chepur, M.D., Regularities of changes in elastic wave velocities in rocks of different porosity under mechanical and thermal loading according to laboratory experiments, FTPRPI, 2020, no. 5, pp. 21–32. Nikolenko, P.V., Shkuratnik, V.L., and Chepur, M.D., Regularities of changes in elastic wave velocities in rocks of different porosity under mechanical and thermal loading according to laboratory experiments, FTPRPI, 2020, no. 5, pp. 21–32.
15.
Zurück zum Zitat Abbakumov, K.E., Vagin, A.V., and Sidorenko, I.G., Acoustic characteristics of solid elastic media with oriented microcracking, Russ. J. Nondestruct. Test., 2023, vol. 59, no. 4, pp. 393–403.CrossRef Abbakumov, K.E., Vagin, A.V., and Sidorenko, I.G., Acoustic characteristics of solid elastic media with oriented microcracking, Russ. J. Nondestruct. Test., 2023, vol. 59, no. 4, pp. 393–403.CrossRef
16.
Zurück zum Zitat Kim, K.-B., Hsu, D.K., and Barnard, D.J., Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal, NDT & E Int., 2013, vol. 56, pp. 10–16.CrossRef Kim, K.-B., Hsu, D.K., and Barnard, D.J., Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal, NDT & E Int., 2013, vol. 56, pp. 10–16.CrossRef
17.
Zurück zum Zitat Karabutov, A.A. and Podymova, N.B., Nondestructive porosity assessement of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses, J. Nondestr. Eval., 2013, vol. 32, no. 2, pp. 315–324.CrossRef Karabutov, A.A. and Podymova, N.B., Nondestructive porosity assessement of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses, J. Nondestr. Eval., 2013, vol. 32, no. 2, pp. 315–324.CrossRef
18.
Zurück zum Zitat Kachanov, V.K., Kartashev, V.G., Sokolov, I.V., Voronkova, L.V., and Shalimova, E.V., Strukturnyi shum v ul’trazvukovoi defektoskopii (Structure-Borne Noise in Ultrasonic Flaw Detection), Moscow: Mosk. Energ. Inst., 2016. Kachanov, V.K., Kartashev, V.G., Sokolov, I.V., Voronkova, L.V., and Shalimova, E.V., Strukturnyi shum v ul’trazvukovoi defektoskopii (Structure-Borne Noise in Ultrasonic Flaw Detection), Moscow: Mosk. Energ. Inst., 2016.
19.
Zurück zum Zitat Romanishin, R.I. and Romanishin, I.M., Assessment of scattered damage in structural materials, Russ. J. Nondestr. Test., 2019, no. 2, pp. 111–121. Romanishin, R.I. and Romanishin, I.M., Assessment of scattered damage in structural materials, Russ. J. Nondestr. Test., 2019, no. 2, pp. 111–121.
20.
Zurück zum Zitat Khlybov, A.A. and Uglov, A.L., On the use of structural noise parameters in testing 20GL steel with Rayleigh surface waves under elastoplastic deformation, Russ. J. Nondestruct. Test., 2021, vol. 57, no. 7, pp. 517–524.CrossRef Khlybov, A.A. and Uglov, A.L., On the use of structural noise parameters in testing 20GL steel with Rayleigh surface waves under elastoplastic deformation, Russ. J. Nondestruct. Test., 2021, vol. 57, no. 7, pp. 517–524.CrossRef
21.
Zurück zum Zitat Khlybov, A.A., Uglov, A.L., and Demchenko, A.A., On spectral-acoustic method for estimating porosity of metals produced by hot isostatic pressing, Russ. J. Nondestruct. Test., 2022, vol. 58, no. 12, pp. 1051–1063.CrossRef Khlybov, A.A., Uglov, A.L., and Demchenko, A.A., On spectral-acoustic method for estimating porosity of metals produced by hot isostatic pressing, Russ. J. Nondestruct. Test., 2022, vol. 58, no. 12, pp. 1051–1063.CrossRef
22.
Zurück zum Zitat Vary, A., Material property characterization, in: Nondestructive Testing Handbook. Ultrasonic Testing, Moore, P.O., Ed., Columbus: ASTM, 2007, pp. 365–431. Vary, A., Material property characterization, in: Nondestructive Testing Handbook. Ultrasonic Testing, Moore, P.O., Ed., Columbus: ASTM, 2007, pp. 365–431.
23.
Zurück zum Zitat Fitting, D.W. and Adler, L., Ultrasonic Spectral Analysis for Nondestructive Evaluation, New York: Plenum Press, 1981.CrossRef Fitting, D.W. and Adler, L., Ultrasonic Spectral Analysis for Nondestructive Evaluation, New York: Plenum Press, 1981.CrossRef
24.
Zurück zum Zitat Gusev, V.E. and Karabutov, A.A., Laser Optoacoustics, N.Y.: AIP Publ., 1991. Gusev, V.E. and Karabutov, A.A., Laser Optoacoustics, N.Y.: AIP Publ., 1991.
25.
Zurück zum Zitat Karabutov, A.A. and Podymova, N.B., Nondestructive evaluation of fatigue-induced changes in the structure of composites by an ultrasonic method using a laser, Mech. Compos. Mater., 1995, vol. 31, no. 3, pp. 301–304.CrossRef Karabutov, A.A. and Podymova, N.B., Nondestructive evaluation of fatigue-induced changes in the structure of composites by an ultrasonic method using a laser, Mech. Compos. Mater., 1995, vol. 31, no. 3, pp. 301–304.CrossRef
26.
Zurück zum Zitat Belov, M.A., Cherepetskaya, E.B., Shkuratnik, V.L., Karabutov, A.A., Makarov, V.A., and Podymova, N.B., Quantitative estimation of mineral grain sizes by ultrasonic laser spectroscopy, J. Min. Sci., 2003, no. 5, pp. 419–424. Belov, M.A., Cherepetskaya, E.B., Shkuratnik, V.L., Karabutov, A.A., Makarov, V.A., and Podymova, N.B., Quantitative estimation of mineral grain sizes by ultrasonic laser spectroscopy, J. Min. Sci., 2003, no. 5, pp. 419–424.
27.
Zurück zum Zitat Ismagilov, I.R., Golenishchev-Kutuzov, V.A., Kalimullin, R.I., Migachev, S.A., and Khasanov, A.A., Detecting surface and volume defects in metals by the laser-acoustic method, Russ. J. Nondestr. Test., 2014, vol. 50, no. 6, pp. 318–324.CrossRef Ismagilov, I.R., Golenishchev-Kutuzov, V.A., Kalimullin, R.I., Migachev, S.A., and Khasanov, A.A., Detecting surface and volume defects in metals by the laser-acoustic method, Russ. J. Nondestr. Test., 2014, vol. 50, no. 6, pp. 318–324.CrossRef
28.
Zurück zum Zitat Karabutov, A.A. and Podymova, N.B., Nondestructive porosity assessement of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses, J. Nondestr. Eval., 2013, vol. 32, no. 2, pp. 315–324.CrossRef Karabutov, A.A. and Podymova, N.B., Nondestructive porosity assessement of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses, J. Nondestr. Eval., 2013, vol. 32, no. 2, pp. 315–324.CrossRef
29.
Zurück zum Zitat Podymova, N.B., Kalashnikov, I.E., and Kobeleva, L.I., Laser optoacoustic method for quantitative estimation of porosity in cast dispersion-strengthened metal-matrix composite materials, Russ. J. Nondestr. Test., 2020, no. 12, pp. 949–959. Podymova, N.B., Kalashnikov, I.E., and Kobeleva, L.I., Laser optoacoustic method for quantitative estimation of porosity in cast dispersion-strengthened metal-matrix composite materials, Russ. J. Nondestr. Test., 2020, no. 12, pp. 949–959.
30.
Zurück zum Zitat Podymova, N.B. and Karabutov, A.A., The influence of microcracking degree of feldspars on the spectral power of backscattered broadband pulses of longitudinal ultrasonic waves, Acoust. Phys., 2022, vol. 68, no. 6, pp. 632–640.CrossRef Podymova, N.B. and Karabutov, A.A., The influence of microcracking degree of feldspars on the spectral power of backscattered broadband pulses of longitudinal ultrasonic waves, Acoust. Phys., 2022, vol. 68, no. 6, pp. 632–640.CrossRef
31.
Zurück zum Zitat Brown, J.M., Angel, R.J., and Ross, N.L., Elasticity of plagioclase feldspars, J. Geophys. Res. Solid Earth, 2016, vol. 121, pp. 663–675.CrossRef Brown, J.M., Angel, R.J., and Ross, N.L., Elasticity of plagioclase feldspars, J. Geophys. Res. Solid Earth, 2016, vol. 121, pp. 663–675.CrossRef
32.
Zurück zum Zitat Usov, A.N., Chernov, M.S., Sokolov, V.N., and Voznesenskii, E.A., Changes in the microstructure of clay soils during deformation under conditions of triaxial compression, taking into account the manifestation of deformation instability, Vestn. Moskov. Univ. Ser. 4. Geol., 2017, no. 6, pp. 87–91. Usov, A.N., Chernov, M.S., Sokolov, V.N., and Voznesenskii, E.A., Changes in the microstructure of clay soils during deformation under conditions of triaxial compression, taking into account the manifestation of deformation instability, Vestn. Moskov. Univ. Ser. 4. Geol., 2017, no. 6, pp. 87–91.
33.
Zurück zum Zitat Morozov, I., Zakusin, S., Kozlov, P., Zakusina, O., Roshchin, M., Chernov, M., Boldyrev, K., Zaitseva, T., Tyupina, E., and Krupskaya, V., Bentonite-concrete interactions in engineered barrier systems during the isolation of radioactive waste based on the results of short-term laboratory experiments, Appl. Sci., 2022, vol. 12, no. 6, p. 3074.CrossRef Morozov, I., Zakusin, S., Kozlov, P., Zakusina, O., Roshchin, M., Chernov, M., Boldyrev, K., Zaitseva, T., Tyupina, E., and Krupskaya, V., Bentonite-concrete interactions in engineered barrier systems during the isolation of radioactive waste based on the results of short-term laboratory experiments, Appl. Sci., 2022, vol. 12, no. 6, p. 3074.CrossRef
34.
Zurück zum Zitat Buzug, T.M., Computed Tomography. From Photon Statistics to Modern Cone-Beam CT, Berlin: Springer, 2008. Buzug, T.M., Computed Tomography. From Photon Statistics to Modern Cone-Beam CT, Berlin: Springer, 2008.
Metadaten
Titel
Nondestructive Testing of Local Microcracking in Laboratory Mineral Samples Using an Acoustic Method with a Laser Source of Ultrasound and Its Verification with X-ray Computed Tomography
verfasst von
N. B. Podymova
A. B. Ermolinskii
M. S. Chernov
Publikationsdatum
01.10.2023
Verlag
Pleiades Publishing
Erschienen in
Russian Journal of Nondestructive Testing / Ausgabe 10/2023
Print ISSN: 1061-8309
Elektronische ISSN: 1608-3385
DOI
https://doi.org/10.1134/S1061830923600697

Weitere Artikel der Ausgabe 10/2023

Russian Journal of Nondestructive Testing 10/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.