Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Nonlinear and Nonparametric Extensions

verfasst von : René Vidal, Yi Ma, S. Shankar Sastry

Erschienen in: Generalized Principal Component Analysis

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the previous chapters, we studied the problem of fitting a low-dimensional linear or affine subspace to a collection of points. In practical applications, however, a linear or affine subspace may not be able to capture nonlinear structures in the data. For instance, consider the set of all images of a face obtained by rotating it about its main axis of symmetry. While all such images live in a high-dimensional space whose dimension is the number of pixels, there is only one degree of freedom in the data, namely the angle of rotation. In fact, the space of all such images is a one-dimensional circle embedded in a high-dimensional space, whose structure is not well captured by a one-dimensional line. More generally, a collection of face images observed from different viewpoints is not well approximated by a single linear or affine subspace, as illustrated in the following example.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In principle, we should use the notation \(\hat{\Sigma }_{\phi (\boldsymbol{x})}\) to indicate that it is the estimate of the actual covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use \(\Sigma _{\phi (\boldsymbol{x})}\). The same goes for the eigenvectors and the principal components.
 
2
The remaining MN eigenvectors of \(\Phi \Phi ^{\top }\) are associated with the eigenvalue zero.
 
3
In PCA, we center the data by subtracting its mean. Here, we first subtract the mean of the embedded data and then compute the kernel, whence the name centered kernel.
 
4
In PCA, if X is the data matrix, then XJ is the centered (mean-subtracted) data matrix.
 
5
“Almost every” means except for a set of measure zero.
 
6
See (Davison 1983) for alternative optimization methods for minimizing the objective in (4.32).
 
7
Notice that \(A = JX^{\top }XJ\), where \(J = I - \frac{1} {N}\boldsymbol{1}\boldsymbol{1}^{\top }\) is the centering matrix.
 
8
By scaled low-dimensional representation we mean replacing \(\boldsymbol{y}_{j}\) by \(d_{jj}\boldsymbol{y}_{j}\).
 
9
As we will see in Chapters 7 and 8, spectral clustering methods will play a crucial role in many approaches to subspace clustering.
 
10
Notice that the above objective is very much related to the MAP-EM algorithm for a mixture of isotropic Gaussians discussed in Appendix B.3.2.
 
12
A graph is connected when there is a path between every pair of vertices.
 
13
This constraint is needed to prevent the trivial solution \(U =\boldsymbol{ 0}\). Alternatively, we could enforce \(U^{\top }U = \mbox{ diag}(\vert \mathcal{G}_{1}\vert,\vert \mathcal{G}_{2}\vert,\ldots,\vert \mathcal{G}_{n}\vert )\). However, this is impossible, because we do not know \(\vert \mathcal{G}_{i}\vert\).
 
Literatur
Zurück zum Zitat Belkin, M., & Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proceedings of Neural Information Processing Systems (NIPS) (pp. 585–591). Belkin, M., & Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proceedings of Neural Information Processing Systems (NIPS) (pp. 585–591).
Zurück zum Zitat Bottou, L., & Bengio, J. (1995). Convergence properties of the k-means algorithms. In Neural Information Processing and Systems. Bottou, L., & Bengio, J. (1995). Convergence properties of the k-means algorithms. In Neural Information Processing and Systems.
Zurück zum Zitat Burges, C. (2005). Geometric methods for feature extraction and dimensional reduction - a guided tour. In The data mining and knowledge discovery handbook (pp. 59–92). Boston: Kluwer Academic.CrossRef Burges, C. (2005). Geometric methods for feature extraction and dimensional reduction - a guided tour. In The data mining and knowledge discovery handbook (pp. 59–92). Boston: Kluwer Academic.CrossRef
Zurück zum Zitat Burges, C. J. C. (2010). Dimension reduction: A guided tour. Foundations and Trends in Machine Learning, 2(4), 275–365. Burges, C. J. C. (2010). Dimension reduction: A guided tour. Foundations and Trends in Machine Learning, 2(4), 275–365.
Zurück zum Zitat Chung, F. (1997). Spectral graph theory. Washington: Conference Board of the Mathematical Sciences.MATH Chung, F. (1997). Spectral graph theory. Washington: Conference Board of the Mathematical Sciences.MATH
Zurück zum Zitat Cox, T. F., & Cox, M. A. A. (1994). Multidimensional scaling. London: Chapman and Hall. Cox, T. F., & Cox, M. A. A. (1994). Multidimensional scaling. London: Chapman and Hall.
Zurück zum Zitat Davis, C., & Cahan, W. (1970). The rotation of eigenvectors by a pertubation. SIAM Journal on Numerical Analysis, 7(1), 1–46.MathSciNetCrossRef Davis, C., & Cahan, W. (1970). The rotation of eigenvectors by a pertubation. SIAM Journal on Numerical Analysis, 7(1), 1–46.MathSciNetCrossRef
Zurück zum Zitat Davison, M. (1983). Multidimensional Scaling. New York: Wiley.MATH Davison, M. (1983). Multidimensional Scaling. New York: Wiley.MATH
Zurück zum Zitat Donoho, D., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. National Academy of Sciences, 100(10), 5591–5596.MathSciNetCrossRefMATH Donoho, D., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. National Academy of Sciences, 100(10), 5591–5596.MathSciNetCrossRefMATH
Zurück zum Zitat Forgy, E. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications (abstract). Biometrics, 21, 768–769. Forgy, E. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications (abstract). Biometrics, 21, 768–769.
Zurück zum Zitat Gower, J. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–338.MathSciNetCrossRefMATH Gower, J. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–338.MathSciNetCrossRefMATH
Zurück zum Zitat Hastie, T. (1984). Principal curves and surfaces. Technical Report, Stanford University. Hastie, T. (1984). Principal curves and surfaces. Technical Report, Stanford University.
Zurück zum Zitat Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.CrossRefMATH Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.CrossRefMATH
Zurück zum Zitat Jancey, R. (1966). Multidimensional group analysis. Australian Journal of Botany, 14, 127–130.CrossRef Jancey, R. (1966). Multidimensional group analysis. Australian Journal of Botany, 14, 127–130.CrossRef
Zurück zum Zitat Kruskal, J. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika. Kruskal, J. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika.
Zurück zum Zitat Lee, J. A., & Verleysen, M. (2007). Nonlinear Dimensionality Reduction (1st ed.). New York: Springer. Lee, J. A., & Verleysen, M. (2007). Nonlinear Dimensionality Reduction (1st ed.). New York: Springer.
Zurück zum Zitat Lloyd, S. (1957). Least squares quantization in PCM. Technical Report. Bell Laboratories. Published in 1982 in IEEE Transactions on Information Theory, 28, 128–137. Lloyd, S. (1957). Least squares quantization in PCM. Technical Report. Bell Laboratories. Published in 1982 in IEEE Transactions on Information Theory, 28, 128–137.
Zurück zum Zitat MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 281–297). MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 281–297).
Zurück zum Zitat Mercer, J. (1909). Functions of positive and negative types and their connection with the theory of integral equations. Philosophical Transactions, Royal Society London, A, 209(1909), 415–446.CrossRefMATH Mercer, J. (1909). Functions of positive and negative types and their connection with the theory of integral equations. Philosophical Transactions, Royal Society London, A, 209(1909), 415–446.CrossRefMATH
Zurück zum Zitat Ng, A., Weiss, Y., & Jordan, M. (2001). On spectral clustering: Analysis and an algorithm. In Proceedings of Neural Information Processing Systems (NIPS) (pp. 849–856). Ng, A., Weiss, Y., & Jordan, M. (2001). On spectral clustering: Analysis and an algorithm. In Proceedings of Neural Information Processing Systems (NIPS) (pp. 849–856).
Zurück zum Zitat Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.CrossRef Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.CrossRef
Zurück zum Zitat Roweis, S., & Saul, L. (2003). Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4, 119–155.MathSciNetMATH Roweis, S., & Saul, L. (2003). Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4, 119–155.MathSciNetMATH
Zurück zum Zitat Schölkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge: MIT Press.MATH Schölkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge: MIT Press.MATH
Zurück zum Zitat Schölkopf, B., Smola, A., & Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–1319. Schölkopf, B., Smola, A., & Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–1319.
Zurück zum Zitat Selim, S., & Ismail, M. A. (1984). K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transaction on Pattern Analysis and Machine Intelligence, 6(1), 81–87. Selim, S., & Ismail, M. A. (1984). K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transaction on Pattern Analysis and Machine Intelligence, 6(1), 81–87.
Zurück zum Zitat Sha, F., & Saul, L. (2005). Analysis and extension of spectral methods for nonlinear dimensionality reduction. In Proceedings of International Conference on Machine Learning (pp. 784–791). Sha, F., & Saul, L. (2005). Analysis and extension of spectral methods for nonlinear dimensionality reduction. In Proceedings of International Conference on Machine Learning (pp. 784–791).
Zurück zum Zitat Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef
Zurück zum Zitat Shi, T., Belkin, M., & Yin, B. (2008). Data spectroscopy: Eigenspace of convolution operators and clustering. arXiv:0807.3719v1. Shi, T., Belkin, M., & Yin, B. (2008). Data spectroscopy: Eigenspace of convolution operators and clustering. arXiv:0807.3719v1.
Zurück zum Zitat Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
Zurück zum Zitat Torgerson, W. (1958). Theory and Methods of Scaling. New York: Wiley. Torgerson, W. (1958). Theory and Methods of Scaling. New York: Wiley.
Zurück zum Zitat Weinberger, K. Q., & Saul, L. (2004). Unsupervised learning of image manifolds by semidefinite programming. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 988–955). Weinberger, K. Q., & Saul, L. (2004). Unsupervised learning of image manifolds by semidefinite programming. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 988–955).
Zurück zum Zitat Williams, C. (2002). On a connection between kernel PCA and metric multidimensional scaling. Machine Learning, 46, 11–19.CrossRefMATH Williams, C. (2002). On a connection between kernel PCA and metric multidimensional scaling. Machine Learning, 46, 11–19.CrossRefMATH
Zurück zum Zitat Zhang, Z., & Zha, H. (2005). Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal on Scientific Computing, 26(1), 313–338.MathSciNetCrossRefMATH Zhang, Z., & Zha, H. (2005). Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal on Scientific Computing, 26(1), 313–338.MathSciNetCrossRefMATH
Metadaten
Titel
Nonlinear and Nonparametric Extensions
verfasst von
René Vidal
Yi Ma
S. Shankar Sastry
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-0-387-87811-9_4

Neuer Inhalt